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The statistical analysis of data stemming from dynamical systems, including, but not limited to, time series,
routinely relies on the estimation of information theoretical quantities, most notably Shannon entropy. To this
purpose, possibly the most widespread tool is provided by the so-called plug-in estimator, whose statistical
properties in terms of bias and variance were investigated since the first decade after the publication of Shannon’s
seminal works. In the case of an underlying multinomial distribution, while the bias can be evaluated by knowing
support and data set size, variance is far more elusive. The aim of the present work is to investigate, in the
multinomial case, the statistical properties of an estimator of a parameter that describes the variance of the
plug-in estimator of Shannon entropy. We then exactly determine the probability distributions that maximize
that parameter. The results presented here allow one to set upper limits to the uncertainty of entropy assessments
under the hypothesis of memoryless underlying stochastic processes.
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I. INTRODUCTION

The estimation of Shannon entropy [1] associated to a
probability distribution lies at the very core of information
theory and is a fundamental tool in statistical analysis. Its ap-
pealing interpretation in terms of information content makes
Shannon entropy, along with metrics directly stemming from
it, a crucial ingredient of many analytical techniques that are
used to characterize complex systems. For example, mutual
information, which is linked to the entropy difference between
a joint distribution and the two related marginal distributions,
is used to estimate the degree of correlation between two
random variables [2]. In the analysis of time series generated
by complex systems, entropy measures such as permutation
entropy [3] and approximate and sample entropy [4] are
widely used. Tools from information theory and based on
entropy are common in neuroscience [5–7], genomics [8–10],
physiology [11], economics [12,13], climatology [14–16], and
geoscience [17,18].

A key question is how reliably an estimator evaluates the
actual entropy. The question becomes relevant especially in
experimental situations when a single acquisition of limited
size is available and thus only a single estimate can be as-
sessed, for example, in research fields that rely on historical
time series or measurements of systems that cannot be con-
trolled by the experimenter. While no general solution is
known, the ways this issue is tackled depend on the—possibly
unknown—physical mechanisms underlying the evolution of
a system of interest. The issue of assessing an estimator’s
reliability is relevant also in wider contexts of information
theory, such as Renyi entropies [19], mutual information [20],
and entropy rate [21].

*leonardo.ricci@unitn.it

The most basic case occurs when states are randomly and
independently accessed, so that their number of visits follow
a multinomial distribution. Despite its apparent simplicity, the
issue of reliably estimating entropy in the multinomial case
is far from being straightforward [22]. Typically, Shannon
entropy is estimated by relying on a recording of a system’s
discrete-time evolution: Upon identifying the states of in-
terest, the related occurrences are counted over an N-step
evolution to yield a histogram of sample rates. Entropy is
then evaluated on this empirical distribution by using the so-
called plug-in estimator [23] Ĥ , also referred to as maximum
likelihood [22] or naive [5] estimator. To assess the reliability
of the plug-in estimator, crucial parameters are the support
size M and the sample size N . Early works by, among others,
Basharin [24], Miller [25], Harris [26] showed the consistency
and the asymptotic normality of Ĥ .

In general, both the bias and the variance affecting Ĥ
depend on N−1. However, while the bias is well described
by the so-called Miller-Madow correction [24–26] equal to
−(M − 1)/(2N ) (see also Vinck et al. [27] for more recent de-
velopments), there is no general rule to estimate the variance
σ 2

Ĥ
. More in detail, it is known that [24–26], upon defining

the variance parameter �0 = ∑M
i=1 si(H + ln si )2, where the

si’s are the prior probabilities that define the multinomial
distribution, and provided that �0 �= 0, one has σ 2

Ĥ
∼ �0/N .

Unfortunately, whenever the multinomial distribution is un-
known, so are �0 and σ 2

Ĥ
. Nevertheless, as shown by Antos

and Kontoyiannis [23], σ 2
Ĥ

has an upper bound given by
(ln N )2/N . In addition, Roulston [28] derived, via standard
error analysis, an estimate of σ 2

Ĥ
that has a widespread use

(see, for example, Ref. [29]).
In the present work, we address the problem of estimating

the variance parameter �0 that describes σ 2
Ĥ

in the multi-
nomial case. In the first part, we investigate the statistical
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properties of a straightforward plug-in estimator �̂0 for �0.
The estimator is shown to be itself consistent and asymp-
totically normal. Both its bias and variance are shown to be
inversely proportional to the finite sample size N making up
the available data set.

In the second part, we derive an upper bound for the
variance parameter �0 that depends on the support size M.
Provided that this support size is known, the upper bound can
be used to set a limit to the degree of confidence on an estimate
of H via Ĥ out of a sample histogram. The maximum variance
parameter �0, max is shown to correspond to a distribution
having a single, outlier state, whereas the access probability
to the remaining ones is uniformly distributed.

The paper is organized as follows. In Sec. II, upon summa-
rizing the statistical properties of Ĥ , we introduce the plug-in
estimator of the variance parameter �0 and we derive its
asymptotic distribution. Section III concerns the assessment
of the maximum variance parameter �0, max in the multino-
mial case and the related underlying distributions. Numerical
simulations to test the reliability of the estimator of the vari-
ance parameter �0 and to compare it with the one proposed by
Roulston are discussed in Sec. IV. Final remarks are presented
in Sec. V.

II. PLUG-IN ESTIMATOR OF THE VARIANCE
PARAMETER �0

A. A summary on the plug-in entropy estimator ̂H
and its statistical properties

The system of interest consists of M states and has a purely
stochastic evolution: the transition probability from state j to
state i is independent of j, where, here and henceforth, both
i and j run between 1 and M. Let si be the probability with
which the ith state is visited. The Shannon entropy H of the
system is given by

H = −
M∑

i=1

si ln si. (1)

Throughout the paper it is assumed—via continuous
extension—that x lnn x = 0 if x = 0, for each n ∈ N. How-
ever, unless otherwise specified, we suppose here that M
coincides with the size of the support of the distribution {si},
so that si > 0, ∀i.

A way to estimate H relies on the plug-in estimator Ĥ , as
follows. (Henceforth, given a typically unknown quantity a,
the symbol â refers to an estimator of a that, as a function of
observed data, is a statistic affected by bias and fluctuations).
We consider N consecutive steps of the system’s evolution and
record the M-dimensional set { ĵi} of the number of visits of
each one of the M states. The set { ĵi} is distributed according
to a multinomial distribution, and it holds that

∑M
i=1 ĵi = N .

Upon computing, for each i, the observed rate p̂i as p̂i = ĵi/N ,
the plug-in estimator Ĥ is defined as

Ĥ ≡ −
M∑

i=1

p̂i ln p̂i.

The plug-in estimator is affected by a bias term that is
known as the Miller-Madow correction [24–26] and is equal

to −(M − 1)/(2N ). With regard to the variance of the plug-in
estimator, let first the variance parameter �0 be defined as

�0 ≡
M∑

i=1

si ln2 si −
(

M∑
i=1

si ln si

)2

. (2)

Then, as shown by Basharin [24] and Harris [26], in the
multinomial case and provided that �0 > 0, the variance σ 2

Ĥ
is given by

σ 2
Ĥ = �0

N
+ O

(
1

N3/2

)
.

Note that by writing �0 in the form mentioned in Sec. I,
namely �0 = ∑M

i=1 si(H + ln si )2, it can be promptly shown
that �0 � 0, where the equality holds if and only if the proba-
bilities si are uniformly distributed.

As pointed out in the introduction, estimating the variance
of the plug-in estimator requires the knowledge of the param-
eter �0, for which an estimator is proposed and analyzed in
the following sections.

B. Plug-in estimator ̂�0 of the variance parameter �0

The estimator of the variance parameter �0 proposed in
this paper is the plug-in estimator that is evaluated out of the
rate histogram { p̂i} as

�̂0( p̂1, . . . , p̂M ) =
M∑

i=1

( p̂i ln2 p̂i ) − Ĥ2. (3)

Because the quantity �̂0 is a sample statistic, it is necessary
to assess its reliability in terms of bias and variance. This
issue is tackled by determining the asymptotic behavior of �̂0

as N → ∞. To this goal, it is suitable to define, for each i,
ζi ≡ ( p̂i − si )

√
N , so that the rates can be expressed as

p̂i = si + ζi√
N

.

It follows that

�̂0 =
M∑

i=1

[(
si + ζi√

N

)
ln2

(
si + ζi√

N

)]

−
[

M∑
i=1

(
si + ζi√

N

)
ln

(
si + ζi√

N

)]2

.

Expanding the previous expression in terms of order N−n/2,
with n ∈ N, leads to

�̂0 = �0 + 1√
N

M∑
i=1

ζi
[
�2

i + 2(1 + H )�i
]

+ 1

N

[
M∑

i=1

(
1 + H + �i

si
ζ 2

i

)
−

M∑
i=1

M∑
j=1

(ζiζ j�i� j )

]

+ O

(
1

N3/2

)
,

where �i ≡ ln si and the identity
∑M

i=1 ζi = 0, which follows
from the constraint

∑M
i=1 p̂i = 1, was used.
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Let Gδ�̂0
(t ) be the moment-generating function of the

residual δ�̂0 ≡ �̂0 − �0, where t is a real variable defined
in a neighborhood of the origin. It holds that

Gδ�̂0
(t ) = E (et δ�̂0 ).

The exponential form et δ�̂0 can be expressed as

et δ�̂0 = 1 + t√
N

M∑
i=1

ζi
[
�2

i + 2(1 + H )�i
]

+ t

N

[
M∑

i=1

(
1 + H + �i

si
ζ 2

i

)
−

M∑
i=1

M∑
j=1

(ζiζ j�i� j )

]

+ t2

2N

M∑
i=1

M∑
j=1

ζiζ j
[
�2

i + 2(1 + H )�i
]

× [
�2

j + 2(1 + H )� j
]

+ O

(
1

N3/2

)
.

Because the starting vector of the system’s evolu-
tion is randomly chosen according to the distribution
{si}, the expected value of each ζi is given by [30]
E (ζi ) = O(1/N ), so that the term proportional to t/

√
N is

absorbed within the term O(N−3/2). In addition [30], one
has E (ζiζ j ) = χi, j + O(N−1/2), where χi, j = δi, j si − sis j is
the covariance matrix of rates being distributed according
to a multinomial distribution (δi, j is the Kronecker delta). It
follows that

Gδ�̂0
(t ) = t

N

[
M∑

i=1

(
1 + H + �i

si
χi,i

)
−

M∑
i=1

M∑
j=1

(χi, j�i� j )

]

+ t2

2N

M∑
i=1

M∑
j=1

χi, j
[
�2

i + 2(1 + H )�i
]

× [
�2

j + 2(1 + H )� j
]

+ O

(
1

N3/2

)
. (4)

Let the coefficients of t/N and t2/(2N ) in Eq. (4) be defined
as γ and 	, respectively:

γ ≡
M∑

i=1

(
1 + H + �i

si
χi,i

)
−

M∑
i=1

M∑
j=1

(χi, j�i� j ),

	 ≡
M∑

i=1

M∑
j=1

χi, j
[
�2

i + 2(1 + H )�i
][

�2
j + 2(1 + H )� j

]
.

Equation (4) can be then rewritten as

Gδ�̂0
(t ) = t

N
γ + t2

2N
	 + O

(
1

N3/2

)
. (5)

It is worth noting that, because χ is positive semidefinite, from
the definition of 	 one has 	 � 0.

As a consequence of the properties of the moment-
generating function, the coefficient of t in this last equation

corresponds to the expected value of δ�̂0, i.e., of �̂0 − �0:

μδ�̂0
= μ�̂0

− �0 = γ

N
+ O

(
1

N3/2

)
. (6)

Also, because the square of this last term is of order N−2, the
coefficient of t2/2 in Eq. (5) directly provides the variance of
δ�̂0 and thus of �̂0:

σ 2
�̂0

= σ 2
δ�̂0

= 	

N
+ O

(
1

N3/2

)
. (7)

Equations (6) and (7) provide the bias and the variance
of the plug-in estimator �̂0 of the variance parameter �0,
respectively.

Besides these results, Eq. (5) can be further exploited:
Starting from it, the moment-generating function of the ran-
dom variable w ≡ (δ�̂0 − γ

N )
√

N is given by

Gw(t ) = exp

(
t2

2
	

)
+ O

(
1

N1/2

)
,

where t is a real variable defined in a neighborhood of the
origin. This expression shows that, provided that 	 is nonva-
nishing, w is asymptotically normally distributed with zero
mean and variance 	. It is therefore possible to formulate
a central limit theorem for the plug-in estimator �̂0 of the
variance parameter �0:

�̂0 ∼ N
(

�0 + γ

N
,

	

N

)
as N → ∞.

The main result of this section can be summarized as the fact
that the plug-in estimator �̂0 defined in Eq. (3) is asymptoti-
cally normal and is a consistent estimator (both its population
mean and variance depend on N−1) of the variance parameter
�0.

C. Practical considerations about ̂�0

From a practical point of view, using the asymptotic ex-
pressions above requires the knowledge of the parameters γ

and 	. The two parameters can be expressed upon straightfor-
ward algebra as

γ = MH + M − 1 − �0 +
M∑

i=1

�i, (8)

	 = μ′
4 − 4μ′

3(H + 1) + H3(3H + 4)

+ 2�0(3H2 + 6H + 2) − �2
0, (9)

where μ3, μ4 are the third and fourth moments of the dis-
tribution of the single-bin entropy −�i = − ln si, which are
generally defined as

μ′
n ≡

M∑
i=1

si(−�i )
n,

so that, for example, μ′
1 = H , μ′

2 = �0 + H2.
The presence, in the expressions above, of μ′

3, μ′
4,

∑
i �i,

makes the estimates of γ , 	, and thus of �̂0, a circular prob-
lem. In principle, provided that sufficiently large data samples
are available, one could carry out a statistical analysis on
subsamples of different size N , in order to “experimentally
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assess” the parameters γ , 	. In practice, however, and es-
pecially in the case of limited data samples, it is difficult to
estimate the reliability of �̂0 and thus of the variance of the
estimated Shannon entropy Ĥ . In the next section, this issue
is circumvented by evaluating the maximum value of �0 as a
function of the number M of the system’s states.

III. MAXIMA OF THE VARIANCE PARAMETER �0

The goal of this section is to find the maximum value of
�0 and the related probability distribution(s) {si} for a given
support size M.

Let D be the probability M-simplex defined as

D ≡
{

r ∈ RM

∣∣∣∣ M∑
i=1

ri = 1, ri � 0 ∀i

}
.

Due to the settings x lnn x = 0 if x = 0 and ∀n ∈ N, which
rely on continuous extensions of the respective functions, both
H and �0 are continuous on the simplex D. According to
the Weierstrass extreme value theorem [31] and the theorem
of necessary condition for extreme values [32], the extreme
values of �0 can only occur either on the boundary ∂D of
D or in stationary points within D. We first discuss the latter
case.

A. Stationary points in the interior of the probability simplex

Because the probabilities si have to add up to one, only
M − 1 values are independent. We then consider sM as a
function of the other M − 1 probabilities:

sM = 1 −
M−1∑
i=1

si. (10)

To find the stationary points of �0, its partial derivative
with respect to the independent si’s, with 1 � i � M − 1, is
considered:

∂�0

∂si
= (ln si − ln sM )(ln si + ln sM + 2 + 2H ).

A vanishing partial derivative requires fulfilling one of two
possibilities, namely

si = p0 ≡ sM, (11)

si = q0 ≡ 1

sM
e−2−2H . (12)

The two possibilities are mutually exclusive: If it were
p0 = q0, then it would follow, first, si = 1/M, ∀i ∈ [1, M],
so that H = ln M, and, second, sM = 1

sM
e−2−2H , so that

H = 1 + ln M. Therefore, it must hold that p0 �= q0.
Let k be the number of si’s that satisfy the first possibility,

Eq. (11). Because sM trivially satisfies this condition, one has
1 � k � M. However, the case k = M corresponds to a uni-
form distribution where si = 1/M, ∀i ∈ [1, M]. In this case,
�0 = 0 and, as shown by Harris [26], the dominant variance
term is of order N−2. The uniform distribution thus yields
the vanishing, minimum value of �0, which also occurs in
the M vertices of the simplex, namely whenever a single si

is unitary while all the others are vanishing. Henceforth we

therefore restrict the discussion to the range 1 � k � M − 1.
The number of si’s that satisfy the second possibility, Eq. (12),
is then M − k, which also varies between 1 and M − 1.

Equations (1), (10), and (12) can be respectively rewritten
as follows:

−kp0 ln p0 − (M − k)q0 ln q0 = H, (13)

kp0 + (M − k)q0 = 1, (14)

ln p0 + ln q0 + 2 + 2H = 0. (15)

Equations (13), (14), and (15) make up a system of three
equations in the three variables H , p0, q0, while the integer
number k is a fixed parameter. Inserting the expression for H
given by Eq. (13) into Eq. (15) and replacing q0 with 1−kp0

M−k , as
given by Eq. (14), yields

(1 − 2kp0) ln
1 − kp0

kp0
= 2 + (1 − 2kp0) ln

M − k

k
. (16)

Crucially, because of Eq. (14) and the fact that we are con-
sidering the interior of D, it holds that 0 < kp0 < 1 and
0 < (M − k)q0 < 1.

It is useful to introduce the auxiliary variable v defined as

v ≡ 2kp0 − 1.

It follows that

|v| < 1,

p0 = 1 + v

2k
, (17)

q0 = 1 − v

2(M − k)
. (18)

By also defining the function f (v) as

f (v) ≡ v ln
1 + v

1 − v
, (19)

Eq. (16) can be rewritten as

f (v) = 2 − v ln
M − k

k
. (20)

The graph of f (v) corresponds to the continuous, red line
shown in Fig. 1.

It is straightforward to show that f (v) satisfies the fol-
lowing properties: f (−v) = f (v); f (v) � 0; f (v) → +∞ as
v → ±1. In addition, because the derivative f ′(v) is given by

f ′(v) = 1

v

[
f (v) + 2v2

1 − v2

]
,

the function f (v) is monotonically increasing (decreasing) if
v > 0 (v < 0) and thus has a single minimum equal to 0 in
v = 0. As shown in Fig. 1, the right-hand term of Eq. (20)
is instead a straight line going through the point (0, 2) and
having a slope − ln M−k

k .
For any k, the roots of the transcendental Eq. (20)

provide, via Eqs. (17) and (18), stationary points for
�0 = �0(p0, p1, . . . , pM−1). Let ṽk be a root of Eq. (20) for a
given k. According to Eq. (2) and by using Eq. (17) and (18),
the variance parameter �0 can be promptly rewritten as

�0 = 1

ṽ2
k

− 1. (21)
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FIG. 1. Graphical representation of Eq. (20). The red, solid line
corresponds to the graph of the function f (v) defined in Eq. (19).
The straight lines correspond to the right-hand term of Eq. (20) in
the case M = 7 and for different values of the parameter k. The blue
dots mark the intersection of f (v) with the straight line in the case
k = 1, as well as the two abscissae −ṽk,1, ṽk,2.

It then follows that the maximum value of �0 occurs for a
stationary point characterized by a value k that yields the
minimum |ṽk|.

To assess this k value and the corresponding minimum
|ṽk| we start observing that for each k there are two roots of
Eq. (20), one negative and one positive, which are henceforth
referred to as −ṽk,1, ṽk,2, respectively, with ṽk,1 > 0, ṽk,2 > 0.
From Eq. (20) it holds that ṽM−k,2 = ṽk,1. It is therefore suffi-
cient to study the cases k � M/2 for which the factor ln M−k

k
is non-negative.

Inserting −ṽk,1, ṽk,2 in Eq. (20) and subtracting the results
yields

f (−ṽk,1) − f (ṽk,2) = (ṽk,1 + ṽk,2) ln
M − k

k
� 0.

Consequently, f (ṽk,1) = f (−ṽk,1) � f (ṽk,2) and, because
f (v) is monotonically increasing if v > 0, it follows
ṽk,1 � ṽk,2. The root ṽk,2 is therefore the closest one to the
origin.

We now show that ṽk,2 decreases if k increases by one.
Because M−k

k > M−k−1
k+1 , one has

2 − f (ṽk,2)

ṽk,2
>

2 − f (ṽk+1,2)

ṽk+1,2
,

i.e.,

2

ṽk,2
− 2

ṽk+1,2
>

f (ṽk,2)

ṽk,2
− f (ṽk+1,2)

ṽk+1,2
.

If it were ṽk,2 � ṽk+1,2, the left-hand term of the previ-
ous inequality would be nonpositive, whereas the right-hand
term would be non-negative (the function f (v)/v = ln 1+v

1−v
is

monotonically increasing if 0 < v < 1), thus leading to a con-
tradiction. It then must hold that ṽk,2 < ṽk+1,2. Consequently,
ṽ1,2 provides the minimum absolute value of a root of Eq. (20)
and thus, via Eq. (21), the maximum value of �0 for a given
M with regard to the interior of the simplex D.

As a corollary, the very same argument of the last para-
graph can be promptly applied to show that increasing M
leads to a decrease of ṽ1,2 and thus to an increase of �0, max.

This corollary is important in order to discuss the behavior of
the variance parameter �0 on the boundary of the probability
simplex.

It is finally important to note that, when k = 1, the sin-
gle outlier among the set of probabilities {si} is sM , namely
the one that was chosen as dependent on all the others [see
Eq. (10)]. Because M similar choices are possible, the number
of equivalent maxima of �0 is M.

B. Boundary of the probability simplex

The boundary ∂D of the M-simplex D is the union of M
boundary facets. Each facet is defined by a single s j , with
1 � j � M, set to zero, and it thus corresponds to a (M − 1)-
simplex.

This last assumption contradicts the fact that M is the
support size of the probability distribution. However, we dis-
cuss these cases for the sake of completeness and because, in
principle, one could have arbitrarily small si values.

Because each facet corresponds to a simplex, the argu-
ments of the previous section can be iteratively applied as
follows. First, in the interior of the jth facet, the maximum
of �0 will be 1/ṽ′2

1,2 − 1, where ṽ′
1,2 is the negative root

of Eq. (20) when k = 1 and M is replaced by M − 1. Sec-
ond, the boundary of the jth facet has to be treated as a
(M − 2)-dimensional set of (M − 2) simplexes, and so on.
The iteration stops at the two-dimensional simplexes in which
only a pair (si, s j ) of probabilities is nonzero: In this case, the
boundaries are the pointlike vertices of a segment, in which
�0 = 0.

Because of the corollary expressed at the end of the previ-
ous section, Sec. III A, the maximum of �0 on the jth facet
is strictly less than the value produced by a stationary point
lying within D, namely 1/ṽ2

1,2 − 1.

C. Maximum value of �0 and related distributions

By taking into account the results of Secs. III A and III B,
we can conclude that the maximum of �0 in the multino-
mial case occurs when the distribution of the probabilities
{si | i ∈ [1, M]} has a single entry equal to the value p0 and
all the other entries uniformly distributed and equal to q0.

Upon finding the single positive root ṽ ≡ ṽ1,2 of the tran-
scendental equation

f (v) = 2 − v ln(M − 1), (22)

which corresponds to Eq. (20) with k = 1, one has

p0 = 1 + ṽ

2
, (23)

�0, max = 1

ṽ2
− 1. (24)

Equation (22) can be approximately solved by replacing
f (v) with the first term of its Taylor expansion, namely 2v2.
Equation (22) then becomes a second-degree equation whose
positive solution is given by

ṽ ≈
√

ln2(M − 1)

16
+ 1 − ln(M − 1)

4
, (25)
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FIG. 2. Maximum variance parameter �0, max as a function of the
support size M: (red, solid line) exact computation; (red, dashed line)
evaluation via Eq. (24) by using the approximated value for ṽ given
by Eq. (25); (black, dash-dotted line) approximation described by
Eq. (26) and valid for M � 100. Outlier probability p0 as a function
of the support size M: (blue, solid line) exact computation; (blue,
dashed line) evaluation via Eq. (23) by using the approximated value
for ṽ given by Eq. (25).

which, for large M values, can be further approximated as
ṽ ∼ 2/ ln(M ). (These approximations improve with M be-
cause the larger M, the smaller ṽ). Figure 2 shows the plots
of p0, �0, max as a function of the dimension M. The approxi-
mation based on Eq. (25) works well for M � 10. It is worth
observing that, as M → ∞, one has

�0, max
∼= ln2(M )

4
, (26)

while p0 tends to 1/2.

FIG. 3. (a) Color map of the variance parameter �0 on the
probability simplex in the case M = 3. Three points, located
at one coordinate being equal to p0

∼= 0.88 and the other two
equal to q0

∼= 0.06, provide the maximum value of �0, namely
�0, max

∼= 0.762. The curve placed on the plane πs0,s1 represents
the plot of �0 on the simplex facet corresponding to s2 = 0.
(b) Color map of Shannon entropy H on the probability simplex in
the case M = 3. The maximum value occurs in the center, where
s0 = s1 = s2 = 1/3 and �0 vanishes. No additional stationary points
are present (which is true at any dimension).

The number of different distributions that maximize �0 is
equal to M, one for each state taking on the value p0. Figure 3
shows the case M = 3.

It is important to note that, in the case of a distribution that
maximizes �0, the parameter 	, which is given by Eq. (9)
and describes the N−1 dependence of the plug-in estimator
�̂0 of �0, vanishes. A proof of this statement is discussed in
the Appendix. The situation is similar to what happens to the
plug-in entropy estimator Ĥ when the distribution is uniform:
In this case, H takes on its maximum value equal to ln(M ),
while the quantity that describes the expected value of the
variance of the plug-in estimator, namely �0/N , vanishes and
it is replaced by higher-order terms (typically ∼ N−2 [26]).
The same is expected to occur in the case of 	.

Finally, it is worth considering how “peaked” the max-
ima of �0 are. The partial derivatives with respect to the
independent si’s, evaluated in the locations corresponding to
�0 = �0, max are given by

∂2�0

∂si∂s j
= −

(
ln

p0

q0

)[
δi, j

q0
− 1

p0
+ 2

(
ln

p0

q0

)]
= −�0, max

4

1 − ṽ2

[
δi, j (M − 1)

ṽ

1 − ṽ
+ 2 + ṽ

1 + ṽ

]
≈ −8�0, max

[
1 + δi, j

M

ln M

]
,

where the last approximation holds provided that M � 1 so
that ṽ ∼ 2/ ln(M ). In this limit, upon defining δsM and δs‖ as

δsM = −
M−1∑
i=1

δsi,

δs‖ =
[

M−1∑
i=1

(δsi )
2

]1/2

,

where δsi is the infinitesimal displacement of the respective si

from the value q0, we have the following Taylor expansion for
�0:

�0

�0, max
≈ 1 − 4

[
(δsM )2 + M

ln M
(δs‖)2

]
.

IV. NUMERICAL EXPERIMENTS

To test the theory discussed in the previous two sections,
two different distributions {si} were considered, both with
M = 5: an “arithmetic progression” distribution (red inset
in Fig. 5), where si is proportional to i; and a “maximum
variance” distribution (blue inset in Fig. 5), namely one of
the distributions that yield a maximum �0 in the case M = 5.
Here, s1 = p0

∼= 0.834, whereas the other si’s are equal to
q0

∼= 0.042.
For each of the two distributions and for values of N

ranging from 102 to 106, a sample S of 104 evolutions were
simulated, and for each evolution the plug-in estimator �̂0

was evaluated. Thereupon, the results were averaged on the
sample S in order estimate the expected values of the mean
and the variance of �̂0, according to Eqs. (6) and (7), respec-
tively. By neglecting higher-order terms in those equations,

024220-6



ESTIMATING THE VARIANCE OF SHANNON ENTROPY PHYSICAL REVIEW E 104, 024220 (2021)

FIG. 4. Plug-in estimator �̂0 of the variance parameter �0 as a function of the number of steps N in the case of (a) the “arithmetic
progression” distribution and (b) the “maximum variance” distribution. Each red (a) or blue (b) dot and the related error bar corresponds to
the sample mean and the sample standard deviation, respectively, of �̂0 evaluated on a sample S of 104 simulated evolutions of N steps. The
black solid lines correspond to the expected value of 〈�̂0〉 given by Eq. (27). For both panels (a) and (b), the insets show in log-log scale both
the same numerical values and theoretical curves referred to the respective asymptotic theoretical values of �0 [dashed lines: (a), �0

∼= 0.197;
(b), �0

∼= 1.246]. Each magenta “×” symbol and the related error bar correspond to the sample mean and the sample standard deviation,
respectively, of the coefficient of N−1 in Eq. (40) of Ref. [28] evaluated on the same sample S.

the expected value of the sample mean 〈�̂0〉 and the sample
variance s2

�̂0
evaluated on a sample S are given by

E(〈�̂0〉) ∼= �0 + γ

N
, (27)

E(s2
�̂0

) ∼= 	

N
. (28)

Figures 4 and 5 show the results of the numerical experi-
ments for the mean and the variance of the plug-in estimator
�̂0, respectively. For both distributions in the case of the mean
and for the “arithmetic progression” distribution in the case
of the variance, the agreement with theoretical predictions is
evident. In the case of the “maximum variance” distribution,

FIG. 5. Variance of the plug-in estimator �̂0 of the variance pa-
rameter �0 as a function of the number of steps N in the case of (red)
the “arithmetic progression” distribution and (blue) the “maximum
variance” distribution. Each dot corresponds to the sample variance
of �̂0 evaluated on a sample S of 104 simulated evolutions of N steps.
The black solid line correspond to the expected value of s2

�̂0
given by

Eq. (28). In the case of the “maximum variance” distribution, the
expected value of σ 2

�̂0
vanishes (see main text). The black dashed

line corresponds to a N−2 power law. Finally, the red (blue) inset
shows a plot of the “arithmetic progression” (“maximum variance”)
distribution.

we have 	 = 0, so that the corresponding plot of s2
�̂0

in Fig. 5

is expected to depend on higher-order terms in N−1/2 than
N−1. Indeed we observe a N−2 dependence.

In Fig. 4, the average values of �̂0 are compared with
the average values of the estimator proposed by Roulston
and corresponding to the coefficient of N−1 in Eq. (40) of
Ref. [28]: �̂Roulston = ∑

i[ln( p̂i ) + Ĥ ]2 p̂i(1 − p̂i ). This quan-
tity was evaluated on the same data as �̂0. The numerical
results show that the estimator described in the present work
is more reliable than Roulston’s one in assessing the uncer-
tainty of the plug-in estimator Ĥ of Shannon entropy. The
estimator proposed by Roulston indeed underestimates the
variance of �̂0: A reason is the fact that Roulston’s expression
of the variance is derived via propagation of error by assuming
the observed number of visits to be mutually independent.
However, as mentioned in Sec. II A, the number of visits
are constrained by the expression

∑M
i=1 ĵi = N , which leads

to the set { ĵi} being distributed according to a multinomial
distribution. The approach presented above takes into account
this crucial property.

V. CONCLUSIONS

The results obtained show that, under the null hypothesis
of an underlying multinomial distribution generating the data
and provided that the size M of the support is known, the
expected uncertainty of an entropy estimation carried out via
the plug-in estimator Ĥ on a set of N data, and neglecting
higher-order terms in N−1/2, is upper bounded as

σ�̂0
�

[
�0, max(M )

N

]1/2
∼= ln(M )

2
√

N
.

The upper bound can be then improved by using the plug-in
estimator �̂0 defined in Eq. (3). The evaluation of this estima-
tor for different values of N can deliver reliable estimates of
the uncertainty affecting the assessments of Shannon entropy
obtained by means of the plug-in estimator Ĥ .
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Finally, it is worth noting that, in order to “experimentally
visit” all the M states, the number N of trials has to exceed
M, so that N > M >

√
M. Consequently, the upper bound de-

scribed above turns out to be smaller, and thus more accurate,
than the one derived by Antos and Kontoyiannis [23], namely
(ln N )/

√
N .

APPENDIX: PROOF OF VANISHING � IN THE CASE
OF �0 = �0, max

We show here that, in the case of �0 = �0, max, the param-
eter 	 given by Eq. (9) vanishes. To this purpose, we assume
that, for a given M,

si = q0 if 1 � i � M − 1,

si = p0 if i = M,

where, according to Eqs. (14) and (15), it is

p0 + (M − 1)q0 = 1, (A1)

ln p0 + ln q0 + 2 + 2H = 0. (A2)

Instead of relying on Eq. (9), it is convenient to express 	

as the coefficient of t2/2 in Eq. (4):

	 =
M∑

i=1

M∑
j=1

χi, j
[
�2

i + 2(1 + H )�i
][

�2
j + 2(1 + H )� j

]
.

By relying on Eq. (A2), it is straightforward to show that
each of the two terms [�2

i + 2(1 + H )�i], [�2
j + 2(1 + H )� j]

appearing within the previous sum is equal to −(ln p0)(ln q0).
One then has

	 = (ln p0)2(ln q0)2
M∑

i=1

M∑
j=1

χi, j .

The sum, and thus 	, is equal to zero due to the covariance
matrix χ having vanishing column and row sums [33]. Al-
ternatively, one can compute the sums by taking into account
Eq. (A1).
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