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Q-switching bifurcation dynamics of passively mode-locked lasers
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We model Q-switched pulses in passively mode-locked lasers using the cubic-quintic complex Ginzburg-
Landau equation (CGLE). We show that a wide set of parameters of this equation leads to Q-switched pulses
of triangular shape that consist of a periodic sequence of evolving dissipative solitons. Bifurcation diagrams
demonstrating various transformations of these pulses are calculated in terms of five major parameters of the
CGLE. The diagrams show period doubling transformations as well as the transition to a chaotic evolution of the
Q-switched pulses.

DOI: 10.1103/PhysRevE.104.024221

I. INTRODUCTION

Passive mode locking [1–4] and passive Q switching [5–8]
are two optical pulse generating techniques tightly related to
each other [9]. In each case, a saturable absorber is an essential
part of the laser cavity [10–13]. This device, responsible for
the internal self-modulation of the cavity finesse, leads to the
pulse generation. In the case of mode locking, these pulses
are individual dissipative solitons (DSs) [14–17] while in the
case of Q switching, they are amplitude modulated sequences
of dissipative solitons [18–20]. Two consequences of such
relation are, first, the duration of the Q-switched pulses is
much longer than the duration of mode-locked pulses and,
second, both type of pulses can be modeled using similar tools
[21].

The cubic-quintic complex Ginzburg-Landau equation
(CGLE) is a useful equation for modeling a variety of
passively mode-locked lasers. When used for a qualitative
analysis of pulse generation by these devices, the CGLE has
proved to be capable of predicting very specific laser dynam-
ics that are normally beyond the reach of other modeling tools.
Examples of such predictions include exploding solitons
[22–24], multisolitons [25], dissipative soliton resonances
(DSR) [26,27], creeping solitons [22,28,29], bifurcations of
solitons [24,30,31], and chaotic solitons [24]. These effects
were first found in numerical simulations, and their existence
has been fully confirmed experimentally [32–35]. Therefore,
further studies of the CGLE may produce new results of
practical importance. The brightest example of practical use
of the CGLE is the DSR phenomenon, which is now a popular
technique for high-energy pulse generation [36–39].

The standard form of the CGLE has six parameters that
roughly correspond to physical effects within the laser cav-
ity. Variation of these parameters leads to dissipative soliton
solutions just as the variation of the laser parameters leads to
the generation of short pulses of different shapes. A corre-
spondence between both can be established by comparing the
pulse shapes and their changes when varying the parameters.

The presence of six parameters in the theoretical model and
about the same in the experiments makes the task highly com-
plicated. Finding new types of pulses and their classification
in theory is a formidable exercise. Despite these difficulties, a
significant progress has been reached and several qualitatively
different types of DSs and the areas of their existence have
been identified so far.

In all previous works, the CGLE has been used for a qual-
itative analysis of passively mode-locked lasers. However, it
was shown, recently, that the power of this technique can be
expanded to cover a much larger variety of laser systems [40].
Namely, even passively Q-switched lasers can be analyzed
based on the solutions of the CGLE. A preliminary analysis
and the comparison with experimental data demonstrating this
possibility have been provided in [40]. In the present work, we
present more numerical simulations that support our claims
made in [40]. In particular, we expand the range of parameters
of the CGLE that has DS solutions that can be interpreted as
Q-switched pulses.

The CGLE describes both, the effects of dissipative soli-
ton formation in each round trip, and the effects of soliton
evolution from one round trip to another when the DS is not
stationary. The most common DS evolution is a nearly sinu-
soidal change of the soliton parameters over many round trips
[30]. This can be considered as one form of the Q-switching
dynamics [18]. However, this is not the only possible form.
Another form is a Q-switched pulse of triangular shape with
a sharp peak at the maximum [41]. This form needs more
careful studies as it was observed experimentally [40,42,43].
Moreover, the dynamics of these pulses is more complex than
being simply periodic. It includes the cases when two, or
more, such pulses per period with unequal amplitudes are
involved in the evolution [41]. This phenomenon has also
been observed in [40,43]. In the present work, we extend the
parameter space where these type of pulses can be observed.
Every parameter of the CGLE has been varied in order to see
the change of the pulse shape and the bifurcations leading to
different pulse sequence transformations.
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II. Q-SWITCHED PULSES IN THE CGLE MODEL

For modeling passively Q-switched lasers, we use the
cubic-quintic complex Ginzburg-Landau equation. The pa-
rameters of this equation can be related to the parameters
of laser systems [44,45]. This relation is a separate task that
requires a detailed analysis of each particular laser. Our goal
here is presenting our results in a general form that can be
applied to a multiplicity of lasers with various designs that
include fiber, solid state, and semiconductor lasers. Thus, for
numerical simulations, we use the CGLE, which in its stan-
dard form reads [30]

iψz + D

2
ψττ + |ψ |2ψ + ν|ψ |4ψ

= iδψ + iβψττ + iε|ψ |2ψ + iμ|ψ |4ψ, (1)

where ψ is the envelope of the optical field, D the average
cavity dispersion, and ν a higher-order nonlinear coefficient.
The dissipative terms in the right-hand side of Eq. (1) include
δ which is the linear loss or gain parameter, ε which represents
the cubic gain or loss, and μ which is the gain saturation.
The parameter β is the spectral cavity bandpass coefficient.
The τ variable is the time within each round trip moving
with the pulse, while the z-variable is a continuous variable
linearly proportional to the number of round trips. The passive
mode-locking device in this model does not have any time
delay function, i.e., all processes in the cavity are fast. The
coefficients δ, ε, and μ are greatly influenced by this device.
Dissipative solitons exist when δ < 0, ε > 0, and μ < 0.

For numerical simulations of Eq. (1) we have used a split-
step technique with a fourth-order Runge-Kutta algorithm for
solving the nonlinear part of the equation, while the linear
part was solved in Fourier space. In most cases, the step size
along the z-axis was taken to be 10−6. Multiplying or dividing
this step size by 2 did not change the outcome indicating
that it was sufficiently small to provide accurate results. The
number of mesh points along the τ -axis varied from 65 536 to
more than a a million in order to provide sufficient space for
solitons with tails decaying to zero in both time and frequency
domains. The largest windows have been used for solutions
pulsating with very high amplitudes.

The soliton energy Q = ∫ |ψ |2 dτ within the computation
box has been calculated using a trapezoidal rule. The accuracy
of our numerical modeling was sufficient to provide six signif-
icant digits for the Q-value. Increasing or decreasing the step
size in τ twice did not change these six digits. Bifurcation
diagrams presented below have been calculated with steps
along β, δ, and ε lesser or equal to 0.001. Parameters ν and μ

that are smaller, required increments of 0.0001.
For finding the soliton solutions, we fixed the equation

parameters and used sech-type initial conditions localized at
the center of the numerical window. When the width and
the amplitude of the sech function are close to those of the
solution, we observed its convergence to the soliton solution.
In most cases, the basin of attraction around the soliton is re-
markably large, and the convergence to the solution occurred
relatively quickly even for large deviations of the initial profile
from the actual soliton shape. Once one solution is found, we
used it as initial condition for the next set of parameters. This
is a convenient technique for finding the bifurcation diagrams
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FIG. 1. Example of a single Q-switched pulse that consists of a
train of dissipative solitons. The vertical red bars show the maximal
intensity, |ψ |2, of each DS. The inset shows the pulse profiles of
the DS pulses at the maximum (red solid line) and minimum (blue
dashed line) of the Q-switched pulse. For a particular choice of
�z = 0.0005, as explained in the text, there are 200 round trips (DSs)
along the horizontal axis.

when only one of the equation parameters is changed in small
increments. This technique mimics the experimental approach
when one experimental parameter (say the pump) is changed
in small steps with the resulting change of the pulse profile in
the cavity.

One example of the soliton profile obtained this way is
shown in the inset in Fig. 1. The soliton is pulsating, and
its shape changes from one extremal profile to the other. The
profile with the highest amplitude is shown by the red curve
while the profile with the lowest amplitude is shown by the
blue dashed curve. The change of the soliton amplitude at its
center along the z-axis is depicted by discrete red vertical lines
in Fig. 1.

The DS generated inside the fiber cavity is observed by
coupling a small fraction of the circulating pulse as the output
at certain place in the cavity, thereby transforming a single
DS circulating in the cavity into a train of pulses. The pulses
in the train are separated by the round trip time T . When the
DS changes from one round trip to another, the train becomes
modulated and appears in the form of a longer pulse. Then
this longer pulse is a passively Q-switched pulse. In order
to illustrate the above idea, we present in Fig. 1 one of the
Q-switched pulses that consists of a periodic train of DSs
separated by the cavity round trip time T . Parameters of the
CGLE are specified as follows: ε = 1.5, δ = −10.8, β = 0.3,
D = 0.9, μ = −0.001, and ν = 0.004. This set of parameters
is chosen because it produces the typical Q-switched pulses
we are interested in. Changing slightly any one of these pa-
rameters separately keeps the pulse shape similar to the one
shown in Fig. 1. This set of parameters actually leads to two
different pulses in a period. Only one of them is shown here
as the second one has a similar shape but slightly different
width and amplitude. The separations between pulses are also
different and depend on the equation parameters.

The horizontal axis, z, in Fig. 1 is linearly proportional
to the number of round trips. Let us call the change of the
z variable in one round trip as �z. The value of �z in con-
structing the plot in Fig. 1 serves as the scaling parameter for
comparisons of these type of plots with experimental ones. A
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typical Q-switched pulse in experiments consists of hundreds
or thousands of DSs [18,42,43]. In order to stay in this range,
�z in Fig. 1 is chosen to be 0.00005. This corresponds to
200 round trips along the z-axis in Fig. 1 or 200 DSs as we
assume that there is only one soliton in each round trip. This
means that outside the cavity, time is measured by replacing
�z by T . The DSs are represented by the red vertical bars in
this figure and the actual profiles of the dissipative solitons at
the maximum and the minimum of the Q-switched pulse are
shown in the inset.

The vertical axis in Fig. 1 represents the field intensity
|ψ |2. However, the DS intensity at its maximum is difficult to
measure when the pulse duration is in the picosecond or fem-
tosecond ranges. Then the total energy of such short pulses
is its natural measure. The energy of a DS pulse generated
within each round trip is

Q(z) =
∫ T/2

−T/2
|ψ (z, τ )|2 dτ.

The pulse is usually much shorter than T and its amplitude
decays exponentially to zero at its tails. Then the actual value
of T is not essential and Q(z) is the total energy per round trip.
The average intensity of the train of DS pulses can be found
by dividing the DS energy Q by the duration of the round trip
time T :

I (z) = Q(z)

T
= 1

T

∫ T/2

−T/2
|ψ (z, τ )|2 dτ.

The round trip time T is not explicitly present in the CGLE
model. The soliton energy Q does not depend on T as its tails
decay to zero at the end of this interval. However, the average
intensity I (z) does depend on T . Nevertheless, in most exper-
iments, the measured average intensity is normally presented
in arbitrary units, and therefore any linear coefficient can be
ignored. Hence, the actual value of T does not influence the
results. Up to an arbitrary coefficient, the intensity of the
Q-switched pulse can be presented in terms of the energy Q
of the conforming individual DSs. Consequently, this variable
will be used in all data presented below.

Our results are obtained for solutions of Eq. (1) that have
settled after the influence of the initial conditions has ceased.
They show only stable stationary or Q-switched pulse solu-
tions of the CGLE. In most of the cases, the solution found
for the previous set of parameters has been used as initial
condition for the next set of parameters that are close to the
previous ones. This choice accelerates the process of finding
the solutions. Generally, the stability of the DSs is an involved
issue. It has previously been analyzed in detail [46,47] and
will not be considered here. The convergence of an initial
pulse to a certain state in the numerical simulations is suffi-
cient for being confident with its stability.

III. BIFURCATION DIAGRAMS FOR EXTREMA
OF Q-SWITCHED PULSES

In order to demonstrate that the type of Q-switching
dynamics considered here occupies a large region in the
parameter space, we vary them, one by one, around one partic-
ular point. In this way, we have constructed several bifurcation
diagrams. Most of them are centered around the point in the
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FIG. 2. Bifurcation diagram in β variable. Only the pulse max-
ima are shown. Two different pulses in a period are observed in the
interval 0.22 < β < 0.37.

parameter space that was used for constructing the Q-switched
pulse in Fig. 1. We call it “the departure point” as in each step
of exploration of the parameter space, we will be roaming
around it, returning back and starting again in a different
direction. It is a good starting point because the Q-switched
pulse with “triangular” shape shown in Fig. 1 is typical for
most of our simulations even if one of the parameters is
changing. It is worth to mention again that the sequence of
Q-switched pulses at this point is periodic with two slightly
different pulses per period. This is also typical for sequences
observed at the nearest neighborhood of this point. Deviations
from this point in several directions leaves the pulse shapes
qualitatively similar to the one shown in Fig. 1. However,
the number of pulses per period with different amplitudes
may change as soon as a bifurcation point is reached. These
changes can be seen in the bifurcation diagrams presented
below.

There are six parameters in Eq. (1). Obviously, the total
space cannot be covered by a single illustration. The best
that could be done, would be diagrams in a three-dimensional
space, when two equation parameters are changed. However,
even these illustrations would be excessively cumbersome and
would lose clarity because of the multiplicity of transitions
along each of the two axes representing the two chosen equa-
tion parameters. Therefore, bidimensional diagrams are the
best choice both for clarity and for having a general impres-
sion of all possible scenarios. Again, there is a limited number
of such diagrams that can be presented within a single paper.
Thus, we limit ourselves to the most representative ones that
nevertheless illustrate the majority of the bifurcation types that
we have observed.

When constructing these diagrams, we varied one of the
parameters while fixing the other five. Figure 2 shows one
such example. All parameters are the same as in the “departure
point” except for β, which is varied in a relatively large inter-
val. For convenience, the values of the five fixed parameters
are written inside the figure while β is varied from 0.2 to
0.475. For the sake of higher resolution, the vertical axis is
limited to the values covering only the branch of maximal
values of the energy Q. Figure 2 shows that in the interval
0.22 < β < 0.37 there are two such maxima that correspond
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FIG. 3. Bifurcation diagram in δ variable. There is nearly a clas-
sic period doubling sequence as δ decreases. Four of the bifurcations
of the sequence are clearly seen. The pulse generation becomes
chaotic when δ ≈ −13.5.

to two Q-switched pulses per period just as in the departure
point β = 0.3. Bifurcations at the two ends of this interval
lead to a single pulse per period. In the rest of the range
shown in Fig. 2 there is one pulse per period. At the left end
of the interval shown in Fig. 2 the solitons become unstable
and disappear. Consequently, this point also limits the range of
existence of Q-switched pulses. The right-hand side of the plot
extends almost linearly up to the point β = 0.8. (This part is
not shown to keep a better resolution of the presented curves.)
At the point β = 0.8 solitons and the related Q-switched
pulses also vanish.

An important point that follows from this analysis is that
the range of existence of Q-switched pulses in β-domain is
very large. If we consider the departure point as the count-
down position, this range covers the relative change of β

from 66% of this value to 266%. In other words, β can be
changed four times from its minimal value to its maximal
one and the Q-switched pulses will continue to exist within
this interval. As β characterizes the spectral width of the
cavity transmission, such a big range should allow one to find
easily the parameter range necessary for the observation of
this phenomenon in experiments. Similar conclusion will be
drawn when we consider other bifurcation diagrams.

Figure 3 shows the bifurcation diagram in the δ-variable.
This plot confirms that the departure point chosen above (δ =
−10.8) corresponds to two pulses per period. To the right from
this point, at δ = −8.2, the two curves merge leading to a peri-
odic evolution with a single pulse per period. However, to the
left of this point, at δ = −12, we observe a period quadrupling
bifurcation and the sequence of several period doubling bifur-
cations leading to a chaotic dynamics. The maximal amplitude
of the chaotic Q-switched pulse changes in the interval from
QM = 69 to QM = 77 with the pulse separations also evolving
chaotically. Thus, the interval −14 < δ < −13.5 corresponds
to the generation of a chaotic sequence of Q-switched
pulses. At the right-hand side of the full interval shown in
Fig. 3, at δ = −5.13, the solitons enter a region of instabil-
ity and disappear. Consequently, the Q-switched pulses also
disappear.
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FIG. 4. Bifurcation diagram in ε variable. There are two pulses
per period nearly in the whole interval shown here. Period quadru-
pling occurs at ε = 1.32 and transition to chaos at the left part of the
diagram.

The sequence of period doubling bifurcations in Fig. 3
resembles a similar effect in a logistic map [48]. However,
such similarity should not be understood as a direct analogy.
There is a drastic difference between the one-dimensional
logistic map and an infinite dimensional system such as the
CGLE [49]. Period doubling, tripling, etc., in this case are
qualitatively different phenomena: here the whole function
ψ (t ) changes its shape periodically rather a single number as
in the case of a discrete logistic map. Second, the logistic map
has only one variable parameter while the CGLE has six. The
calculation of Lyapunov exponents or other related parameters
for a soliton entering a chaotic regime is possible [49] but
requires significant attention to the details. This task is far
beyond the simple demonstration of the Q-switching effect
that we present here.

Figure 4 shows the bifurcation diagram in the ε-variable.
The departure point is located right in the middle of this
diagram. Again, there are two pulses per period at this point.
They exist to the right from this point up to ε = 1.75. The
energy QM increases with ε, as higher ε roughly corresponds
to higher nonlinear gain. The two pulses exist also to the left
of the departure point down until ε = 1.34 which is the point
of period quadrupling. Further decrease in ε leads to chaotic
dynamics through a sequence of period doubling bifurcations.
Leaving this part of the dynamics aside, we observe that the
main feature of the effect such as two triangular pulses per
period occupy the whole interval from ε = 1.34 to ε = 1.75
without any visible interruption. Taking into account that this
is a nonlinear coefficient, the length of this interval ≈0.4 is,
indeed, large. For experimental situations, this means that the
effect could be found with relative ease.

The effect is highly sensitive to the changes of the pa-
rameter μ, as it represents the saturation of the nonlinear
gain which is the quintic dissipative term. This is why we
constructed three different bifurcation diagrams with μ as a
variable. For these plots, we fixed the linear loss term to be
δ = −10.8, −12, and −15, respectively. This way, we cover a
wider range of parameters in our simulations. Figure 5 is again
constructed around the departure point with μ = −0.001. As
expected, there are two pulses per period at this point with the
same values of QM as at the center of Fig. 4. The two maximal
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FIG. 5. Bifurcation diagram in μ variable that includes the depar-
ture point. There is a single pulse per period below μ = −0.00164
and above μ = −0.0008. Period doubling and period quadrupling
are observed inside this interval.

amplitudes QM merge to a single one at μ = −0.0009, which
is a bifurcation to a single pulse per period. There are four
pulses per period in the interval of −0.0014 < μ < −0.0012.
This is the interval closest to chaotic behavior in the sense
that if, for example, ε is decreased, the process may enter the
sequence of period doubling bifurcations as in Fig. 4. Below
this interval, the number of pulses per period is two up until
the point μ = −0.00164. Below this point, the two pulses
become identical leading to a single pulse per period.

Figure 6 shows another bifurcation diagram similar to the
one in Fig. 5 but now with δ = −12. The plot in this fig-
ure does not include the departure point. The scale along
the horizontal axis is also slightly different. It starts at the
right-hand side from μ slightly below zero. Solutions with a
single pulse per period exist up to μ = −0.00074. This is not
very far from the similar bifurcation point in Fig. 5. Period
quadrupling bifurcation occurs at around μ = −0.001. This is
also not very far from the similar point in Fig. 5. In contrast to
Fig. 5, we observe here the transition to period 8 solutions at
μ = −0.00116. This mode extends till μ = −0.0012. How-
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FIG. 6. Bifurcation diagram in μ variable that does not include
the departure point. Parameters are the same as in Fig. 5 except for
δ, which is now closer to the threshold of period quadrupling in
Fig. 3. The whole diagram is shifted to the left, and a period octupling
bifurcation appears now at μ = −0.00116.
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FIG. 7. Another bifurcation diagram in μ variable that does not
include the departure point. Parameters are the same as in Fig. 5 ex-
cept for δ which is now in the chaotic region in Fig. 3. Consequently,
the transition to chaos appears in this diagram.

ever, solutions cease to exist to the left from this point. No
transition to chaotic evolution can be observed. The range of
μ shown in Fig. 6 covers the whole interval of solutions that
we are studying.

Even larger deviation form the departure point is chosen
for constructing the bifurcation diagram in Fig. 7. Namely, in
this case, δ = −15. As a result, the diagram shows a route
to chaos via a sequence of period doubling bifurcations. The
first bifurcation point from a single pulse to two pulses per
period occurs at μ = −0.00055. There is an additional shift of
this point in comparison to the diagram in Fig. 6. The second,
period quadrupling bifurcation occurs at μ = −0.00076. Full
scale chaotic dynamics occurs at the left-hand side of the
diagram. The solution vanishes completely (decays to zero)
at around μ = −0.00092.

In order to illustrate the transition from period two to
period four in the bifurcation diagram in Fig. 7, we present
two pulse sequences, that correspond to the points indicated
by the green dashed vertical lines. These plots are shown in
Fig. 8. The left panels show the pulse sequence with two
pulses per period while the right panels show the sequence
with four pulses per period. Although the shapes of the pulses
are very similar, their amplitude, energy, Q, and separation are
different. Nevertheless, the overall dynamics remains strictly
periodic but the periods are different. The left panel shows
two periods of evolution while the right panel shows only one.
The pulse sequence in the next period is exactly the same as in
the one shown in this figure. This figure clearly illustrates the
period quadrupling bifurcation in the situation when the pulse
shapes remain qualitatively the same as at the departure point.
This is another convincing demonstration that the effect that
we are studying occupies a large area in the parameter space
of the CGLE.

The last parameter that we varied in our simulations is the
quintic nonlinearity ν. The bifurcation diagram in ν variable
is shown in Fig. 9. In contrast to the previous diagrams,
here, we show both the maxima QM and minima Qm of the
pulse energy. The green curve shows the branch of stationary
stable solitons with fixed amplitude. As we decrease ν sta-
tionary solitons increase its energy until they cease to exist at
negative values of ν. At the opposite end of this branch, at
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FIG. 8. Two examples of sequences of Q-switched pulses with (a) two and (b) four pulses per period. The amplitudes of the four pulses in
(b) are slightly different, while the different separations between them are more evident. The upper panels show intensity |ψ |2 while the lower
panels show the pulse energy Q. The values of μ chosen here are highlighted by the green vertical dashed lines in Fig. 6. After crossing the
bifurcation point, the number of pulses per period changes from two to four.

ν = 0.0029, the stationary DSs are transformed into the train
of solitons that is part of the Q-switched pulses with energy
Q oscillating between Qm and QM . Transition from the train
of stationary solitons (the green curve) to Q-switched pulses
(the red and blue curves) and vice versa is abrupt and includes
a small region of hysteresis (not shown). Immediately after
the transition, the Q-switched pulses have a single pulse per
period. However, at the next bifurcation point, ν = 0.003,
which is very close to the previous one, the successive pulses
become unequal leading to period doubling. This transition is
seen as splitting of the two curves in Fig. 9. At higher values
of ν, we can observe two intervals of period quadrupling.
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FIG. 9. Bifurcation diagram in ν variable. The green curve
shows the branch of stationary stable dissipative solitons. At ν >

0.0029, this branch becomes unstable and turns into the sequence of
Q-switched pulses. The points of period doubling and period quadru-
pling bifurcations are located at ν = 0.003, ν = 0.004, ν = 0.0052,
and ν = 0.0076. In contrast to the previous diagrams, here both the
maxima QM (red curves) and minima Qm (blue curves) of DS energy
Q are shown.

Additional splitting of the curves corresponds to four pulses
per period. This happens at the intervals 0.004 < ν < 0.0053
and 0.0078 < ν < 0.0091. Although the splitting of the max-
ima or minima in these intervals is very small, the effect
still can be seen in the scale of Fig. 9. Dissipative solitons
become unstable and completely disappear above the point
ν = 0.0092. As a result, the Q-switched pulses also disappear.

Parameters D and β are responsible for linear effects. They
can be simultaneously rescaled and reduced to a single effec-
tive parameter β/D. Therefore, changing D produces similar
bifurcation diagram as changing β. It is not given here. Thus,
by varying only five parameters around the departure point we
have obtained a sufficiently detailed qualitative pattern of bi-
furcations in the region of existence of triangular Q-switched
pulses. Simultaneously, we have obtained rough estimates of
the boundaries of this area as the ends of the intervals that we
considered are essentially the limits of the existence of this
type of Q-switched pulses.

We would like to stress that the triangular pulse shapes
are in the z variable. Thus, they are Q-switched pulses that
consist of a sequence of solitons with much shorter duration.
In the τ variable, in all cases that we have considered, the
pulses are nearly bell-shaped solitons with a single maximum
and exponentially decaying tails. They change their amplitude
and width but remain robust entities at the whole area of
parameters that admit triangular Q-switched pulses.

IV. CONCLUSIONS

We have shown in this work that the whole area of the
CGLE parameters admitting Q-switched pulses has been over-
looked in previous publications. Here, and in [40], we have
filled this gap in the knowledge of the immense world of the
Ginzburg-Landau equation. The range of parameter change in
our bifurcation diagrams reached the edges of existence of the
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type of pulses that we studied. This fact shows that the region
of their existence is very large. Nevertheless, we realize, that
there may be other areas that also admit such type of pulses or
pulses with other shapes. The work in this direction should be
continued.

Clearly, the technique of modeling the Q-switched pulses
offered in this work is only one of the existing possibili-
ties. There are other modeling tools that are in use today
[50–52]. Being a continuous one, our model may miss certain
features of the phenomenon of Q switching that are related
to the discreteness of the cavity dynamics. The discreteness
can be taken into account in this model using periodically
varying coefficients in the CGLE. There is a vast number

of possibilities in extending the model to be more realis-
tic. Our work can be considered as a starting point in this
endeavor.

Comparison with experiments is a decisive step in these
studies. The first work in this direction has been done in
[40]. Continuation in this direction is also essential for further
progress in modeling lasers with passive Q switching.
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