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Effect of gravity on synchronization of two coupled buoyancy-induced turbulent flames
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We study the effect of gravity on the synchronization of two coupled buoyancy-induced turbulent flames by
recurrence-based analysis and machine learning. A significant change from nearly complete synchronization in
the near field to partial synchronization appears in the far field under low gravity. The synchronized state is
gradually lost with increasing gravity level. These results are clearly identified from cross recurrence plots and
symbolic recurrence plots and by reservoir computing.
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I. INTRODUCTION

A mutual interplay among the convective motion of fluid,
the heat-mass diffusion, and rapid chemical reactions, gives
rise to a rich variety of flame front instabilities in a combusting
flow. A whole flow field forming an open diffusion flame
with low flow velocity of fuel is predominantly composed
of two gases: combustion products behind the flame front
and surrounding quiescent air. A large difference in density
between the two gases exposed to gravity triggers an upward
buoyant flow. A buoyancy-induced toroidal vortex is formed
in the interface between the two gases owing to a modified
Kelvin-Helmholtz-type hydrodynamic instability mechanism
[1–3]. The interference of the traveling toroidal vortex with
the flame front results in a substantial distortion of the flame
front configuration owing to the unstable density stratification
associated with the Rayleigh-Taylor instability mechanism
[4], leading to self-excited periodic flame front oscillations
with low frequency and large amplitude. These physical pro-
cesses significantly affect the generation and growth of a
buoyancy-induced turbulent diffusion flame [5]. Thus far, the
instantaneous and time-averaged flow velocity [6–12], vor-
ticity [11,13,14], temperature [4,7–9,11–15], and turbulent
statistics [7–9,12,16] in buoyant plumes, buoyant jet diffu-
sion flames, and pool fires have been extensively studied in
addition to the empirical correlation between the dominant
oscillation frequency of the flame front and dimensionless
numbers, such as the Strouhal number, the Froude number,
and the Richardson number [4,6,14,15,17–22].

Nonlinear time series analysis based on the theories
of dynamical systems and symbolic dynamics has become
a promising tool for revealing the nonlinear dynamics in
complex combustion phenomena [23–29]. We have recently
studied the spatiotemporal dynamics of flow velocity and
temperature fields during a buoyancy-induced turbulent fire
under normal gravity by complexity analysis [30] in terms
of symbolic dynamics [31,32]. The possible presence of two
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important dynamics has been identified: one is low-
dimensional chaos in the near field dominated by the unstable
motion of an organized toroidal vortex, and the other is high-
dimensional chaos in the far field forming a well-developed
turbulent plume [31,32]. The gravitational term (baroclinic
torque term) in the vorticity equation has a significant impact
on the formation of low-dimensional chaos (high-dimensional
chaos) [33].

Synchronization phenomena, which emerge upon the cou-
pling of nonlinear oscillators, have been observed in various
fields involving physics, chemistry, electronics, and biology
[34–36]. The quest for such phenomena has raised much inter-
est of researchers in the field of nonlinear science. An elucida-
tion of the synchronization between multiple diffusion flames
is one of the key challenges associated with the systematiza-
tion of complex combustion and fire dynamics [37–45]. We
have studied synchronization phenomena in two coupled tur-
bulent fires under normal gravity [46]. When two fire sources
are located close to each other, their synchronized state occurs
in the near field, whereas it vanishes in the far field, regardless
of the distance between the two fire sources. This is clearly
identified from the mutual information, the recurrence rate,
and the mean diagonal line length in cross recurrence plots
(CRPs) [47,48]. Our next interest is the exploration of the syn-
chronization phenomena in two coupled buoyancy-induced
turbulent flames under various gravity levels.

The purpose of this paper is to clarify the effect of gravity
on the synchronization of two coupled turbulent diffusion
flames by recurrence-based analysis and supervised machine
learning. CRPs [47,48] are useful for detecting synchro-
nization between two coupled systems. Symbolic recurrence
plots (SRPs) [48,49], which are recurrence plots incorporating
rank-order patterns in time series, can quantify the degree of
similarity between two dynamical states in relation to syn-
chronization phenomena [50]. Recurrence-based analysis is
useful for investigating the nonlinear correlation between two
dynamic behaviors. In this paper, we estimate the recurrence
rate of both recurrence plots to evaluate the synchronized
states. Supervised machine learning has been widely used for
solving various problems in physics. Reservoir computing,
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which is a type of supervised machine learning, is a subclass
of recurrent neural networks, and has shown good perfor-
mance in predicting the short-term behavior of spatiotemporal
chaos [51,52]. Tokami et al. [33] have elucidated that on-off
intermittent behavior between turbulent combustion products
and nonturbulent ambient occurs in the region of high-entropy
transfer from temperature fluctuations to flow velocity fluc-
tuations. This was clearly explained by the predictability of
flow velocity fluctuations obtained by reservoir computing.
An important motivation in this paper is to examine whether
reservoir computing is helpful for clarifying the synchronized
state in coupled turbulent flow systems. In this paper, we show
the applicability of reservoir computing to a discussion of
the degree of synchronization between two coupled turbulent
flames.

This paper is organized as follows: A brief description of
the numerical simulation and the analytical methods based on
the theories of dynamical systems and symbolic dynamics is
provided in Sec. II, including the supervised machine learn-
ing approach. Numerical results and discussion are given in
Sec. III. Finally, we give a summary in Sec. IV.

II. NUMERICAL SIMULATION AND
ANALYTICAL METHODS

A. Numerical simulation

We numerically obtain the spatiotemporal structure of
buoyancy-induced turbulent diffusion flames by employing an
open-source numerical simulation code [53,54]. The follow-
ing governing equations (i.e., the mass conservation equation,
momentum conservation equation, energy conservation equa-
tion, and chemical species equations) are numerically solved
in this paper:

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

ρ

(
∂u
∂t

+ (u · ∇)u
)

+ ∇p = ρg + ∇ · τv, (2)

∂

∂t
(ρh) + ∇ · (ρhu)

= Dp

Dt
+ q̇′′′−∇ · qr + ∇·(λ∇T ) + ∇·

(
ρ

∑
l

hl Dl∇Yl

)
,

(3)

∂

∂t
(ρYl ) + ∇ · (ρYlu) = ∇ · (ρDl∇Yl ) + ṁ′′′

l . (4)

Here, ρ is the density, t is the time, u [= (u, v,w)] is the
flow velocity vector, Yl is the mass fraction of chemical
species l, Dl is the diffusivity of chemical species l, ṁ′′′

l is
the production rate of chemical species l per unit volume, p
is the pressure, g is the gravitational acceleration vector, τv

is the viscous stress tensor, h ( =T
∑Ns

l=1 cp,lYl , where cp,l

is the specific heat capacity of chemical species l and Ns is
the number of chemical species) is the enthalpy, q̇′′′ is the
heat release rate per unit volume, qr is the radiative heat
flux vector, λ is the thermal conductivity, T is the temper-
ature, and hl is the enthalpy of chemical species l . In this
paper, we consider CH4, O2, N2, CO2, and H2O as chemical

FIG. 1. Instantaneous flow velocity field on the x-z plane
at y = 0 mm in two coupled turbulent diffusion flames under
normal gravity.

species, and a global single-step irreversible chemical reac-
tion with Ns = 5 under a low-Mach-number flow [53]. The
Smagorinsky model is adopted for the viscous stress in
the momentum conservation equation. q̇′′′ is approximated
by a mixture fraction combustion model, assuming that the
mass fraction of all the species is described by the mixture
fraction. The second-order finite differences and an explicit
second-order predictor-corrector scheme are adopted for spa-
tial derivatives and temporal derivatives in the governing
equations, respectively. The radiative term in the energy con-
servation equation is solved using the finite volume method.
We employ a nonslip and adiabatic boundary condition for the
walls of the flame source with a height of 0.01 m and the floor
corresponding to the bottom plane outside the flame source.
The top and vertical boundaries of the computational domain
are set to be open, allowing free inflow or outflow.

In accordance with the numerical study conducted by Xin
et al. [11], we set the computational domain in the x, y, and
z directions to 0.5, 0.3, and 0.4 m, respectively. The total
number of cells for a uniform grid size of 2 mm is 7500000,
and the time resolution in the numerical simulation is 0.1 ms.
Note that the grid size and the time resolution in the numerical
simulation are the same as those in the previous study [11].
The gaseous fuel CH4 is supplied from a center area with
a square shape, where the side length of the center area d f

is 71 mm. The mean axial flow velocity w f of CH4 from
the flame source is estimated to be 0.023 m/s. As shown in
Fig. 1, the normalized distance between two flame sources L∗
(=L/d f , where L is the distance between the two sources)
is set to 0.3 in this paper. We consider various gravity levels
from low (G = 0.4) to high (G = 2), where G (=ga/g) is
the gravity level, ga is the gravitational acceleration in the
computational domain, and g is the gravitational acceleration
under normal gravity.

We apply CRPs, SRPs, and reservoir computing to the
analysis of time variations in the second-order moment
of flow velocity fluctuations along the z direction Mw (=
〈|w(x, 0, z) − 〈w(x, 0, z)〉x|2〉x), where 〈w(x, 0, z)〉 denotes
the mean value over the region corresponding to d f . We an-
alyze the temporal evolutions in Mw over 2.0 s (N = 20 001,
where N is the total number of data points of Mw) under a
statistical stationary state after discarding the initial transient
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state during the numerical simulation. Note that in our pre-
liminary test, we confirmed that the length of the time series
does not affect the permutation entropy [55] for all the gravity
levels.

B. Analytical methods

Recurrence plots, which show the recurrence patterns
of the trajectory in phase space, have been widely utilized
to study the changes in a dynamical state. CRPs [47] have
been proposed as a bivariate extension of recurrence plots
to capture the similarity of the evolution of two dynamical
states. The central idea of this approach is the comparison
of recurrence patterns in the trajectories of two time series
embedded in the same phase space. In this paper, we examine
the interrelationships between temporal evolutions of Mw1

for the left-hand flame source and Mw2 for the right-hand
flame source. The cross recurrence matrix consists of
CR,i j {= �[ε − ‖Mw1(ti ) − Mw2(t j )‖]}. Here, � is the Heav-
iside function, ε is the threshold, ‖ · ‖ is the Euclidean norm,
Mw1(ti )=[Mw1(ti ), Mw1(ti+τ ), . . . , Mw1(ti+(D−1)τ )], Mw2(t j )
= [Mw2(t j ), Mw2(t j+τ ), . . . , Mw2(t j+(D−1)τ )], and τ is the
embedding delay time. The density of recurrence points RR

in CRPs enables us to quantify the degree of synchronization
between the two time series. RR is defined as

RR = 1

Nt − |τl |
Nt −|τl |∑

i=1

CR,i j . (5)

Here, Nt [=N − (D − 1)τ )] is the total number of points in
the phase space, τl is the time distance from the main diagonal
line, and j is set to i + τl . τl is set to zero for the estimation
of RR. Note that ε is determined so as to satisfy the recurrence
point density [48] rd [=∑Nt

τl =0(Nt − |τl |)RR/N2
t ] = 0.05 (see

the Appendix). In accordance with the prescription of Kennel
et al. [56], D is set to 5 (see the Appendix). τ is set to the time
when the mutual information [57] first takes a minimum.

SRPs [48,49] incorporating the rank order patterns in time
series are also useful for discussing the similarity of two
dynamical states in terms of synchronization [50]. We apply
SRPs to Mw1 and Mw2. The symbolic recurrence matrix con-
sists of SR,i j (equals unity when πD

Mw1
(ti ) = πD

Mw2
(t j ), whereas

zero when πD
Mw1

(ti ) �= πD
Mw2

(t j ). Here, πD
Mw1

(ti )[πD
Mw2

(t j )] is the
rank order pattern of Mw1(Mw2), and j is set to i + τl ). Note
that the D! possible permutations of D successive data points
in sampled time series at intervals of τ , which are indexed
as πD, represent the rank order patterns. In this paper, we
estimate SR to quantify the degree of synchronization between
Mw1 and Mw2,

SR = 1

Nt − |τl |
Nt −|τl |∑

i=1

SR,i j . (6)

Here, SR represents the density of recurrence points in SRPs
and significantly increases as two dynamic behaviors become
synchronized. In this paper, we change τl to study the lagged
synchronization.

Reservoir computing has been recognized as one of the
sophisticated and promising model-free predictors [52]. A
previous study revealed that an echo state network is effective

for short-term prediction of hyperchaotic time series gener-
ated by a hydrodynamical model simulating turbulent thermal
convection [58]. We have recently shown the importance of
reservoir computing for elucidating the dynamical state in the
near field during a buoyancy-induced turbulent fire [33]. In
this paper, we introduce reservoir computing to discuss the
relationship between the predictability of flow velocity fluc-
tuations and the synchronized state of two coupled turbulent
flames. The estimation of the predictability of the responding
variable from the driving variable is important for examin-
ing mutual synchronization between two coupled turbulent
diffusion flames, where we consider Mw1 and Mw2 to be
the driving variable and the responding variable, respectively.
The reservoir computer comprises an input layer, a reservoir,
and an output layer. We use the echo state networks as the
simplest form of the reservoir. The reservoir state r(ti ) [59,60]
during the training phase of the reservoir computer is updated
as follows:

r(ti + 	t ) = (1 − α)r(ti ) + αφ[r(ti ), u(ti )], (7)

φ[r(ti ), u(ti )] = tanh

[
Wr(ti ) + Win

(
1

u(ti )

)]
. (8)

Here, u(ti ) = [Mw1(ti ); Mw2(ti )], Win is the weighted matrix
between the input layer and the reservoir, and W is the Dr ×
Dr adjacency matrix of the reservoir network. We use the first
1 s (10 001 points) of Mw1(ti ) and Mw2(ti ) for training the
reservoir computer. Uniform random numbers, which range
from −1 to 1, are given to the matrix elements of W as the
initial state of the weighted matrix. Similar to in our recent
study [33], Dr is set to 1000, and W includes a sparse random
matrix with 200 000 nonzero components. The leakage rate α

corresponding to the update speed of the reservoir dynamics
is varied from 0 to 1 [61]. After updating the reservoir, the
output vector v(ti ) [59,60] is obtained by linear mapping from
u(ti ) and r(ti ),

v(ti ) = Wout

⎛
⎝ 1

u(ti )
r(ti )

⎞
⎠, (9)

where Wout is the weighted matrix between the output layer
and the reservoir. This process is repeated for the learning
steps, where 0 � i � n. Tikhonov-Arsenin regularization [62]
is adopted to optimize Wout to minimize the error between
v(ti ) and the training data vd (ti ),

Wout = vd sT (ssT + βI)−1, (10)

s =
⎛
⎝ 1 1 · · · 1

u(t0) u(t0 + 	t ) · · · u(tn)
r(t0) r(t0 + 	t ) · · · r(tn)

⎞
⎠. (11)

Here, β is the regularization coefficient (=1 × 10−6), I is
the identity matrix, 	t is 0.1 ms, and n = 10 000. We
set vd (ti ) = [Mw1(ti + 	t ); Mw2(ti + 	t )]. We adopt u(ti ) =
[Mw1(ti); Mw2,predict (ti)] for the prediction steps and finally ob-
tain v(ti ) = [Mw1,predict (ti + 	t ); Mw2,predict (ti + 	t )], where
the number of predicted data points is 9001, corresponding
to 0.9 s.
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FIG. 2. Time variations in the second-order moment of flow velocity fluctuations along z axis Mw1 and Mw2 at different locations z under
(A) low gravity (G = 0.7) and (B) high gravity (G = 1.5). (a) z = 0.1 m, (b) z = 0.2 m, and (c) z = 0.3 m.

III. RESULTS AND DISCUSSION

Figure 2 shows time variations in Mw1 and Mw2 at dif-
ferent locations z under low gravity (G = 0.7) and high
gravity (G = 1.5). We clearly observe the coincidence of
Mw1 and Mw2 at z = 0.1 m under low gravity, indicating
the emergence of nearly complete synchronization. Here,
z = 0.1 m corresponds to the near field. The synchronized
state starts to be lost at z = 0.2 m and becomes a partially
synchronized state at z = 0.3 m. These synchronized states
vanish at each z under high gravity. The variation in RR

at different z is shown in Fig. 3 as a function of G. RR

takes a value of unity at z � 0.16 m under a low grav-
ity of G = 0.7, indicating the formation of a completely
synchronized state in the near field. It monotonically de-
creases with increasing z. A nearly completely synchronized
state is formed at z � 0.1 m under normal gravity (G =
1). RR at G = 1 notably decreases with increasing z, com-
pared with that at G = 0.7. Under the high gravity of G = 1.5,
the nearly completely synchronized state vanishes in the near
field and becomes a nonsynchronized state in the far field.
Takagi and Gotoda [63] clearly showed that for a buoyancy-
induced turbulent fire with a flame source larger than that
in this paper, the formation region of high-dimensional de-
terministic chaos is enhanced with increasing gravity level.
The extension of the formation region is significantly associ-
ated with the nonsynchronized state in two coupled turbulent
diffusion flames. One of the authors has recently studied the
synchronized state of thermoacoustic combustion dynamics in
a gas-turbine model combustor using the maximal information
coefficient as a class of the correlation coefficient in terms of
information theory [64]. We here adopt it for Mw1 and Mw2.
The variation in the maximal information coefficient CM as
a function of G for different z is shown in Fig. 4. CM nearly
takes a value of unity at z < 0.16 m under G = 0.7, indicating

the formation of a completely synchronized state. A nearly
completely synchronized state is formed at z < 0.1 m under
G = 1 and vanishes under G = 1.5. The distribution of CM

FIG. 3. (a) Variation in the recurrence rate RR of the CRPs at
different locations z for gravity levels G = 0.7, 1, and 1.5. (b) Surface
plot of RR as a function of G at different z.
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FIG. 4. (a) Variation in the maximal information coefficient CM

at different locations z for gravity levels G = 0.7, 1, and 1.5. (b) Sur-
face plot of CM as a function of G at different z.

reasonably corresponds to that of RR, which supports the find-
ings on the synchronized states obtained from the recurrence
rate in the CRPs. Figure 5 shows the variation in SR as a
function of G and τa at different z. Note that τa corresponds to
the actual delay time (=τl	t , where 	t is the time resolution
of Mw1 and Mw2). SR at τa = 0 takes high values at z ∼ 0.12 m
under the low gravity of G = 0.7, indicating that the dynamic
behaviors of Mw1 and Mw2 exhibit synchronization without
a time lag. SR appears to change periodically in terms of τa

with a frequency of approximately 20 Hz at z ∼ 0.12 m. The
frequency corresponds nearly to the dominant frequency of
flame front oscillations in the near field driven by the periodic
formation of toroidal vortex rings [see Fig. 8(A)], indicating
the possible coexistence of the in-phase and antiphase states
between Mw1 and Mw2. SR at τa = 0 starts to decrease in the
intermittent luminous zone (z � 0.2 m), and the completely
synchronized state switches to the partially synchronized state
in the far field (z � 0.3 m). The formation region of high
SR at τa = 0 shrinks as G is increased to G = 1. It vanishes
under the high gravity of G = 1.5 through its transition to the
nonsynchronized state. The variation in SR at τa = 0 is shown
in Fig. 6 as a function of G at different z. SR takes high values
in the near field under low gravity. It significantly decreases
with increasing G. The distribution of SR in terms of z and
G nearly corresponds to that of RR. The results in Figs. 2–6
clearly show that the nearly completely synchronized state
between Mw1 and Mw2 in the near field changes to the partially

FIG. 5. Variation in the recurrence rate SR of the SRPs as a
function of the delay time τa at different locations z. (a) G = 0.7,
(b) G = 1, and (c) G = 1.5.

synchronized state in the far field under low gravity, whereas
both synchronized states vanish under high gravity.

Figure 7 shows the correlation coefficient C between the
predicted values and the corresponding reference values of
Mw2 as a function of z for different G. C at G = 0.7 is
approximately 0.95 for z � 0.13 m, showing the high pre-

FIG. 6. Variation in the recurrence rate SR of the SRPs as a
function of gravity level G at different locations z. Here, τa = 0.
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FIG. 7. Variation in the correlation coefficient C between the
predicted values and the corresponding reference values of the
second-order moment of flow velocity fluctuations Mw2 at different
locations z. (a) G = 0.7, (b) G = 1, and (c) G = 1.5.

dictability of Mw2 in the near field. C monotonically decreases
with increasing z. An important point to note here is that
the high-C region corresponds reasonably well to RR [see
Fig. 3(a)], which provides strong evidence of the formation
of the nearly completely synchronized state under low grav-
ity. C at G = 1 starts to decrease at a lower location of
z = 0.08 m compared with that at G = 0.7 and is approxi-
mately 0.3 at z � 0.2 m. In contrast, C at G = 1.5 takes low
values at any z. The notable decrease in the predictability
of Mw2 is associated with the expansion of the formation
region of high-dimensional chaos. These results show that
the prediction of the second-order moment of flow velocity
fluctuations by reservoir computing is useful for discussing
the significant change in the synchronized state of two cou-
pled turbulent diffusion flames covering from low to high
gravity. Jiang and Lai [65] have applied reservoir com-
puting to predict high-dimensional chaos in the Kuramoto-
Sivashinsky equation, which describes the nonlinear dynam-
ics of a propagating flame front. They provided an important
insight into the setting of the spectral radius of the reservoir
to markedly enhance the accuracy of the short-term pre-
diction of high-dimensional chaos. Zhang et al. [66] have
shown that reservoir computing can achieve the long-term
prediction of the phase synchronization of low-dimensional

chaos produced by coupled Rössler oscillators. In contrast,
referring to recent studies [59,60], we studied the prediction
accuracy as a function of the leaking rate of the reservoir to
discuss the dynamical properties of the synchronized state.
As shown in Fig. 7, the obtained distribution of the correla-
tion coefficient between the actual and predicted second-order
moments of flow velocity fluctuations in terms of the ver-
tical location at different gravitational levels can reasonably
explain the significant change from nearly complete synchro-
nization in the near field to partial synchronization in the
far field. The formula of the reservoir state r(ti ) in this pa-
per differs from that used by Jiang and Lai [65] and Zhang
et al. [66], but their approach will be important in our next
study to obtain higher prediction accuracy of the spatiotem-
poral dynamics in two coupled buoyancy-induced turbulent
flames.

We here discuss the physical mechanisms of the for-
mation of the nearly complete synchronization in the near
field, the partial synchronization in the far field under low
gravity, and the disappearance of these synchronized states
under high gravity, focusing on the vortical structures in
two coupled turbulent diffusion flames. Figure 8 shows the
temporal evolution of the vorticity field on the x-z plane at
G = 0.7 and 1.5. The organized toroidal vortex rings with
a plume neck are clearly formed at z ∼ 0.1 m under the
low gravity of G = 0.7. The formation of the asymmetric
toroidal vortex rings along the centerline of the two flame
sources is attributed to a modified Kelvin-Helmholtz-type hy-
drodynamic instability mechanism and the Rayleigh-Taylor
instability mechanism. The asymmetric toroidal vortex rings
are periodically produced in the continuous flame zone. The
periodic formation of the asymmetric toroidal vortex rings
has a significant impact on the emergence of nearly com-
plete synchronization. The traveling toroidal vortex rings in
the downstream direction merge and interact with each other
at z � 0.2 m. Note that an intermittent luminous zone is
formed at 0.2 � z � 0.25 m. The coalescence and breakdown
of the vortices with strong mutual interactions occur in the
far field (z � 0.3 m), accompanied by the rapid spread of a
turbulent-like plume. This enhances the irregularity of flow
velocity fluctuations. As a result, the nearly completely syn-
chronized state changes to a partially synchronized state in
the far field under low gravity. Complex vortical structures
with various scales and strengths are produced under the
high gravity of G = 1.5. This is strongly associated with
the formation of the nonsynchronized state. We here pro-
vide an additional interpretation of the synchronized states
under low gravity from the viewpoint of the edge of chaos
[67]. In accordance with the concept of the edge of chaos,
low-dimensional chaos with regular spatial vortical structures
corresponds to a laminar regime, whereas high-dimensional
chaos with strong spatiotemporal irregularity corresponds to
a turbulent regime. This implies that a significant transition
from nearly complete synchronization to partial synchroniza-
tion appears at a laminar-turbulent boundary in two coupled
buoyancy-induced turbulent flames. For large-scale turbulent
fire systems [68,69], the formation of more complex trans-
verse vortical rings is promoted in the near field as the result
of the rapid growth of buoyancy-driven Kelvin-Helmholtz hy-
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FIG. 8. Temporal evolution of the vorticity field on the x-z plane at y = 0 mm under (A) low gravity (G = 0.7) and (B) high gravity
(G = 1.5). (a) t = 2 s, (b) t = 2.025 s, (c) t = 2.05 s, and (d) t = 2.075 s.

drodynamic and Rayleigh-Taylor instabilities. The nonlinear
interaction of these vortical rings produces irregularity of the
flow velocity fluctuations that are greater than that in this
study, which leads to the disappearance of the nearly complete
synchronization in the near field. This was clearly identified
in the case of normal gravity using CRPs [46] but can be
potentially explained by reservoir computing. Many experi-
mental and numerical studies [37–45] have recently revealed
the presence of two distinct classes of synchronization modes,
in-phase synchronization, and antiphase synchronization in
oscillators composed of arrays of laminar diffusion flames,

FIG. 9. Variation in the fraction FN of false nearest neighbors
of the trajectories in phase space as a function of the embedding
dimension D.

providing the physical mechanisms behind the formation of
in-phase and antiphase synchronizations. However, in those
previous studies [37–45], the synchronization phenomena in
two coupled turbulent flames under various gravity levels
were not explored. Our findings will provide an encompassing
understanding and interpretation of synchronization phenom-
ena in buoyancy-induced turbulent diffusion flames in light of
the gravity effect.

IV. SUMMARY

We have numerically examined the synchronization phe-
nomena of two coupled buoyancy-induced turbulent flames
under various gravity levels by recurrence-based analysis and
machine learning. We have used CRPs, SRPs, and reservoir
computing. The most interesting discovery is a significant
change from the nearly completely synchronized state in the
near field to the partially synchronized state in the far field
under low gravity. The periodic formation of asymmetric
toroidal vortex rings plays an important role in the emergence
of nearly complete synchronization. The traveling toroidal
vortex rings substantially merge and interact with each other.
The occurrence of the coalescence and breakdown of the vor-
tices with strong mutual interaction enhances the irregularity
of flow velocity fluctuations in the far field, resulting in the
transition to a partially synchronized state. The synchronized
states are gradually lost with increasing gravity level and
finally become nonsynchronized states owing to the formation
of complex vortical structures of various scales and strengths.
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(a) (b) (c)

FIG. 10. Variations in the recurrence rate RR of the CRPs as functions of vertical location z and gravitational level G at different recurrence
point densities rd . (a) rd = 0.01, (b) rd = 0.05, and (c) rd = 0.1.
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APPENDIX

The false nearest-neighbors method [56] is in widespread
use for optimizing the embedding dimension of a phase space.
In this paper, we set the embedding dimension by comput-

ing the ratio FN (=
√

dD+1
2−dD

2

dD+1
2 ) of the Euclidean distances

between the position vectors in (D + 1)- and D-dimensional
phase spaces. Here, dD(=‖Mw1 − Mw1,n‖) is the Euclidean
distance between Mw1 and its nearest-neighbor vector Mw1,n

in the D-dimensional phase space. The variation in FN as
a function of D is shown in Fig. 9. Note that Mw1 at z =
0.1 m under G = 1 is analyzed as a representative case. FN

is lower than 0.1 when D � 4, indicating that D � 4 is a suit-
able embedding dimension for the construction of the phase
space. For the choice of the permutation patterns in a time

series, the number of data points of the time series should
be set to be sufficiently larger than D!. In our preliminary
test, we found that the missing permutation patterns appear
at D = 7 even in stochastic dynamics with a sufficient num-
ber of data points (=100 000), such as Brownian motion.
On the basis of the finding obtained by Kulp and Zunino
[70], D � 6 should be considered to construct the SRPs. In
contrast, the number of permutation patterns at D = 4 is 4!
(= 24), which is insufficient for capturing the complex
dynamics of high-dimensional spatiotemporal chaos in a well-
developed turbulent flow. Therefore, we set D = 5 in this
paper.

Figure 10 shows the variations in RR of the CRPs as func-
tions of z and G at different recurrence point densities rd . The
distributions of RR in terms of z and G do not significantly
change at 0.05 � rd � 0.1. On this basis, we set rd to 0.05 for
the construction of the CRPs. Figure 11 shows the variations
in the recurrence rate SR of the SRPs as functions of z and G
at different τ . The distributions of SR in terms of z and G do
not significantly change at 5 � τ � 10. On this basis, τ is set
to 5 for the construction of the SRPs.

(a) (b) (c)

FIG. 11. Variations in the recurrence rate SR of the SRPs as functions of vertical location z and gravitational level G at different embedding
delay times τ . (a) τ = 1, (b) τ = 5, and (c) τ = 10.
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