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Fractional nonlinear electrical lattice
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We examine the linear and nonlinear modes of a one-dimensional nonlinear electrical lattice, where the usual
discrete Laplacian is replaced by a fractional discrete Laplacian. This induces a long-range intersite coupling
that, at long distances, decreases as a power law. In the linear regime, we compute both the spectrum of plane
waves and the mean-square displacement (MSD) of an initially localized excitation, in closed form in terms
of regularized hypergeometric functions and the fractional exponent. The MSD shows ballistic behavior at long
times, MSD ∼ t2 for all fractional exponents. When the fractional exponent is decreased from its standard integer
value, the bandwidth decreases and the density of states shows a tendency towards degeneracy. In the limit
of a vanishing exponent, the system becomes completely degenerate. For the nonlinear regime, we compute
numerically the low-lying nonlinear modes, as a function of the fractional exponent. A modulational stability
computation shows that, as the fractional exponent decreases, the number of electrical discrete solitons generated
also decreases, eventually collapsing into a single soliton.
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I. INTRODUCTION

It has been quite a long time since the earlier correspon-
dence between Leibnitz and L’Hopital took place, concerning
possible generalizations of the concept of a derivative and
whether it made sense to ask questions such as what is the
half derivative of a function. The basic starting point was the
calculation of dαxk/dxα , where α is a noninteger number. This
means

dnxk

dxn
= �(k + 1)

�(k − n + 1)
xk−n → dαxk

dxα
= �(k + 1)

�(k − α + 1)
xk−α.

(1)

From Eq. (1) the fractional derivative of an analytic func-
tion f (x) = ∑

k akxk can be computed by deriving term by
term. However, this basic procedure is not exempt from ambi-
guities. For instance, (dα/dxα )1 = (dαx0/dxα ) = [1/�(1 −
α)]x−α �= 0, according to Eq. (1). However, one could have
also taken (dα−1/dxα−1)(d/dx)1 = 0. The initial studies were
followed later by rigorous work by several people including
Euler, Laplace, Riemann, and Caputo, to name some, and
promoted fractional calculus from a mathematical curiosity to
a full-blown research field [1–4]. Several possible definitions
for the fractional derivative have been obtained, each one with
its own advantages and disadvantages. One of the most used
definitions is the Riemann-Liouville form(

dα

dxα

)
f (x) = 1

�(1 − α)

d

dx

∫ x

0

f (s)

(x − s)α
ds, (2)

and another common form is the Caputo formula,(
dα

dxα

)
f (x) = 1

�(1 − α)

∫ x

0

f ′(s)

(x − s)α
ds, (3)

where 0 < α < 1. This formalism that extends the usual in-
teger calculus to a fractional one, with its definitions of a
fractional integral and fractional derivative, has found appli-
cation in several fields: fluid mechanics [5], fractional kinetics
and anomalous diffusion [6–8], strange kinetics [9], fractional
quantum mechanics [10,11], Levy processes in quantum me-
chanics [12], plasmas [13], electrical propagation in cardiac
tissue [14], biological invasions [15], and epidemics [16].

On the other hand, one of the most interesting concepts
in nonlinear physics is that of a soliton. It is a solitary wave
solution of certain nonlinear differential equations and is char-
acterized by having a spatial profile that remains undeformed
upon time evolution. The origin of this behavior lies in a bal-
ance between dispersion and nonlinearity. Initially found as
solutions of some system of coupled anharmonic oscillators,
continuous and discrete solitons have by now been predicted
and observed in a wide variety of settings: fluids [17–19],
biology (low-frequency collective motion in proteins) [20],
optics [21–23], magnetism [24,25], and nuclear physics [26].
In particular, discrete solitons have also been predicted and
observed in nonlinear electrical transmission lines [27–34].
The reason is that a nonlinear electrical network can be re-
garded as a set of coupled anharmonic oscillators.

In this paper, we aim at examining the consequences of
the use of a fractional discrete Laplacian on the existence and
stability of discrete soliton modes, as well as on the transport
of excitations in an electrical bi-inductive electrical network
(Fig. 1). As we will see, fractionality changes the spectrum of
plane waves, with a bandwidth that decreases with decreasing
α and a density of states which also decreases its width, be-
coming completely degenerate when α → 0. Interestingly, the
mean-square displacement of an initially localized excitation
is always ballistic at long times, independently of the value
of the fractional exponent, but the number of discrete solitons
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FIG. 1. Infinite (top) and semi-infinite (bottom) bi-inductive
electrical lattice (after Ref. [34]).

generated by the modulational stability mechanism depends
strongly on the value of the fractional exponent.

II. MODEL

Figure 1 shows a bi-inductive electrical lattice composed of
a one-dimensional array of LC circuits coupled inductively. L1

and L2 are the inductances and Cn is the nonlinear capacitance
of the nth unit, given by Cn = C0(1 + χ1 + χ3U 2

n ), where C0

is the capacitance in vacuum, χ1 is the linear susceptibility,
χ3 is the third-order susceptibility, and Un is the voltage drop
across the nth capacitor. The nonlinear capacitance Cn can be
obtained by inserting a Kerr dielectric material between the
capacitor plates. The electrical charge Qn on the nth capaci-
tor is given by Qn = CnUn. After using Kirchhoff’s law, the
equations for the voltages are

d2Qn

dt2
= 1

L1
(Un+1 − 2Un + Un−1) − 1

L2
Un. (4)

After inserting the expression for Qn in terms of Un and after
introducing dimensionless variables, we obtain

d2

dτ 2

{
(1 + χ1)Vn + γ V 3

n

} = (Vn+1 − 2Vn + Vn−1) − ω2Vn,

(5)

where Vn = Un/Uc, γ = χ3U 2
c , ω2 = (ω2/ω1)2, τ = ω1t ,

where ω1 = 1/
√

L1C0 and ω2 = 1/
√

L2C0 are the resonant
frequencies and Uc is a characteristic voltage.

The first term on the right-hand side of Eq. (5) is the
discrete Laplacian �nVn = Vn+1 − 2Vn + Vn−1. Thus, we can
write

d2

dτ 2
{(1 + χ1)Vn + γ V 3

n } − �nVn + ω2 Vn = 0. (6)

We now promote this discrete one-dimensional Laplacian to
its fractional form, by using results by Roncal et al. [35] in
which an expression is obtained for the αth power of the
discrete Laplacian,

(−�α
n )Vn =

∑
m �=n

Kα (n − m)(Vn − Vm), (7)

where

Kα (m) = Lα

�(|m| − α)

�(|m| + 1 + α)
, (8)

with

Lα = 4α�(α + (1/2))√
π |�(−α)| , (9)

and 0 < α < 1 is the fractional exponent.
Thus, the main equation reads

d2

dτ 2

{
(1 + χ1)Vn + γ V 3

n

} +
∑
m �=n

Kα (n − m)(Vn − Vm)

+ω2 Vn = 0. (10)

As we can see, the immediate effect of a fractional discrete
Laplacian is to introduce nonlocal interactions via a symmet-
ric kernel Kα (n − m). Using the relation �(n + α) = �(n)nα ,
we obtain the asymptotic expression

Kα (m) = 1/|m|1+2α (|m| → ∞), (11)

i.e., a power-law decrease of the coupling with distance.
This is interesting since in most tight-binding treatments in
molecular systems and in optics, the coupling between units
decreases exponentially. In fact, while for α = 1, the non-
fractional case, the coupling behaves as 1/|m|3 as is proper
for a dipole-dipole interaction between the inductors, as α

decreases, the coupling range increases, and in the limit of
small α, the coupling goes as 1/|m|, the longest of them all.

III. STATIONARY MODES

Let us look for the stationary modes, in the form Vn(t ) =
Vn cos(
τ + φ). In order to keep things simple, we use the
rotating-wave approximation (RWA), where in cos(
τ + φ)3

we neglect the higher harmonic: Vn(t )3 = V 3
n cos(
τ + φ)3 ≈

(3/4)V 3
n cos(
τ + φ). The stationary equation becomes

−
2
{
(1 + χ1)Vn + (3/4)γ V 3

n

} +
∑
m �=n

Kα (n − m)(Vn − Vm)

+ω2 Vn = 0. (12)

Let us consider first the linear case (γ = 0),


2{(1 + χ1)Vn} = ω2Vn +
∑
m �=n

Kα (n − m)(Vn − Vm), (13)

and look for the dispersion relation of plane waves, Vn =
A eikn. One obtains


2(1 + χ1) = ω2 + 4
∑
q �=0

Kα
q sin2(qk/2). (14)

This expression can be recast in closed form as

(1 + χ1)
2 = ω2 + 2
�(2α)

�(1 + α)�(α)

× [1 − α(e−ik
2F1(1, 1 − α, α + 2; e−ik )

+ eik
2F1(1, 1 − α, α + 2; eik ))], (15)

where the 2F1 are the regularized hypergeometric functions.
Figure 2 shows the dispersion 
2(k) for several fractional
exponents α. At α = 1, the standard case, the band is con-
tained between ω2/(1 + χ1) and (ω2 + 4)/(1 + χ1). As α is
decreased towards 0, the bandwidth decreases steadily, and at
α → 0+, the band becomes contained between ω2/(1 + χ1)
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FIG. 2. Dispersion relation for several fractional exponents, for
χ1 = 0 and ω2 = 1. The number on each curve denotes the value
of the fractional exponent α. Inset: Bandwidth � as a function of
fractional exponent, α.

and (1 + ω2)/(1 + χ1). The bandwidth, defined by B(α) =

2(α, π ) − 
2(α, 0), is given in closed form by

B(α) = 4α�(1 − α)�(α)

π (1 + χ1)
sin(απ )[ 2F1(1, 1 − α, 2 + α,−1)

+ 2F1(1, 1 − α, 2 + α, 1)],

and is shown in the inset of Fig. 2.
Figure 3 shows the spatial profiles of all eigenmodes for

several fractional exponents. This plot is obtained after stack-
ing the mode profiles one after the other, according to their
eigenvalues. Clearly, as α decreases the eigenvalues become
more and more confined to an ever-decreasing energy range.
In the limit α → 0, all the eigenvalues become confined to the
band ω2/(1 + χ1) < 
2 < (1 + ω2)/(1 + χ1). On the other
hand, Fig. 4 shows the density of states (DOS)

D(
2) = (1/N )
∑

m

δ
(

2 − 
2

m

)
, (16)

where N is the number of sites and the sum is over all modes.
We notice that, for all fractional exponents, the DOS displays
expected van Hove singularities, of finite height due to the
finite-size effects. As the fractional exponent decreases from
the standard case (α = 1), the DOS high-energy boundary
starts receding towards the low-energy boundary, which stays
always in place during the process. Due to normalization, this
narrowing process also increases the height of the DOS. In the
limit of α → 0, the DOS diverges at 
2 = (1 + ω2)/(1 + χ1),
and the system becomes completely degenerate.

Let us now look at the mean-square displacement (MSD)
that serves to monitor the propagation of electrical excitations.
The MSD is defined as

〈n2〉 =
∑

n

n2|Vn(τ )|2
/ ∑

n

|Vn(τ )|2. (17)

FIG. 3. Density plot of the spatial profiles |Vn|2 of the linear
modes ordered according to their eigenvalue (N = 133, ω = 1, χ1 =
1).

For a completely localized initial voltage Vn(0) = A δn0 and
no currents, (dVn/dτ )(0) = 0, we have formally

Vn(τ ) = (A/4π )
∫ π

−π

ei(kn−
k )τ dk

+(A/4π )
∫ π

−π

ei(kn+
k )τ dk,

���
�����

�����

�����

FIG. 4. Density of states vs mode frequency for several fractional
exponents. (w = 1, χ1 = 1, N = 133.)
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where 
k is given by Eq. (15). After replacing this form for
Vn(τ ) into Eq. (17), one obtains after some algebra, a closed-
form expression for 〈n2〉:

〈n2〉 = (1/2π )
∫ π

−π
dk(d
k/dk)2[1 − cos(2 
k τ )]τ 2

1 + (1/2π )
∫ π

−π
dk cos(2 
k τ )

. (18)

As we can see from the structure of Eq. (18), as time τ

increases, the contributions from the cosine terms to the in-
tegrals decrease and, at long times, 〈n2〉 approaches a ballistic
behavior,

〈n2〉 =
[

1

2π

∫ π

−π

(
d
(k)

dk

)2

dk

]
τ 2 (τ → ∞), (19)

while at short times,

〈n2〉 =
[

1

2π

∫ π

−π

(

k

d
k

dk

)2

dk

]
τ 4 (t → 0). (20)

Since the transport exponent is defined as the one correspond-
ing to the dominant behavior at long times, we conclude that
the asymptotic transport of our system is ballistic, 〈n2〉 ∼
g(α)τ 2, where we can identify

√
g(α) as a kind of character-

istic “speed” for the ballistic propagation. This speed depends
implicitly on the fractional exponent through 
2

k , but the bal-
listic exponent is valid for all 0 < α < 1.

IV. NONLINEAR ELECTRICAL MODES

We now turn our attention to the nonlinear modes of
the system, which are solutions to Eq. (12), with γ �= 0.
These equations constitute a system of nonlinear coupled
difference equations, of the form �F ( �V ) = 0, where �V =
(V1,V2, . . . ,VN ). Numerical solutions are obtained by using
a multidimensional Newton-Raphson scheme. This method
solves the system of nonlinear equations starting from a seed,
which is supposed to be an approximate solution. If the initial
guess is close to the real solution, convergence to the solution
will be quickly reached. For instance, to find the fundamental
solution in the bulk which has a single localized maximum,
we use as a guess something like (0, . . . , 0, A, 0, . . . , 0). For
the fundamental surface mode, we would use (A, 0, . . . 0, 0).
Figure 5 shows examples of some bulk and surface modes
obtained from this procedure. These discrete soliton modes
lie outside the linear band (shaded areas in Fig. 7). For a
given exponent α, the spatial profiles of all these modes are
qualitatively similar to the ones found for the standard integer
case (α = 1).

In addition to these localized modes, there are also nonlin-
ear extended modes such as a uniform profile i.e., a flat front
Vn(t ) = A cos(
t ). Let us compute the dynamical evolution
of this uniform state and see whether the profile keeps its
form in time. When it does not, we have an instability known
as a modulation instability (MI) [36,37]. As a concrete ex-
ample, let us compute the MI for our electrical system. We
use an array of N = 104 units, a maximum evolution time
of τmax = 500, an initial amplitude of A = 1, χ1 = 0, and a
nonlinear susceptibility of χ3 = 1. The fractional exponent
chosen is α = 0.1, a value substantially away from the stan-
dard case (α = 1). At both extremes of the array, we perturb
the amplitudes as A1 → 1.01A1, AN → 1.01AN . Results from

	a
 	b
 	c


	d
 	e
 	f


	g
 	h
 	i


	j
 	k
 	l


FIG. 5. Examples of some low-lying nonlinear modes of the
electrical lattice for χ1 = 0 and fractional exponent α = 0.5. On
each plot, the vertical axis denotes the mode amplitude, while the
horizontal axis indicate positions along the electrical array. First
row: Bulk modes for χ3 = 1 (focusing nonlinearity). (a)–(c) denote
the odd, even, and twisted modes, respectively. Second row: Bulk
modes for χ3 = −1 (defocusing nonlinearity). (d)–(f) denote the odd,
even, and twisted modes, respectively. Third row: Surface modes
for χ3 = 1. (g)–(i) denote the first-, second-, and third-layer modes,
respectively. Fourth row: Surface modes for χ3 = −1. (j)–(l) denote
the first-, second-, and third-layer modes, respectively.

this procedure are shown in Fig. 6, where we show density
plots where the height represents the amplitude of the voltage,
while the vertical and horizontal axes denote the time and the
position along the array, respectively. Each plot corresponds
to a different fractional exponent. In all cases we observe
the presence of modulational instability where the uniform
front collapses after some time into a number of filament-
like structures that persist in time, that can be interpreted
as discrete solitons. Indeed, previous works on the discrete
nonlinear Schrödinger (DNLS) equation have identified MI
as a mechanism for the creation of discrete solitons. The same
phenomenon seems to be at work here. We observe that as the
fractional exponent decreases, the number of discrete solitons
created decreases. At small α, only one filament remains. The
solitons generated are more or less equidistant from each other
and no merging of them is observed for the times explored.

Let us now examine the linear stability of the two lowest-
lying stationary modes shown in Figs. 5(a) and 5(d), that
is, the modes with the lowest power content. Let us fo-
cus on the electric charge on the capacitor, rather than
the voltage across it. Using the relation Qn = CnUn, with
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FIG. 6. An example of modulational stability for the electrical
array, for several fractional exponent values. Top left: α = 1. Top
right: α = 0.7. Bottom left: α = 0.5. Bottom right: α = 0.1. In all
cases χ1 = 0, χ3 = 1.

Cn = C0(1 + χ3U 2
n ) (i.e., χ1 = 0), one has approximately

Un ≈ (Qn/C0)[1 − (χ3/C2
0 )Q2

n]. This assumes a small nonlin-
ear contribution. After replacing this into Eq. (10) and using
dimensionless variables, we obtain

d2qn

dτ 2
+

∑
m �=n

Kα (n − m)(qn − qm) + γ
(
q3

n+1 − 2q3
n + q3

n−1

)
+ω2qn(γ − ωqn) = 0. (21)

For a stationary mode qn(τ ) = qn cos(
τ ), we obtain

−
2qn +
∑
m �=n

Kα (n − m)(qn − qm)

+(3/4)γ (q3
n+1 − 2q3

n + q3
n−1) + ω2qn(γ − ωqn) = 0,

(22)

where we have employed the rotating-wave approximation.
The linear stability analysis proceeds as usual by perturbing
the mode as qn(τ ) → qn cos(
τ ) + �n with |�n| � |qn|. Af-
ter replacing this form into Eq. (21), and after keeping only the
linear terms on �n, one obtains a linear differential equation
for �n,

d2

dτ 2
�n +

{∑
m �=n

Kα (n − m) − (9/4)γ q2
n(1 − ω2)

}
�n

−
∑
m �=n

Kα (n − m)�m + (9/4)γ (q2
n+1�n+1 + q2

n−1�n−1),

(23)

which can be cast as a matrix equation

(d2/dτ 2) �� + A �� = 0, (24)

	a
 	b


	c
 	d


FIG. 7. Bifurcation plot for the two lowest-lying nonlinear
modes. The power content P of the modes is plotted as a function of
the frequency 
, for several fractional exponents: (a) α = 0.9999, (b)
α = 0.8, (c) α = 0.5, and (d) α = 0.2. Solid (dashed) curves denote
stability (instability). The typical shape of the mode profiles is also
sketched.

where �� = (�1,�2, . . . , �N ). Thus, stability will occur if
all the eigenvalues of matrix A are positive, and instability
when there is at least a single negative eigenvalue. The bi-
furcation diagram is usually displayed as the power content
versus the frequency. Figure 7 shows this power P = ∑

n |qn|2
versus the frequency of the mode 
 for the two lowest-lying
modes, one for χ3 > 0 (focusing nonlinearity) and the other
for χ3 < 0 (defocusing nonlinearity). This is computed for
several fractional exponents α. An empirical check for the
stability of the fundamental soliton is the Vakhitov-Kolokolov
criterion [38–40]: If dP/d
 > 0, the fundamental mode is
stable, otherwise, if dP/d
 < 0, the fundamental mode is
unstable. This is obeyed in our case, as Fig. 7 shows.

V. CONCLUSIONS

We have examined the effect of using a fractional definition
of the Laplacian for a one-dimensional array of coupled non-
linear electrical units. The introduction of fractionality gives
rise to a nonlocal coupling between the units, which at long
distances decreases as a power law.

In the linear regime, and in the presence of fractionality,
there are modes in the form of electric plane waves whose
dispersion relation was computed in closed form in terms
of hypergeometric functions. The main effect of a fractional
exponent is the reduction of the bandwidth with decreasing
exponent. The density of states shows that, as the exponent
decreases, the states shift to the lower band edge. In the
limit of a vanishing fractional exponent, all the states become
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completely degenerate, at an energy value proportional to the
ratio of the fundamental resonant frequencies of the array. The
mean-square displacement of an initially localized electric
excitation was calculated in closed form, showing a ballistic
behavior at long times, while at short times the behavior was
quartic in time.

In the nonlinear regime, the nonlinear electric modes were
computed with the help of the rotating-wave approximation.
The bulk and surface profiles were similar to their standard,
not fractional, counterpart. The modulational stability of the
array was also computed. As expected, the onset of instabil-
ity gave rise to a number of localized spatial structures that
persisted in time, such as discrete solitons, similar to what
is observed in the standard case. These electric solitons form
a sort of miniarray and its number depended strongly upon
the value of the fractional exponent, decreasing their number
as the exponent decreases. Finally, we computed the linear
stability of the two lowest-lying nonlinear modes. While in
the semi-infinite gap the fundamental mode is stable, inside
the finite gap, the mode turned out to be unstable.

Even though it might seem that the fractional effects
could hardly be observed using macroscopic electric circuitry,
we conjecture that these effects could be observed at the
nanoscale, with the use of nanoscopic circuits [41,42] that
have proven promising for the creation and manipulation of
novel metamaterials. It must not be forgotten that induction
coupling decreases slowly in space, at least as 1/|r|3 (for α =
1 from dipole-dipole interactions), and even slower for α < 1.
This behavior is markedly different from the usual coupling
in optics and molecular systems where the coupling decreases
exponentially with distance. It would then be possible to en-
gineer the distance (i.e., coupling) between the electrical units
judiciously to create a fractional transmission line. A possible
setup could be an array of mesoscopic split-ring resonators
[43] embedded in a dielectric substrate.
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