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Dynamical route to ergodicity and quantum scarring in kicked coupled top
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Unlike classical systems, understanding ergodicity from phase space mixing remains unclear for interacting
quantum systems due to the absence of phase space trajectories. By considering an interacting spin model known
as kicked coupled top, we elucidate the manifestation of phase space dynamics on local ergodic behavior of its
quantum counterpart and quantum scarring phenomena. A transition to chaos occurs by increasing the kicking
strength, and in the mixed phase space, the islands of regular motions within the chaotic sea clearly exhibit
deviation from ergodicity, which we quantify from entanglement entropy and survival probability. Interestingly,
the reminiscence of unstable orbits and fixed points can be identified as scars in quantum states, exhibiting
athermal behavior and violation of Berry’s conjecture for ergodic states. We also discuss the detection of quantum
scars by a recently developed method of “out-of-time-order correlators,” which has experimental relevance.
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I. INTRODUCTION

Ergodicity of quantum many-body systems is a complex
phenomenon which has attracted significant interest in recent
years due to the advancement in cold atom experiments to
study the nonequilibrium dynamics of many interacting parti-
cles [1]. Quantum ergodicity is one of the key ingredients for
understanding thermalization of isolated quantum systems,
which is the foundation of statistical mechanics, although not
yet fully understood. Unlike the case of classical ergodicity,
which can be explained from chaotic dynamics leading to
phase space mixing [2–4], the route to ergodicity in an isolated
quantum system has been a long-standing open problem. In
this context, the eigenstate thermalization hypothesis (ETH)
[5,6] was proposed to explain ergodicity at the level of individ-
ual eigenstates, and its connection with random matrix theory
(RMT) has also been explored in various quantum systems
[7–9]. However, such a mechanism does not provide a clear
picture of the underlying phase space mixing leading to the
ergodic behavior of closed quantum system in the presence
of interaction. Moreover, it is an important question to ask
how the nonuniform mixing in mixed phase space region
manifests in ergodicity of its quantum counterpart. The an-
swer to this question is important for understanding the route
to the deviation from ergodicity in an interacting quantum
system. There are various examples of interacting quantum
systems which fail to thermalize and exhibit such deviation
from ergodicity, the most popular being the systems showing
many-body localization (MBL) [10–12]. Besides MBL, the
nonergodic phases have also been identified due to the pres-
ence of multifractal states [13–15], which can also give rise
to the anomalous thermalization [16]. A recent experiment
on a chain of Rydberg atoms [17] revealed the absence of
thermalization and periodic revival for some special initial
state, which has been attributed to many-body quantum scar
(MBQS) [18–21]. In addition, similar long-lived nonthermal

excited states have also been observed in a recent experiment
on ultracold dipolar gas [22]. At the level of wave functions,
the MBQS has also been identified in different interacting
quantum systems [23–34]. Originally, quantum scar has been
identified as reminiscence of classically unstable trajectories
in a noninteracting system of chaotic billiards [35]. However,
the deviation from ergodicity due to the quantum scarring phe-
nomenon and its connection with the underlying dynamical
behavior in an interacting quantum system is not very clear
and deserves more attention [33,34].

In this work, by considering a periodically driven collec-
tive spin model, we explore the mixed phase space dynamics
and its manifestation in the ergodic behavior of its quantum
counterpart. The kicked coupled top (KCT) model consists
of two large spins interacting periodically among themselves,
which has a suitable classical limit, allowing us to study the
phase space dynamics. By increasing the kicking strength,
KCT undergoes a smooth transition to chaos. Although there
are several methods to detect the quantum signature of chaos
from the eigenspectrum, they provide only an overall behav-
ior without finer resolution due to the absence of its direct
correspondence with classical phase space. In this context,
it is a pertinent issue to investigate the ergodic behavior of
a quantum system corresponding to mixed phase space dy-
namics with coexistence of a regular region and chaotic sea,
rather than a featureless deep chaotic region. In the KCT
model, using the spin coherent states, describing the phase
space semiclassically, we probe the local ergodic behavior
of its quantum counterpart from entanglement entropy and
survival probability, revealing the dynamical route to devia-
tion from ergodicity. It is expected that with increasing degree
of chaos, the dynamics of two spins become more entangled
yielding enhanced entanglement entropy. Another property of
ergodic evolution is the loss of memory of the initial state,
which can be quantified from the survival probability. In the
ergodic regime, the quantum states resemble the properties of
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random states, and both entanglement entropy and survival
probability converge to the ergodic limit, independent of sys-
tem parameters. From these quantities, we detect the local
ergodic behavior as well its deviation due to the formation
of quantum scar as a reminiscence of unstable dynamics. To
elucidate the dynamical route to quantum scarring in this
model, we simplified the dynamics into two classes corre-
sponding to well-known kicked top (KT) model [36,37], and
the instability generated from mixing between them can lead
to the formation of scars. We also demonstrate detection of
scars using the method of an “out-of-time-order correlator”
(OTOC), which is a recently developed tool to diagnose chaos
in quantum systems [38–51] and implemented experimentally
[52,53]. Such a method has also been applied in the context of
black hole thermalization [38,39] and information scrambling
[44], connecting the interdisciplinary areas of research.

The rest of the paper is organized as follows. In Sec. II we
introduce the Hamiltonian of KCT and discuss the Floquet
formalism for stroboscopic evolution of the corresponding
operators. Next, in Sec. III we derive the classical map for the
large spin limit and analyze the model classically. The fixed
points and their stability are analyzed in Sec. III A. The clas-
sification of the dynamics on reduced phase space and their
correspondence with an effective KT model are discussed in
Sec. III B. The onset of chaos in KCT as well the manifes-
tation of phase space dynamics on quantum ergodicity are
presented in Sec. IV. We investigate the scarring phenomena
in Sec. V: by identifying the scarred eigenstates, discussed
in detail in Sec. V A, and their detection using the recently
developed technique of OTOC in Sec. V B. Finally, in Sec. VI
we summarize the results and discuss the possible experimen-
tal detection of scars. The detailed derivation of stroboscopic
evolution of spin operators is presented in Appendix A. The
instability exponents of the unstable fixed points of both the
KCT and effective KT model are compared in Appendix B. In
Appendix C the quantum scarring phenomena in the effective
KT corresponding to a dynamical class of KCT are discussed
in detail.

II. MODEL

The periodically kicked coupled top (KCT) model [54,55]
is described by the following Hamiltonian:

Ĥ(t ) = Ĥ0 + Ĥc(t ), (1a)

Ĥ0 = −h̄ ω0 (Ŝ1x + Ŝ2x ), (1b)

Ĥc(t ) = −h̄
μ

S
Ŝ1z Ŝ2z

∞∑
n=−∞

δ(t − nT ), (1c)

where Ŝia (a = x, y, z) represents the components of the spin
operators corresponding to two large spins (i = 1, 2) of equal
magnitude S. The Hamiltonian Ĥ0 in Eq. (1b) describes the
precession of two noninteracting spins around the x-axis with
angular frequency ω0, while the periodic kicking term with
kicking strength μ, represented by Ĥc(t ) in Eq. (1c), periodi-
cally generates a ferromagnetic interaction between them with
time period T . In the rest of the paper and in all figures, we
scale energy (time) by ω0 (1/ω0) and set h̄ = 1, T = 1.

The quantum dynamics of a periodically kicked system is
governed by its Floquet operator, describing the unitary time
evolution between two successive kicks. The Floquet operator
F̂ can be constructed from the free evolution Û0 = e−ıĤ0T

governed by the time-independent Hamiltonian Ĥ0 within a
time period T , followed by an unitary operator Ûc = eı

μ

S Ŝ1z Ŝ2z

describing the instantaneous kicking. Therefore, the Floquet
operator can be written as [37]

F̂ = ÛcÛ0 = eı
μ

S Ŝ1z Ŝ2z eı(Ŝ1x+Ŝ2x )T . (2)

For a periodically driven quantum system, the stroboscopic
time evolution of an initial state |ψ (0)〉 can be written in terms
of the Floquet operator F̂ as

|ψ (n)〉 = F̂n |ψ (0)〉, (3)

where |ψ (n)〉 is the state after the nth kick at time t = nT .
Using the Heisenberg picture, the stroboscopic time evolution
of an operator Â can also be written in terms of F̂ as

Â(n+1) = F̂†n+1ÂF̂n+1 = F̂†Â(n)F̂ , (4)

where Â(n) denotes the operator at time t = nT . Similarly, for
the present system, we obtain the stroboscopic evolution of the
spin components (see Appendix A for derivation) by setting
Â = Ŝia, which can be written as[

Ŝ(n+1)
1x,1y,1z, Ŝ(n+1)

2x,2y,2z

]T = R̂
[
Ŝ(n)

1x,1y,1z, Ŝ(n)
2x,2y,2z

]T
, (5)

where Ŝix,iy,iz represents the array of corresponding spin oper-
ators (Ŝix, Ŝiy, Ŝiz ) and T denotes the transpose of the vector.
The matrix R̂ generating time evolution can be represented in
the block diagonal form as

R̂ =
(
R̂1 0

0 R̂2

)
. (6)

The different blocks R̂i corresponding to the two spins (for
i = 1, 2) are given by

R̂i =

⎛
⎜⎝

cos Q̂(n)
ī

sin Q̂(n)
ī

cos T sin Q̂(n)
ī

sin T

− sin Q̂(n)
ī

cos Q̂(n)
ī

cos T cos Q̂(n)
ī

sin T

0 − sin T cos T

⎞
⎟⎠, (7)

where Q̂(n)
ī

= μ̄(Ŝ(n)
īz

cos T − Ŝ(n)
īy

sin T ) with ī �= i and μ̄ =
μ/S. In the large spin limit, using the above stroboscopic
evolution, we can obtain the classical map for the spins, which
we discuss in the next section.

III. CLASSICAL ANALYSIS

The classical limit of the above model can be achieved for
large spin of magnitude S, and the corresponding classical
dynamics can be studied for the appropriately scaled variables
ŝia = Ŝia/S, which behave classically, since the commutator
[ŝia, ŝ jb] = iεabcδi j ŝic/S vanishes in the limit S → ∞. Classi-
cally, the spin vectors can be written as �si ≡ (six, siy, siz ) =
(sin θi cos φi, sin θi sin φi, cos θi ), where θ and φ denote its
orientation, and alternatively which can also be represented
by the canonically conjugate variables φi and zi = cos θi. By
using Eq. (5), the stroboscopic time evolution of the corre-
sponding classical spin variables can be written as a classical
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FIG. 1. Classical analysis of kicked coupled top (KCT): (a)–(c)
Bifurcation diagram for different fixed points (FPs) and 2-cycles
with increasing kicking strength μ for (a) KCT, which is compared
with that of an effective kicked top model with (b) antiferromagnetic
(dynamical class I) and (c) ferromagnetic (class II) interaction. The
stable (unstable) branches of FPs are denoted by solid black (red)
lines, and the stable (unstable) branches of 2-cycles are denoted by
dashed black (red) lines. The different bifurcations and instabilities
are marked by the arrowheads. (d)–(f) The phase portrait of KCT
in the z1-φ1 plane for increasing μ, pointing to the various FPs and
2-cycles.

map, [
s(n+1)

1x,1y,1z, s(n+1)
2x,2y,2z

]T = R
[
s(n)

1x,1y,1z, s(n)
2x,2y,2z

]T
, (8)

where R is the same matrix defined in Eq. (6) and Eq. (7),
except the fact that the operators Ŝia are now replaced by the
classical variables sia and the coupling μ̄ becomes μ. As a
result, the stroboscopic map in Eq. (8) becomes independent
of S and the condition s2

ix + s2
iy + s2

iz = 1 is preserved for both
spins (i = 1, 2) in the stroboscopic evolution.

A. Fixed points and their stability

The overall dynamical behavior is captured by analyzing
the fixed points (FPs) and their stability, which is also im-
portant for understanding the ergodic behavior of the present
model. The FPs can be obtained from the condition, s(n)

ia = s∗
ia

(for all n). By analyzing the classical map given in Eq. (8),
two trivial FPs T± are obtained and are given by

{s∗
1x, s∗

1y, s∗
1z, s∗

2x, s∗
2y, s∗

2z} = {±1, 0, 0,±1, 0, 0}, (9)

which remain stable for small kicking strengths μ < μb =
2 tan(T/2), as shown in Figs. 1(a) and 1(d). At the critical

kicking μb, both T± undergo a pitchfork bifurcation and even-
tually become unstable, each giving rise to two new stable
nontrivial FPs with s∗

ia �= 0, which are denoted by NTL(R)
± [see

Fig. 1(a) and 1(e)], where the superscripts L(R) represent two
new branches after bifurcation. The nontrivial FPs NTL(R)

± ,
and their corresponding spin components can be obtained
from the following equations:

s∗2
iz

[
1 + tan2

(
T

2

)
cosec2

(
μ

2
s∗̄

iz

)]
= 1, (10a)

s∗
ix = tan

(
T

2

)
cot

(
μ

2
s∗̄

iz

)
s∗

iz, (10b)

s∗
iy = − tan

(
T

2

)
s∗

iz. (10c)

The sign of s∗
iy, s∗

iz differs for the two bifurcated branches
L and R, whereas the sign of s∗

ix differs for the ± branches
[see Fig. 1(a)]. As the kicking strength increases, the FPs
NTL(R)

± become unstable at μu, after which a period-doubling
bifurcation at μTC = π/ cos(T/2) > μu occurs, which leads
to the formation of 2-cycles denoted by TCL(R)

2± [see Figs. 1(a)
and 1(f)]. A 2-cycle describes the periodic oscillation between
two specific phase space points, which can be obtained from
the condition s(n+2)

ia = s(n)
ia for large n. The spin configuration

corresponding to the pair of points of the 2-cycles TCL(R)
2± is

given by

s′
1x = −s′′

1x =
√

1 −
(

π

μ

)2

sec2
T

2
, (11a)

s′
1y = s′′

1y = ± tan

(
T

2

)
π

μ
, (11b)

s′
1z = s′′

1z = ∓π

μ
, (11c)

where the upper (lower) signs [in Eqs. (11b) and (11c)] rep-
resent the 2-cycles originated from L (R) branches of the
nontrivial FPs. The components of the other spin of the same
2-cycles TCL(R)

2± can be obtained from the conditions s2x =
s1x, s2y = ±s1y, s2z = ±s1z, where ± denotes the 2-cycles
originated from NT±. It is important to note that, apart from
kicking strength μ, the structure of FPs, 2-cycles, and their
stability strongly depends on the driving period T . For ex-
ample, from Eq. (11) it is evident that TC2± exist only for
T < π . We point out that in the present work, we restrict our
discussion only to T = 1.

Further increasing the coupling μ, another pair of 2-cycles
denoted by TC1± emerge from the FPs T±. The spin compo-
nents corresponding to one of the two points of the 2-cycles
TC1± are given by

s′2
iz

[
1 + cot2

(
T

2

)
cosec2

(
μ

2
s′̄

iz

)]
= 1, (12a)

s′
ix = − cot

(
T

2

)
cot

(
μ

2
s′̄

iz

)
s′

iz, (12b)

s′
iy = cot

(
T

2

)
s′

iz. (12c)
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Another point of these 2-cycles can be obtained from the
condition, s′′

ix = s′
ix, s′′

iy = −s′
iy, s′′

iz = −s′
iz. It is important to

note that, for KCT, these pairs of 2-cycles remain always
unstable and are not very important; however, they have
significance in the context of dynamical classes, which is
discussed in the next subsection and in Appendix C.

Apart from these, there is another pair of FPs denoted by
FP-π , since the relative angle between the two spins is π , and
are given by

{s∗
1x, s∗

1y, s∗
1z, s∗

2x, s∗
2y, s∗

2z} = {±1, 0, 0,∓1, 0, 0}, (13)

which remain unstable for all kicking strengths. The FP struc-
ture and their stability with increasing kicking strength are
summarized in Fig. 1(a). The details of the stability analysis
and the instability exponents of unstable FPs and 2-cycles are
given in Appendix B. Here we focus only on these FPs, which
capture the essential features of the phase space; however,
with increasing kicking strength, more structure in the FPs
and periodic cycles can be formed within a narrow range of
μ, which are not relevant for the present analysis.

B. Dynamical classes and effective kicked top model

Since the model consists of two identical spins, the Hamil-
tonian and the classical dynamics remain invariant under
the exchange of spins �S1 ↔ �S2. As a consequence, in terms
of the redefined variables, sa± = (s1a ± s2a)/2 (a = x, y, z)
or equivalently, z± = (z1 ± z2)/2 and φ± = (φ1 ± φ2)/2, the
dynamics can be categorized into two subclasses with re-
duced phase space, namely: class I, for which {sx− = 0, sy+ =
0, sz+ = 0}, and class II, for which {sx− = 0, sy− = 0, sz− =
0} holds, or equivalently both of them can be written as
{z± = 0, φ± = 0}. Note that, for both classes, s1x = s2x. It can
be verified from the classical map in Eq. (8) that either of the
above conditions (class I or II) remains valid for all coupling
constants and the dynamics of the remaining variables reduces
to that of the well-known kicked top (KT) model [36,37], with
(anti)ferromagnetic interaction corresponding to class (I) II.

Here we derive the equations of motion (EOM) corre-
sponding to dynamical class I and show its correspondence
with the effective antiferromagnetic KT model. Using the full
dynamical equations [given in Eq. (8)] and the constraints of
the dynamical class I, the EOM of the remaining variables
(sx+, sy−, sz−) are given by

[
s(n+1)

x+,y−,z−
]T = R−

[
s(n)

x+,y−,z−
]T

, (14)

where the time evolution matrix R− can be written as follows:

R− =

⎛
⎜⎝

cos Q(n)
− − sin Q(n)

− cos T − sin Q(n)
− sin T

sin Q(n)
− cos Q(n)

− cos T cos Q(n)
− sin T

0 − sin T cos T

⎞
⎟⎠ (15)

with Q(n)
− = μ(s(n)

z− cos T − s(n)
y− sin T ). The above EOM can be

shown to be the same as that of an effective antiferromagnetic
KT model, which is described by the Hamiltonian

Ĥ(t ) = −Ŝx + μ

2S
Ŝ2

z

∞∑
n=−∞

δ(t − nT ), (16)

where (Ŝx, Ŝy, Ŝz ) are the components of the spin opera-
tor, which reduces to the classical variables sa = Ŝa/S (a =
x, y, z) in the limit of S → ∞. The EOM corresponding to
dynamical class I given in Eq. (14) can be obtained from the
classical map of the KT model given in Eq. (16), under the
change of classical variables (sx, sy, sz ) → (sx+, sy−, sz−). In
a similar manner, one can also show, for the dynamical class
II, that the correspondence (sx+, sy+, sz+) → (sx, sy, sz ) yields
the EOM of a ferromagnetic KT model, where μ flips its sign
in Eq. (16).

It is important to note that the actual phase space is not
restricted by the constraints of the dynamical classes, and the
presence of initial perturbations violating the corresponding
constraints leads to the mixing between the classes. Even
when the dynamics is restricted to a particular dynamical
class, the instabilities generated by the initially present small
fluctuation can lead to the deviation from the corresponding
class. As a result, the actual dynamics of the KCT model can
deviate from that of the effective KT model. For clarification,
we have shown the FPs and their stability for both antifer-
romagnetic and ferromagnetic KT models (class I and II) in
Figs. 1(b) and 1(c), which are also compared with that of the
KCT model in Fig. 1(a). It is evident from Figs. 1(b) and 1(c),
for dynamical classes I and II, that the FPs and their stability
exhibit complementary behavior. As a result, the FPs which
are not present in the dynamical class I, such as NT+, are
present in class II. However, the FPs of both effective KT
models are present in the KCT model. Due to the presence
of perturbations violating the constraints, the stable FPs and
2-cycles of a particular dynamical class become unstable in
the KCT model for a certain range of kicking strength, such
as the unstable 2-cycles TC1± in KCT which appear as stable
2-cycles in the corresponding KT model [see Figs. 1(b) and
1(c)]. Such a constraint violating fluctuations leading to the
instability of the FPs plays a crucial role in the ergodic prop-
erties and formation of quantum scars, which is discussed in
the later part of this work.

IV. ONSET OF CHAOS AND ERGODIC BEHAVIOR

After the bifurcation of trivial FPs at μb, more FP struc-
tures in the phase space appear; however, the regular region
around them shrinks, and the trajectories in the remaining
part become more irregular; as a result, a mixed phase space
behavior is observed for intermediate kicking strengths [see
Fig. 2(b)]. Further increasing the kicking strength, the stable
islands become unstable gradually, and the whole phase space
is filled up with chaotic trajectories eventually, as shown in
Fig. 2(c). Classically, the local chaotic behavior in the phase
space can be identified by a nonvanishing Lyapunov exponent,
which signals the exponential growth of initial perturbation
with time [56,57]. In the present analysis, the Lyapunov ex-
ponent λl is numerically obtained by the method discussed in
[58]. Since the Lyapunov exponent in general can depend on
the initial phase space point, to quantify the overall chaotic
behavior, we compute the averaged Lyapunov exponent λ̄l by
averaging λl over ∼ 4000 different initial phase space points.
The onset of chaos in KCT is signaled from the sharp growth
of λ̄l with increasing kicking strength μ above μb, as depicted

024217-4



DYNAMICAL ROUTE TO ERGODICITY AND QUANTUM … PHYSICAL REVIEW E 104, 024217 (2021)

FIG. 2. (a)–(c) Phase portraits on Bloch sphere for increasing
μ, exhibiting onset of chaos. (d) Variation of average Lyapunov
exponent λ̄l with increasing μ. (e) Level spacing distribution of
eigenphases of Floquet operator F̂ for two different values of μ,
exhibiting the quantum signature of chaos. The solid red (dashed
blue) lines denote the Poisson (Wigner-Dyson) statistics. (f) Average
ratio of consecutive level spacings 〈rν〉 with increasing μ, show-
ing a crossover from Poisson to Wigner-Dyson statistics. In this
and all other figures, the quantum calculations are done for S = 20
in KCT.

in Fig. 2(d). The onset of chaos triggers the mixing in phase
space, which is a key ingredient for classical ergodicity.

Usually, the quantum signature of chaos can be detected
from spectral statistics of the corresponding Hamiltonian.
According to the Berry-Tabor conjecture [59], Poisson dis-
tribution of energy level spacing implies regular classical
dynamics, whereas the Bohigas-Giannoni-Schmit (BGS) con-
jecture [60] suggests Wigner-Dyson distribution of level spac-
ing for a classically chaotic system. For periodically driven
quantum systems, one can analyze the spectral statistics of
eigenphases of the Floquet operator F̂ . The eigenspectrum of
F̂ is obtained from diagonalization, F̂ |φν〉 = eıφν |φν〉, where
φν and |φν〉 are eigenphases and corresponding eigenvec-
tors of F̂ , which contain relevant information related to the
dynamics and ergodic properties. Numerically, the diagonal-
ization of Floquet operator F̂ is done in the basis of Ŝiz. Note
that we have considered S = 20 for all quantum mechanical
calculations done numerically.

In order to perform the spectral analysis corresponding to a
particular symmetry sector, we identify two types of symme-
tries in the KCT model. The Hamiltonian in Eq. (1) remains
invariant under the action of parity �̂ = eıπ (Ŝ1x+Ŝ2x ) and spin

exchange (S1 ↔ S2) operator Ô [34], which flips the indices
of basis states |m1z, m2z〉, where miz are the quantum numbers
of Ŝiz. Both operators posses two eigenvalues ±1, which we
call even (+1) and odd (−1). For spectral statistics, we con-
sider only the eigenphases of the Floquet operator, for which
the eigenvalue of �̂(Ô) is +1 (+1). Next, the eigenphases are
arranged within the range [−π, π ] in ascending order to com-
pute the corresponding level spacings, δν = φν+1 − φν . We
calculate the normalized level spacing distribution keeping the
mean to be unity, following the procedure as outlined in [37].

As seen from Fig. 2(e), the resulting level spacing (δ) distri-
bution of eigenphases follows Poisson statistics, PP(δ) = e−δ ,
for smaller values of kicking strength; on the other hand, the
spacing distribution shows level repulsion and approaches to
Wigner surmise, PWS(δ) = (πδ/2)e−πδ2/4, corresponding to
orthogonal class of RMT for larger values of kicking strength
above μb, where the underlying phase space becomes fully
chaotic. In addition, the average ratio of consecutive level
spacings, 〈rν〉 = 〈min(δν, δν+1)/max(δν, δν+1)〉 [61], also ex-
hibits crossover from Poisson statistics with 〈rν〉 ∼ 0.386 to
that of the circular orthogonal ensemble (COE) of RMT with
〈rν〉 ∼ 0.527 [62] [see Fig. 2(f)].

Although the spectral statistics reveals the underlying sig-
nature of chaos at the quantum level, the information about
local chaotic behavior is still missing due to the absence of
a phase space description in quantum mechanics. To probe
the local chaotic behavior, we use the prescription of spin
coherent states [63],

|θ, φ〉 =
(

cos
θ

2

)2S

exp

(
tan

θ

2
eıφ Ŝ−

)
|Sz = S〉 , (17)

with θ and φ representing the orientation of the spin vector
�S, which provides a semiclassical description of phase space.
To investigate the local degree of ergodicity, we evolve a
coherent state, |ψc〉 ≡ |θ1, φ1〉 ⊗ |θ2, φ2〉, corresponding to a
particular phase space point for a sufficiently long time, and
analyze the different properties of the final state |ψ (n)〉. First,
we compute the reduced density matrix of the final state,
ρ̂S = TrS̄ (|ψ (n)〉 〈ψ (n)|), by integrating out one of the spin
sectors, which yields the entanglement entropy Sen as

Sen = −Trρ̂S logρ̂S . (18)

It is expected that in the chaotic regime, the entanglement
entropy increases with enhanced degree of chaos [64–66],
and in the extreme limit, it attains a maximum value Smax

corresponding to a completely random state [67], which is
given by

Smax = log(2S + 1) − 1/2. (19)

Another characteristic feature of ergodic evolution is the loss
of memory of the initial state, which can be quantified from
survival probability. It is defined as the overlap of the time-
evolved state |ψ (n)〉 with the initial state |ψ (0)〉,

F (n) = |〈ψ (n)|ψ (0)〉|2. (20)

In the ergodic evolution, F (n) decreases and at long time
saturates to limit FCOE = 3/N obtained from RMT [8], with
Hilbert space dimension N = (2S + 1)2. To probe the non-
ergodic behavior, we focus on the deviation of entanglement
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FIG. 3. Reflection of phase space dynamics on local ergodic behavior of KCT quantified in terms of entanglement entropy and survival
probability. Vertical columns: (a) Phase portraits for initial conditions belonging to dynamical class II (ferromagnetic KT). (b) Phase portraits
in the presence of small initial perturbations violating dynamical class II. (c) Color scaled plots of time-averaged deviation of entanglement
entropy 
Sen and (d) survival probability 
F from their ergodic limit. Initial coherent states correspond to dynamical class II [as in (a)]. Due
to the presence of intrinsic quantum fluctuations in coherent states, the constraint of dynamical class II is not maintained in quantum dynamics,
thus the phase portraits in (b) are reflected in (c) and (d). The circles correspond to the unstable FPs in color scaled plots [(c) and (d)]. The
different rows correspond to (i) μ = 0.5, (ii) μ = 1.5, (iii) μ = 3.22, (iv) μ = 3.8, (v) μ = 4.34. In the quantum dynamics, the time averaging
is done from n = 50 to n = 70.

entropy 
Sen = |S̄en − Smax| and survival probability 
F =
|F̄ − FCOE| from their ergodic limit. To eliminate the effect
of temporal fluctuations, we obtain the time-averaged value
of the corresponding quantities denoted by S̄en and F̄ , where
the time averaging is done over a certain interval towards the
end of the stroboscopic evolution. For understanding the local
ergodic behavior in phase space and to unveil its connection
with the underlying classical dynamics, we compare 
Sen

and 
F with the corresponding classical phase portraits to

investigate the dynamical route to local deviation from ergod-
icity. For clarity, here we consider only the dynamical class
II (or equivalently the ferromagnetic KT model) defined by
the constraint {z− = 0, φ− = 0}, as well for quantum evolu-
tion, we choose the initial coherent states representing this
class. We also investigate the changes in the phase portrait
due to the presence of the small perturbations violating this
constraint (see column 2 of Fig. 3) and compare them with the
phase portrait of dynamical class II (see column 1 of Fig. 3).
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This comparison of classical phase portraits is important in
the present context since such a violation of constraints is
inevitable in quantum evolution of coherent states of corre-
sponding dynamical class, due to the presence of inherent
quantum fluctuations. The manifestation of classical phase
space dynamics on ergodic behavior of its quantum counter-
part is evident from the comparison of 
Sen and 
F with
the phase portraits for different values of μ, as depicted in
Fig. 3. The regular regions of phase space around the stable
FPs lead to the strong deviation from ergodic behavior, which
is quantified by enhancement of 
Sen and 
F , as seen in
Figs. 3(c) and 3(d). In the mixed phase space, the regular re-
gions correspond to smaller Sen and larger F values compared
to the chaotic regions. It is also evident from Fig. 3 that the
dynamics in presence of the constraint violating perturbations
captures the ergodic behavior of its quantum counterpart more
accurately. Such local behavior of ergodicity quantified from

Sen and 
F elucidates its underlying connection with the
corresponding dynamics.

V. QUANTUM SCARS

In this section, we discuss the dynamical route to formation
of quantum scars and their identification. From comparison of
first two columns in Fig. 3, it is clearly visible that, due to the
presence of constraint violating perturbations of dynamical
class II, certain FPs such as T− become unstable and vanish
from the phase portrait; however, their reminiscence is still
visible in 
Sen and 
F as a scar of corresponding unstable
FPs. As seen from Fig. 3(d), 
F is more capable of detecting
scars compared to 
Sen, as the chaotic region increases. It is
important to note that, even when the FPs become unstable,
the phase space trajectories still have a tendency to localize
around them leading to the formation of quantum scars [see
Figs. 5(e) and 5(f)]. The mixed phase space region gives rise
to fascinating ergodic behavior, since stable FPs surrounded
by the chaotic sea can coexist with the scars of unstable FPs;
however, the deviation from ergodicity is more prominent for
stable FPs than that of quantum scars.

A. Quantum scars of unstable fixed points and 2-cycles

The scars of the unstable FPs, as identified from the devi-
ation in entanglement entropy 
Sen and survival probability

F shown in Figs. 3(c) and 3(d), can also be detected in the
Floquet eigenstates. The scarred eigenstates |φν〉 can be iden-
tified from the large overlap |〈ψc|φν〉|2 � 1/N [21,33,34]
with the coherent state |ψc〉 representing semiclassically the
unstable FP of corresponding scar [see Figs. 4(a)–4(d)]. On
the other hand, it is expected that such an overlap becomes
∼1/N in the ergodic regime indicating complete delocal-
ization. To visualize the scars, we compute the Husimi
distribution of the reduced density matrix ρ̂ν

S obtained from
the scarred eigenstates |φν〉,

Q(θ, φ) = 1

π
〈θ, φ| ρ̂ν

S |θ, φ〉, (21)

which describes the semiclassical phase space distribution.
As shown in Figs. 4(e)–4(h), the Husimi distribution of such
eigenstates exhibit maximum density around the unstable
FPs, indicating a localization in phase space. Note that we

FIG. 4. Identification of different types of scars in Floquet
eigenstates. (a)–(d) Overlap |〈ψc|φν〉|2 of the coherent states |ψc〉
corresponding to different unstable FPs and 2-cycles (mentioned in
the figure) with the Floquet eigenstates. The scarred eigenstates with
maximum overlap are marked by the arrowheads. Note that, for the
overlap of 2-cycle TC2+, |ψc〉 is chosen as a symmetric superposition
of coherent states, representing the two points s′, s′′ of the 2-cycle.
(e)–(h) Husimi distribution of the eigenstates having maximum over-
lap [as marked by the arrowheads in (a)–(d)], respectively, revealing
the scar of the corresponding unstable FPs and 2-cycles.

have plotted the Husimi distributions in the zi = cos θi and
φi plane, to compare it with the classical phase portraits.
Following this prescription, we identify the scars of trivial
FPs T±, nontrivial FPs NT±, FP-π , and 2-cycles TC2± shown
in Fig. 1(a). Because of the complementary behavior of the
dynamical classes, we show only the scars corresponding to
class II in Fig. 4. Here we emphasize that these scars can also
be observed in the KT model with corresponding dynamical
class except the scar of FP-π . In Appendix C we discuss in
detail such scarring phenomena in the KT model, since the
experimental realization of this model opens up the possibility
to detect the scars.

Rather than the entanglement entropy, the statistical anal-
ysis of the Floquet eigenstates provides an effective way to
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FIG. 5. (a), (b) The Shannon entropy SSh of different Floquet
eigenstates for two different values of μ. The horizontal dashed line
represents the COE limit, and the eigenstates containing the scar
of NT+ are marked by arrowheads. (c) The probability distribution
P(η) for scarred eigenstates of NT+ [marked by arrows in (a)–(b)]
for two different μ values. The black dashed line corresponds to the
Porter-Thomas (PT) distribution. (d) The overlap |〈ψc|φν〉|2 of a co-
herent state corresponding to NT+ with different Floquet eigenstates
for different values of μ. The maximum overlap is marked by the
arrowheads. (e) Unstable trajectories around NT+ in the presence
of perturbations violating class II. (f) Husimi distribution of the
deviated state [marked by triangle in (a)] depicting the scar of such
an unstable trajectory.

distinguish the scarred states. For this purpose, we decompose
the Floquet eigenstates |φν〉 = ∑

i φ
i
ν |i〉 in the computational

basis |i〉. In the chaotic regime, according to Berry’s conjec-
ture [68], the eigenstates behave as random states, and the
probability distribution of their components η = |φi

ν |2N fol-
lows the well-known Porter-Thomas (PT) distribution P(η) =
(1/

√
2πη) exp(−η/2) [37]. Consequently, the Shannon

entropy SSh = −∑
i |φi

ν |2log|φi
ν |2 of such ergodic states at-

tains the value log(0.48N ) corresponding to its COE limit
[8,62]. As the system approaches chaos, the Shannon entropy
SSh of the Floquet eigenstates forms a bandlike structure
around the COE limit; however, for some eigenstates, SSh

is found to be significantly lower than this limit, which we
identify as eigenstates bearing a scar, as shown in Figs. 5(a)
and 5(b). Apart from the scars of the FPs and 2-cycles, we
find another type of scars, which resemble the shape of un-
stable orbits around such FPs, as shown in Figs. 5(e) and
5(f). As seen from Fig. 5(c), unlike the ergodic states, the
eigenstates bearing a scar deviate from the PT distribution,
leading to the violation of Berry’s conjecture [33,34]. How-

ever, the magnitude of such deviation, as well as the overlap
with the corresponding coherent state, depends on the degree
of scarring, which decreases with enhanced instability of the
underlying dynamics, as shown in Fig. 5(d). Consequently,
the scars gradually disappear as the system enters into a deep
chaotic regime and eventually becomes uniformly ergodic.

Unlike the scar of FPs, the quantum scarring of 2-cycles
such as TC2± has an interesting dynamical feature, since it
is the shortest orbit representing the oscillation between two
phase space points s′ and s′′. Here we discuss the dynamical
manifestation of the unstable 2-cycles TC2±. Starting from
the initial coherent state representing one of these points of
the 2-cycle, we obtain the Husimi distribution of the strobo-
scopically evolved state |ψ (n)〉 successively, exhibiting the
oscillation of the phase space density between these two
points. In Fig. 6(a) such oscillations of the Husimi distribution
are shown for the 2-cycle TC2+. As a result of the instability of
this 2-cycle, the Husimi distribution spreads out; however, the
quantum scar can still be identified from the accumulation of
the phase space density around these points of TC2+. We also
calculate the overlap of the time-evolved state |ψ (n)〉 with the
coherent states |s′〉 and |s′′〉 corresponding to two fixed points
of this 2-cycle. As depicted in Fig. 6(b), the complementary
behavior of the oscillations of the overlaps clearly captures the
dynamics between the two points of unstable TC2+.

B. Signature of scars from FOTOC dynamics

In recent years, a technique known as the “out-of-time-
order correlator” (OTOC) has been extensively studied to
probe quantum many-body chaos and scrambling phenomena
[38–51]. The OTOC for two operators Ŵ and V̂ is defined as

O(t ) = Trρ̂0Ŵ
†(t )V̂ †(0)Ŵ (t )V̂ (0), (22)

where Ŵ (t ) denotes the operator at time t and ρ̂0 is the initial
density matrix. For unitary operators Ŵ and V̂ , the growth rate
of 1 − Re(O(t )) can yield the Lyapunov exponent in quantum
systems [41,46,47]; moreover its saturation value can provide
an alternate measure to quantify the degree of ergodicity
[48–51]. For the pure states, the OTOC can be generalized
to “fidelity-OTOC” (FOTOC) FG for a Hermitian operator Ĝ,
which is defined for Ŵ = eıδφĜ and V̂ = ρ̂0 = |ψ (0)〉 〈ψ (0)|
corresponding to the initial state |ψ (0)〉 [46,47]. In the limit
δφ � 1, the FOTOC can be written in terms of the fluctuation
fG of the corresponding operator Ĝ,

1 − FG ≈ δφ2(〈Ĝ2〉 − 〈Ĝ〉2) ≡ δφ2 fG, (23)

which simplifies the computation of FG and makes it suitable
for collective systems. In the perturbative regime (δφ � 1),
the dynamics of FOTOC as well the growth rate of 1 − FG

can be captured from the time evolution of the corresponding
fluctuation fG, which can successfully capture the instability
exponent [47] and scrambling [46] in a quantum system.
Moreover, the previous studies reveal that the classically
chaotic dynamics can be identified from the growth rate of
such quantum variances [54,69–71].

The dynamics of 1 − FG for collective spin systems like
KCT can alternatively be studied from the fluctuation fG for
suitable spin operators with Ĝ = Ŝia/S. To detect the dynami-
cal signature of quantum scars, we investigate the dynamics of
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FIG. 6. Dynamical signature of quantum scar corresponding to a
2-cycle (TC2+) of KCT: (a) Stroboscopic time evolution (t = nT ) of
the Husimi distribution exhibiting periodic oscillation of phase space
density between the fixed points of unstable TC2+ at μ = 4.34. The
pink dashed lines denote the two fixed points of this 2-cycle repre-
sented by s′, s′′, and we choose the initial coherent state representing
one of them. (b) Overlap (survival probability) of the stroboscopi-
cally evolved state |ψ (n)〉 with the coherent states |ψc〉 = |s′〉 (red
line) and with |ψc〉 = |s′′〉 (blue line), corresponding to two points of
2-cycle. Complementary behavior of both overlaps reflects periodic
oscillation as observed in (b). The pink dashed line in (b) represents
the COE limit of survival probability.

total fluctuation fis of all the components of a particular spin
sector, which is given by

fis =
∑

a=x,y,z

fisa =
∑

a=x,y,z

(〈
Ŝ2

ia

〉 − 〈Ŝia〉2
)
/S2. (24)

FIG. 7. (a), (b) Comparison of FOTOC dynamics starting from
initial coherent states corresponding to different stable (solid) and
unstable (dashed) FPs for two different values of μ. As NT+ becomes
unstable, the effect of scarring is reflected from the growth and
oscillation of FOTOC [shown in (b)], which is contrasted with its
behavior when NT+ is stable [shown in (a)]. (c), (d) Dynamics of
FOTOC starting from the initial state representing one of the fixed
points of TC2+ (red line) for two different values of μ corresponding
to stable (solid) and unstable (dashed) TC2+. In all cases, the green
line denotes FOTOC dynamics for a random initial coherent state
belonging to the chaotic region.

In the mixed phase space region, we study the dynamics
of total spin fluctuations fis starting from the initial coherent
states representing the stable (unstable) FPs and 2-cycles. For
stable FPs surrounded by the regular regions of phase space,
the fis exhibits oscillatory behavior with very small ampli-
tude, whereas for an initial coherent state belonging to the
chaotic region, fis grows rapidly and saturates to unity. On the
other hand, the fis for unstable FPs exhibits an intermediate
behavior with slower growth rate and large oscillations [see
Figs. 7(a) and 7(b)] indicating the scarring phenomena. Such
behavior can be contrasted with that of stable FPs, which can
have relevance in experiments to distinguish quantum scars
from stable FPs in the mixed phase space region. Similarly,
we also study the dynamics of fis for the stable and unstable
2-cycle TC2+ shown in Figs. 7(c) and 7(d), which exhibits a
larger growth rate as the 2-cycle becomes unstable. Here we
point out that the presence of unstable FP NT± in the close
vicinity of two stable points of TC2± enhances the growth of
its FOTOC, as seen in Fig. 7(c). Similar behavior has also been
observed in [47], where the FOTOC corresponding to a stable
phase space point near an unstable FP exhibits a nonvanishing
growth. The reduction of degree of scarring due to enhanced
dynamical instability can also be captured from FOTOC
dynamics, since both the growth rate and saturation corre-
sponding to a scarred state increases as the system approaches
to a more chaotic regime with increasing kicking strength μ.

VI. CONCLUSION

In the present work, we investigated the local ergodic be-
havior of a coupled top model subjected to periodic kicking
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and unveiled its connection with the underlying phase space
dynamics, which plays a crucial role in the formation of
quantum scars. With increasing kicking strength, the system
undergoes a crossover from regular to chaotic dynamics. In
the mixed phase space, the regular regions around the stable
fixed points (FPs) and 2-cycles give rise to strong deviation
of entanglement entropy and survival probability from their
ergodic limit, revealing the local ergodic behavior. As the
unstable FPs and 2-cycles disappear from the phase portrait,
their reminiscence can still be visible through deviation from
the ergodic limit, exhibiting quantum scarring phenomena.
Also, we discuss the methods for identification of scars in
Floquet eigenstates from their statistical properties and Shan-
non entropy. Such eigenstates carrying the scars exhibit
violation of Berry’s conjecture in contrast to the ergodic
states. However, even after instability, the trajectories remain
localized near such unstable FPs, which essentially gives rise
to phase space localization in scarred states, as is visible in
Husimi distribution. Apart from the FPs, we have also iden-
tified the scars of 2-cycles, giving rise to oscillation between
two phase space points.

We have shown how quantum scars in mixed phase space
can be distinguished from both the stable FPs and ergodic
states by the FOTOC dynamics, which can serve as an
efficient method for its experimental detection. The imple-

mentation of FOTOC has already been done in trapped ion
simulators [46], which can also serve as a platform to engi-
neer collective spin models [53]. Moreover, in the context of
quantum computation, there is a proposal for physical imple-
mentation of a coupled top model using the magnetic clusters
coupled via SQUIDs [72,73]. The experimental realization
of the kicked top model in the cold atom setup [74] and
in superconducting qubits [75] has opened up the imminent
possibility of investigating the quantum scarring phenomena.
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APPENDIX A: DERIVATION OF STROBOSCOPIC
EVOLUTION OF SPIN OPERATORS

In the Heisenberg picture, the stroboscopic time evolu-
tion of the spin operators can be written in terms of F̂
as Ŝ(n+1)

ia = F̂†n+1ŜiaF̂n+1 = F̂†Ŝ(n)
ia F̂ , where i = 1, 2, a =

x, y, z, and Ŝ(n)
ia denotes the operator at time t = nT . Following

this prescription, we derive the equation of motion for the z
component of spin Ŝ1z:

Ŝ(n+1)
1z = F̂†n(F̂†Ŝ1zF̂ )F̂n = F̂†n(e−ı(Ŝ1x+Ŝ2x )T e−ı

μ

S Ŝ1z Ŝ2z Ŝ1ze
ı

μ

S Ŝ1z Ŝ2z eı(Ŝ1x+Ŝ2x )T )F̂n = F̂†n(e−ı(Ŝ1x+Ŝ2x )T Ŝ1ze
ı(Ŝ1x+Ŝ2x )T )F̂n

= F̂†n(Ŝ1z cos T − Ŝ1y sin T )F̂n = Ŝ(n)
1z cos T − Ŝ(n)

1y sin T . (A1)

Similarly, we can derive the equation of motion for x component of spin Ŝ1x:

Ŝ(n+1)
1x = F̂†n(F̂†Ŝ1xF̂ )F̂n = F̂†ne−ı(Ŝ1x+Ŝ2x )T (

e−ı
μ

S Ŝ1z Ŝ2z Ŝ1xeı
μ

S Ŝ1z Ŝ2z
)
eı(Ŝ1x+Ŝ2x )T F̂n

= F̂†ne−ı(Ŝ1x+Ŝ2x )T

[
Ŝ1x cos

(
μŜ2z

S

)
+ Ŝ1y sin

(
μŜ2z

S

)]
eı(Ŝ1x+Ŝ2x )T F̂n

= F̂†n
{

Ŝ1x cos
[μ

S
(Ŝ2z cos T − Ŝ2y sin T )

]
+ e−ı(Ŝ1x+Ŝ2x )T Ŝ1yeı(Ŝ1x+Ŝ2x )T sin

[μ

S
(Ŝ2z cos T − Ŝ2y sin T )

]}
F̂n

= F̂†n
{

Ŝ1x cos
[μ

S
(Ŝ2z cos T − Ŝ2y sin T )

]
+ (Ŝ1y cos T + Ŝ1z sin T ) sin

[μ

S
(Ŝ2z cos T − Ŝ2y sin T )

]}
F̂n

= Ŝ(n)
1x cos

[μ

S
(Ŝ(n)

2z cos T − Ŝ(n)
2y sin T )

]
+ (

Ŝ(n)
1y cos T + Ŝ(n)

1z sin T
)

sin
[μ

S
(Ŝ(n)

2z cos T − Ŝ(n)
2y sin T )

]
, (A2)

where we have used the commutation relation [Ŝia, Ŝ jb] =
ıεabcδi j Ŝic and the following operator identity:

etX̂ Ŷ e−t X̂ = Ŷ + t[X̂ , Ŷ ] + t2

2!
[X̂ , [X̂ , Ŷ ]] + · · · . (A3)

In a similar manner, the equation of motion for Ŝy can be
derived. To obtain the classical map [see Eq. (8) of Sec. III],
we have redefined the operators Ŝia as ŝia = Ŝia/S, which can
be treated as classical variables in the limit S → ∞, since the
commutation relation [ŝia, ŝ jb] vanishes as 1/S.

APPENDIX B: STABILITY ANALYSIS

The stability of the fixed points (FPs) and 2-cycles can be
analyzed by linearizing the classical map given in Eq. (8) for

small fluctuation around them. Following the standard proce-
dure in [56,57], we construct the Jacobian matrix J, whose
matrix elements are given by Jαβ = ∂s(n+1)

α /∂s(n)
β , where n

is the stroboscopic time and α, β = 1, 2, . . . , 6 are the in-
dices of the array s = {s1x, s1y, s1z, s2x, s2y, s2z} representing
the phase space point of the two-spin system. We calculate
the instability of an unstable FP represented by s∗ from the
instability exponent λI = ln(| jm|) > 0, where jm is the eigen-
value of the Jacobian matrix J(s∗) with maximum magnitude,
evaluated at s∗. Similarly, the stability of a 2-cycle can be
obtained from the matrix J̃ = J(s′)J(s′′), where the Jacobian
matrices J are evaluated at the corresponding fixed points s′
and s′′ of the 2-cycle. The corresponding instability exponent
of the 2-cycle is given by λI = (1/2) ln(| j̃m|) > 0, where j̃m
is the eigenvalue of matrix J̃ with maximum magnitude. The
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FIG. 8. Dynamical instability of different FPs and 2-cycles (as
mentioned in the figure). The instability exponent λI with increasing
kicking strength μ for (a) KCT and (b) ferromagnetic KT model
corresponding to dynamical class II.

stability of FP (2-cycles) is ensured if the magnitude of all
eigenvalues of J (J̃) is unity [56]. In the present case, as a
result of the constraint, s2

ix + s2
iy + s2

iz = 1 (for i = 1, 2), the
magnitude of two eigenvalues of J and J̃ always remains unity.
We compute the instability exponents λI of the FPs and 2-
cycles of KCT, which we discussed in Sec. III, with increasing
kicking strength μ [see Fig. 8(a)]. We also compare them with
the instability of the FPs and 2-cycles of the ferromagnetic
KT model (corresponding to dynamical class II), shown in
Fig. 8(b). Here it is important to note that the 2-cycle TC1±
is present in KCT but remains always unstable.

APPENDIX C: QUANTUM SCARS IN FERROMAGNETIC
KICKED TOP MODEL

As shown in Sec. III B, the dynamics of a kicked coupled
top (KCT) can be divided into two classes (I) II corresponding

FIG. 10. Signature of scars of 2-cycles in ferromagnetic KT
model from FOTOC dynamics: (a), (b) Comparison of FOTOC dy-
namics starting from initial coherent states corresponding to 2-cycles
TC2+ (red line) and TC1− (blue line) for two different values of μ.
The stable (unstable) 2-cycles are shown by a solid (dashed) line. In
both figures, the green line represents the same for the initial coherent
state belonging to the chaotic regime. Scarring of TC1− is captured
from the larger growth rate of FOTOC as it becomes unstable [shown
in (b)], which can be contrasted with its behavior when it is stable
[shown in (a)]. With increasing μ, the FOTOC for unstable TC2+
[shown in (b)] becomes almost similar to that of an ergodic state
showing the reduction of degree of scarring.

to the (anti)ferromagnetic kicked top (KT) model. Similar
scarring phenomena can also be observed in the KT model,
which we discuss in this Appendix. Here we analyze the
scars of unstable FPs and 2-cycles corresponding to the fer-
romagnetic KT model, which is shown in Fig. 9. The scarred
eigenstates |φν〉 are identified from the large overlap with
the coherent states |ψc〉 representing the unstable FPs and
2-cycles [see Fig. 9(a1–a5)]. The scars in such eigenstates
can also be visualized from the Husimi distribution localized
around those FPs and 2-cycles, as depicted in Fig. 9(b1–b5).

FIG. 9. Identification of different scars in the ferromagnetic KT model and their dynamical signature. (a1)–(a5) Overlap of Floquet
eigenstates |φν〉 with coherent state representing different FPs and 2-cycles of KT model. (b1)–(b5) Husimi distribution of the eigenstate with
maximum overlap [marked by arrowheads in (a1)–(a5)] revealing the quantum scars of corresponding unstable FPs and 2-cycles. (c1)–(c5)
Survival probability |〈ψ (n)|ψ (0)〉|2 where |ψ (0)〉 represents the initial coherent state of the above mentioned unstable FPs exhibiting revival
phenomena due to scarring. The last column (d1)–(d3) shows the scarring of TC1− in KCT, where the same quantities are compared with that
of the ferromagnetic KT model shown in column (a5)–(c5).

024217-11



MONDAL, SINHA, AND SINHA PHYSICAL REVIEW E 104, 024217 (2021)

Here we have identified scars of trivial FPs T±, nontrivial
FPs NT+, and the 2-cycles TC2+, TC1− [see Fig. 1(c) for
the fixed points of ferromagnetic KT model], which also
manifest revivals in the corresponding survival probabilities
F (n) [see Fig. 9(c1–c5)]. We also emphasize that, although
the 2-cycle TC1− is present in both the ferromagnetic KT
as well as KCT model, the degree of scarring in KCT is
weaker due to a larger instability generated because of mix-
ing between the two dynamical classes (class I and II), as
reflected from the comparison of Husimi distributions shown
in Figs. 9(b5) and 9(d2). Such scars can also be identified
from FOTOC dynamics, which is shown for 2-cycles TC1−
and TC2+. As shown from the comparison between Figs. 10(a)

and 10(b) it is evident that the onset of dynamical insta-
bility of TC1− leads to a rapid enhancement in growth and
magnitude of FOTOC, which is, however, slower than an
ergodic state. As a result of enhanced instability, the de-
gree of scarring of TC2+ is reduced, and the corresponding
FOTOC becomes almost indistinguishable from that of an
ergodic state, which is shown in Fig. 10(b). Here we point
out that the KT model has already been realized experimen-
tally in cold atom systems [74], as well in superconducting
qubits [75], which opens up an imminent possibility of in-
vestigating such quantum scarring phenomena. In particular,
the scar of 2-cycles can also be diagnosed from the FOTOC
dynamics.
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Z. Papić, Nat. Phys. 14, 745 (2018).

[19] C. J. Lin and O. I. Motrunich, Phys. Rev. Lett. 122, 173401
(2019).

[20] W. W. Ho, S. Choi, H. Pichler, and M. D. Lukin, Phys. Rev.
Lett. 122, 040603 (2019).

[21] A. A. Michailidis, C. J. Turner, Z. Papić, D. A. Abanin, and M.
Serbyn, Phys. Rev. X 10, 011055 (2020).

[22] W. Kao, K. Y. Li, K. Y. Lin, S. Gopalakrishnan, and B. L. Lev,
Science 371, 296 (2021).

[23] M. Schecter and T. Iadecola, Phys. Rev. Lett. 123, 147201
(2019).

[24] N. Shibata, N. Yoshioka, and H. Katsura, Phys. Rev. Lett. 124,
180604 (2020).
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