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We use a low-order oscillator model to investigate the mutual synchronization of a thermoacoustic system
consisting of two turbulent lean-premixed combustors coupled via a cross-talk tube. The model consists of two
Van der Pol (VDP) oscillators coupled via dissipative and time-delay terms. We show that, despite its simplicity,
the model can reproduce many of the synchronization phenomena observed experimentally, such as amplitude
death, desynchronization (quasiperiodicity), synchronization (phase locking), and nonlinear energy pumping
from a limit-cycle mode to a damped mode. This study shows that the mutual synchronization dynamics of
a turbulent thermoacoustic system can be reproduced with just a simple coupled VDP model. This suggests
that such a model could be used to identify new strategies for quenching limit-cycle oscillations in turbulent
thermoacoustic systems, such as gas turbines and rocket engines.
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I. INTRODUCTION

In many combustion systems, thermoacoustic instability
can arise from the positive feedback between unsteady heat
release and sound [1,2]. For example, when a flame interacts
with the acoustic modes of a combustor, its heat release rate
(HRR) can, under certain conditions, oscillate in phase with
the pressure field, causing thermal energy to be transferred
to the acoustic modes via the Rayleigh mechanism [3]. The
pressure amplitude thus grows, but eventually saturates owing
to the nonlinear HRR response of the flame [4], resulting
in self-excited flow oscillations at the natural acoustic fre-
quencies of the system [5]. If severe, such thermoacoustic
oscillations can increase vibration and thermal stresses, de-
grading the reliability and efficiency of the overall combustion
system [3].

The prediction and control of thermoacoustic oscillations
have been the focus of many studies [6–10]. Traditionally,
most studies have relied on the use of single combustors
because this simplifies the geometry and analysis, while
preserving the fundamental physics of the thermoacoustic
feedback mechanisms. However, many practical combustion
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devices, such as gas turbines used for electricity generation,
contain multiple combustors coupled to one another [11].
The thermoacoustics of such multicombustor devices can-
not be fully understood by considering just a single isolated
combustor, because of the possibility of bidirectional cou-
pling between adjacent combustors [9,12]. Recognizing this,
researchers have already begun to investigate the thermoa-
coustics of coupled combustors [13–15], but only a few have
done so using synchronization theory. Synchronization theory
provides an ideal framework for investigating thermoacoustic
instability in multicombustor systems because (i) each com-
bustor can be intuitively treated as an individual self-excited
oscillator undergoing limit-cycle motion, and (ii) the bidi-
rectional interactions between adjacent combustors can be
modeled by introducing coupling terms between two identical
or nonidentical self-excited oscillators [16–18]. This approach
has led to the discovery of various synchronization phenom-
ena, many of which have practical applications. For example,
when two or more self-excited oscillators are coupled ap-
propriately, each oscillator can become stabilized to a fixed
point, causing the overall coupled system to stop oscillating
altogether, i.e. to become quenched. This phenomenon,
known as amplitude death (AD) [19], has been observed
in systems as diverse as solid-state lasers and chemical re-
actors [20,21]. In thermoacoustic systems, AD could be
used to suppress destructive flow oscillations arising from
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FIG. 1. Experimental setup consisting of two thermoacoustic oscillators coupled via a cross-talk tube whose diameter (DXT = 9.6, 19.2,
and 38.4 mm) and length (lXT = 320, 400, and 480 mm) are independently adjustable. Each oscillator consists of a lean-premixed CH4-air flame
stabilized in the turbulent swirling flow (Re ≈ 4.4 × 104) of a cylindrical combustor whose length is fixed at lc = 1600 mm. All dimensions
shown are in millimeters. Further details can be found in Refs. [34,35].

the feedback between unsteady HRR and sound. Indeed,
AD has already been experimentally observed in laminar
thermoacoustic systems powered by porous stacks [22,23],
electrically heated meshes [24], and Bunsen flames [25]. In
general, various types of coupling can cause AD [26–30],
but the two most common are dissipative and time-delay
coupling. Low-order modeling has shown that when only
dissipative coupling is present, AD can occur only when
the frequency detuning is sufficiently large [31,32]. By con-
trast, when only time-delay coupling is present, AD can
occur even for zero frequency detuning (i.e., identical os-
cillators), so long as the coupling parameters (strength and
time delay) have appropriate finite values [26,32]. Crucially,
the simultaneous presence of both dissipative and time-delay
coupling has been shown to enlarge the region of param-
eter space in which AD occurs [22,32]. Other phenomena
that have been observed in coupled thermoacoustic oscillators
include in-phase and antiphase synchronization, phase-flip
bifurcations, and partial amplitude death (PAD) [24]. PAD
differs from AD in that only some of the coupled self-
excited oscillators are quenched, while the others continue to
oscillate [28,33].

The above observations were made in laminar systems, but
practical combustors are almost always turbulent [3]. To better
understand the thermoacoustics of such systems, we recently
performed experiments on two turbulent lean-premixed com-
bustors coupled via a cross-talk tube [34,35]. By analyzing
the data in a synchronization framework, we were able to
identify various phenomena, such as AD, phase locking (PL),
and in-phase and antiphase synchronization [34,35]. However,
although those experiments provided useful insight into the
interactions between limit-cycle oscillations in a turbulent
thermoacoustic system, they still fell short of offering a viable
means of prediction and control. In the present study, we
aim to address this issue by demonstrating that the mutual
synchronization dynamics of two turbulent thermoacoustic
oscillators can be reproduced with just a simple low-order
model.

II. EXPERIMENTAL SETUP AND LOW-ORDER MODEL

Before introducing the low-order model, we first review
the experiments [34,35] against which the modeling results
will be compared. The experimental setup is based around two
coupled thermoacoustic oscillators (Fig. 1). Each oscillator
consists of a lean-premixed CH4-air flame stabilized in the tur-
bulent swirling flow of a cylindrical combustor whose length
is fixed at lc = 1600 mm. Also fixed are the bulk reactant ve-
locity (u1 = u2 = 40 m/s) and the inlet temperature (Tinlet,1 =
Tinlet,2 = 200 ◦C), resulting in an inlet Reynolds number of
4.4 × 104. We adjust the CH4 and air flow rates independently
using four thermal mass flow controllers (Teledyne Instru-
ments HFM-D-301 for CH4, and Sierra Instruments FlatTrak
780S for air). Upstream of each combustor is an inlet section
whose length (linlet) is adjustable. Also adjustable is the equiv-
alence ratio (φ) of the flame in each combustor. Depending on
linlet and φ, each isolated thermoacoustic oscillator can occupy
one of two states: (i) a steady state associated with a fixed
point, and (ii) a self-excited oscillatory state associated with
a limit-cycle attractor [34,35]. At the operating conditions of
this study, transitions from the former state to the latter state
usually occur via a supercritical Hopf bifurcation as either linlet

or φ increases [34,35]. After the Hopf point, the amplitude
and frequency of the limit-cycle oscillations depend on both
linlet and φ [34,35]. We measure the pressure fluctuations
in both combustors (p′

1, p′
2) using piezoelectric transducers

(PCB 112A22) mounted at the injector plane (Fig. 1). We
digitize the analog pressure signals from both combustors at
12 kHz for 4 s on a data logger (TEAC model LX-110).

To explore mutual synchronization, we couple the
two thermoacoustic oscillators (combustors) to each other
using a cross-talk tube whose diameter (DXT = 9.6, 19.2,
and 38.4 mm) and length (lXT = 320, 400, and 480 mm) can
be independently adjusted (Fig. 1). Increasing DXT increases
the cross-sectional area of the tube, increasing its acoustic
admittance; this allows more acoustic energy to pass through
the tube, increasing the coupling strength [24]. Increasing
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lXT increases the time required for information to travel be-
tween the two oscillators; this delay time can be quantified
as lXT/c, where c is the speed of sound [24]. We nondimen-
sionalize both of these geometric coupling parameters as per
Ref. [35]: ε ≡ DXT/DXT,0, where DXT,0 = 38.4 mm is the
baseline, and η ≡ lXT/lc, where lc is the combustor length
(fixed at 1600 mm, as noted earlier). Further details on the
experimental setup can be found in Refs. [34,35].

We model the mutual synchronization between the two
thermoacoustic oscillators using two Van der Pol (VDP) os-
cillators coupled via dissipative and time-delay terms:

ẍ1 − (
β1 − x2

1

)
ẋ1 + ω2

n,1x1 = kd (ẋ2 − ẋ1)

+ kτ [ẋ2(t − τ ) − ẋ1],

ẍ2 − (
β2 − x2

2

)
ẋ2 + ω2

n,2x2 = kd (ẋ1 − ẋ2)

+ kτ [ẋ1(t − τ ) − ẋ2], (1)

where the two oscillators are specified by subscripts 1 and
2, x1 and x2 are the dynamical variables (x̃′ ≡ x′/x′

max), ωn,1

and ωn,2 are the natural angular frequencies in the linear limit,
kd is the dissipative coupling strength, kτ is the time-delay
coupling strength, τ is the time delay itself, and β1 and β2 are
the excitation and damping parameters that control whether
the solution converges to a fixed point (β < 0) or to a limit
cycle (β > 0).

We calibrate the model [Eq. (1)] using the experimental
data from Refs. [34,35]. To facilitate this, we normalize the
pressure amplitude by the maximum pressure amplitude ob-
served among all the decoupled thermoacoustic oscillators:
p̃′ ≡ p′/p′

max. Moreover, we normalize the frequency by the
lowest limit-cycle frequency observed among all the decou-
pled thermoacoustic oscillators: f̃ ≡ f / fn,min. We then adjust
β1 and β2 independently such that the ratio of the limit-
cycle amplitudes between the two decoupled VDP oscillators
matches that between the two decoupled thermoacoustic os-
cillators. Similarly, we adjust ωn,1 and ωn,2 independently
such that the ratio of the limit-cycle frequencies is also
matched. Here we are careful to account for the slight shift
in the limit-cycle frequency as the oscillation amplitude
increases [36–39]. Through this four-parameter calibration
procedure, we achieve deviations in the amplitude ratio of less
than 2.5% and in the frequency ratio of less than 0.1%. We
believe that these deviation values are acceptable because our
aim is to qualitatively reproduce the synchronization states ob-
served experimentally, rather than to quantitatively reproduce
the detailed flow features. The latter task is best left for high-
fidelity numerical techniques such as large-eddy simulations,
which are more computationally expensive than the low-order
modeling approach taken in this study.

If a thermoacoustic oscillator is at a fixed point (rather than
at a limit cycle), we calibrate its corresponding VDP oscillator
using a heuristic approach. For example, we recall from the
experiments of Jegal et al. [34] that the natural frequency of
the thermoacoustic oscillator increases with φ. We therefore
let ωn increase with β. Moreover, we ensure that β is negative
but increases to zero as the system approaches the supercriti-
cal Hopf point [40–42].

As for calibrating the coupling parameters (kd , kτ , and
τ ), we recall that the two thermoacoustic oscillators in our

experiments are coupled via a single cross-talk tube, which
implies that both dissipative and time-delay coupling occur
through the same physical connection. On this basis, we let
kd = kτ , whose value we adjust in response to changes in ε in
the experiments. Similarly, we adjust τ in response to changes
in η. When adjusting kd , kτ and τ , we prioritize qualitatively
reproducing the synchronization states observed experimen-
tally [34,35], rather than quantitatively reproducing metrics
such as the amplitude and frequency ratios. We numerically
solve the coupled VDP model [Eq. (1)] using a fourth-order
Runge–Kutta scheme. Next, we present a comparison of the
experimental and numerical results.

III. RESULTS AND DISCUSSION

A. Symmetric inlet length: linlet,1 = linlet,2

First we consider experiments in which the two ther-
moacoustic oscillators have the same inlet length (linlet,1 =
linlet,2 = 340 mm) but a range of symmetric and asymmetric
equivalence-ratio combinations (φ = 0.61, 0.65, 0.69, and
0.73), with and without coupling [34,35]. These specific val-
ues of φ are used because they give rise to both fixed-point
and limit-cycle attractors in the decoupled oscillators. Spectral
data are shown in Fig. 2, where we label the different oper-
ating and coupling conditions as follows. For the decoupled
oscillators (dark yellow borders), the uppercase “E” in front
denotes experimental data (simulation data are denoted by
“S”), the number after it specifies the particular oscillator (1
or 2), and the lowercase letter at the end specifies the value of
φ as per (a, b, c, d) = (0.61, 0.65, 0.69, 0.73). For the coupled
oscillators (light yellow borders), we combine the labels from
two separate oscillators; for example, E1c-2b denotes the ex-
perimental case where oscillator 1c (φ = 0.69) is coupled to
oscillator 2b (φ = 0.65).

On examining the decoupled thermoacoustic oscillators
(Fig. 2: dark yellow borders), we find that each of them oscil-
lates in a self-excited limit cycle when φ is low (Fig. 2: E1a,
E2a, E1b, E2b), but that they transition to a fixed point when
φ is high (Fig. 2: E1c, E2c, E1d, E2d). We find that these
transitions occur in both thermoacoustic oscillators because,
although decoupled, they have the same combustor geometry
and are at the same operating conditions. Nevertheless, we
also find noticeable differences in the spectral amplitude of
the limit-cycle mode between any two nominally identical
oscillators (Fig. 2: E1a vs. E2a; E1b vs. E2b). We attribute
these differences to subtle variations in the operating condi-
tions (e.g., φ and the reactant temperature and velocity), as
well as to noise induced by turbulence in the reactive flow
field.

On examining the coupled thermoacoustic oscillators
(Fig. 2: light yellow borders), we find a variety of mutual syn-
chronization phenomena. For example, quasiperiodicity (QP)
arises from two incommensurate modes (Fig. 2: E1b–E2a,
E1c–E2b). To demonstrate this, we show in Fig. 3(a1–c1)
the phase portrait, Poincaré map, and slope of the correlation
sum for a representative QP case (Fig. 2: E1b–E2a). Here we
reconstruct the phase space using the embedding theorem of
Takens [43], with a time delay of τ and an embedding dimen-
sion of d . We compute the correlation dimension (Dc) using

024216-3



GUAN, MOON, KIM, AND LI PHYSICAL REVIEW E 104, 024216 (2021)

FIG. 2. Spectral comparison between thermoacoustic experiments (yellow borders) [34,35] and VDP simulations (green bor-
ders) under symmetric inlet-length conditions (linlet,1 = linlet,2 = 340 mm). The decoupled thermoacoustic oscillators (DTO: no
cross-talk tube) and decoupled VDP oscillators (DVDP: kd = kτ = 0) are denoted by dark yellow and dark green borders, re-
spectively. The coupled thermoacoustic oscillators (CTO: ε = 1.0, η = 0.25) and coupled VDP oscillators (CVDP: kd = kτ =
0.011, τ = 1.6) are denoted by light yellow and light green borders, respectively. Experimental calibration of the VDP
model gives (β1a, β1b, β1c, β1d ) = (0.04, 0.03, −0.01, −0.02), (β2a, β2b, β2c, β2d ) = (0.02, 0.05, −0.01, −0.02), (ωn,1a, ωn,1b, ωn,1c, ωn,1d ) =
(1.01, 1.05, 1.06, 1.07), and (ωn,2a, ωn,2b, ωn,2c, ωn,2d ) = (1.00, 1.03, 1.06, 1.07). Legend: LC = limit cycle; FP = fixed point; PL = phase
locking; QP = quasiperiodicity; NEP = nonlinear energy pumping; 2SC = two steady oscillators coupled together.

the method of Grassberger and Procaccia [44]; this involves
plotting the slope of the correlation sum (Dc) as a function of
the hypersphere radius (R/Rmax) for different values of d , and
then determining the value to which that slope converges over
a finite range of R/Rmax. We find a noisy toroidal structure in
the phase portrait [Fig. 3(a1)], which appears as a pair of fuzzy
rings in the Poincaré map [Fig. 3(b1)]. This indicates that
the phase trajectory spirals nonrepeatedly on an ergodic two-
dimensional torus attractor (T 2), a signature feature of QP
arising from two incommensurate modes [45]. The correlation
dimension of an ideal T 2 torus attractor is Dc = 2 [45]. How-
ever, we find a slightly higher value in our data [Fig. 3(c1):

Dc ≈ 2.5] owing to the presence of turbulence-induced noise.
Similar deviations of Dc have been observed in other turbulent
thermoacoustic systems [46,47].

When one of the two thermoacoustic modes strengthens,
their frequencies approach each other. Eventually, the two
modes merge into one at a common global frequency, result-
ing in PL (Fig. 2: E1a–E2a, E1b–E2b). To demonstrate this,
we show in Figs. 3(d1)–3(f1) the phase portrait, Poincaré map,
and instantaneous phase difference between the two pressure
signals (ψ1,2) for a representative PL case (Fig. 2: E1a–E2a).
Here we reconstruct the phase space as before, but compute
ψ1,2 with the Hilbert transform [48,49]. We find a noisy closed
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FIG. 3. (a1) Phase portrait, (b1) Poincaré map, and (c1) slope of the correlation sum for a QP state from the thermoacoustic experiments
of Figs. 2(E1b)–2(E2a); analogous data from the VDP simulations of Fig. 2(S1b)–2(S2a) are shown immediately below in subfigures (a2–c2).
Also shown are the (d1) phase portrait, (e1) Poincaré map, and (f1) instantaneous phase difference for a PL state from the thermoacoustic
experiments of Figs. 2(E1a)–2(E2a); analogous data from the VDP simulations of Figs. 2(S1a)–2(S2a) are shown immediately below in
subfigures (d2–f2).

orbit in the phase portrait [Fig. 3(d1)], which appears as two
clusters of intercepts in the Poincaré map [Fig. 3(e1)]. Mean-
while, we find that the time-averaged slope of ψ1,2 is zero
[Fig. 3(f1)], indicating that the two thermoacoustic oscillators
are evolving at the same time-averaged frequency [20,21].
There are, nevertheless, minor fluctuations in ψ1,2 about its
time-averaged value. These ψ1,2 fluctuations appear to be
stochastic, so we attribute them to turbulence-induced noise,
rather than to phase trapping [50–52]. These observations
confirm that the two thermoacoustic oscillators—which, when
decoupled, are individually self-excited in limit cycles—are
now coupled in such a way as to be undergoing PL [45].

There are three other synchronization phenomena of inter-
est. First, under certain conditions (e.g., Fig. 2: E1c–E2b),
coupling a steady oscillator (Fig. 2: E1c) to a limit-cycle
oscillator (Fig. 2: E2b) can trigger a nonlinearly unstable
mode whose frequency is controlled by the former oscillator
but whose presence is felt in both oscillators. Such trig-
gering is caused by the introduction of sufficiently strong
disturbances to the initially steady oscillator (Fig. 2: E1c);
here, such disturbances arise via coupling with the limit-cycle
oscillator (Fig. 2: E2b). A similar triggering of nonlin-
early unstable modes has been observed before in laminar
and turbulent combustors [53,54]. After being triggered,
the thermoacoustic mode in the initially steady oscillator
(Fig. 2: E1c) interacts with that in the limit-cycle oscilla-
tor (Fig. 2: E2b). These two modes have incommensurate
frequencies, producing ergodic T 2 dynamics in the overall
system.

Second, coupling two initially steady oscillators together
can produce synchronized limit-cycle motion in both oscil-
lators (Fig. 2: E1c–E2c). This is believed to be due to the
destabilizing effects of the cross-talk tube; an explanation of
this phenomenon can be found in Ref. [55].

Third, the amplitude of a limit-cycle oscillator can be
partially (Fig. 2: E1d–E2b) or completely (Fig. 2: E1c–
E2a, E1d–E2a) suppressed by coupling it to an initially
steady oscillator. Such suppression is caused by a unidi-
rectional irreversible transfer of energy from the limit-cycle

oscillator to the initially steady oscillator. The latter el-
ement acts as an energy sink by localizing the incident
energy and dissipating it via damping [56]. If the incident
energy is low or if the dissipation is strong, the initially
steady oscillator (energy sink) can remain steady, leaving
the overall coupled system in a quiescent state (Fig. 2:
E1c–E2a, E1d–E2a). In nonlinear dynamics, this is known
as nonlinear energy pumping (NEP) [57,58] and is of-
ten associated with resonance captures [59]. NEP has been
used to passively suppress self-excited oscillations in vari-
ous systems, ranging from aeroelastic wings [60] to building
structures [61]. However, to the best of our knowledge, this is
the first experimental observation of NEP for passive suppres-
sion of self-excited instabilities in coupled thermoacoustic
oscillators.

As for the VDP model [Eq. (1)], we find that it can repro-
duce many of the phenomena observed in the thermoacoustic
system. In the QP case (Fig. 2: S1b–S2a → E1b–E2a), we find
that the phase portrait and Poincaré map from the simulations
[Figs. 3(a2) and 3(b2)] resemble those from the experiments
[Figs. 3(a1) and 3(b1)]: the phase trajectory follows a non-
repeating path around an ergodic T 2 torus attractor. However,
the simulations produce a more defined attractor structure than
the experiments, as evidenced by a cleaner pair of rings in the
Poincaré map [Fig. 3(b2)]. We attribute this to the simulations
being less noisy than the (turbulent) experiments. In turn,
this lower level of noise enables the correlation dimension
to take on the exact value expected for QP arising from two
incommensurate modes [Fig. 3(c2): Dc = 2.0].

In the PL cases (Fig. 2: S1a–S2a → E1a–E2a; S1b–
S2b → E1b–E2b), we find that the simulations [Figs. 3(d2)
and 3(e2)] produce a periodic attractor similar to that seen
in the experiments [Figs. 3(d1) and 3(e1)]. As mentioned
earlier, the simulations contain less noise than the experi-
ments, causing ψ1,2 to remain almost perfectly constant in
time [Fig. 3(f2)], with none of the minor stochastic fluctua-
tions seen in the experiments [Fig. 3(f1)]. Put together, these
observations confirm that the limit-cycle oscillations of the
two VDP oscillators are in a PL state.
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FIG. 4. Spectral comparison between thermoacoustic experiments (yellow borders) [34,35] and VDP simulations (green borders) under
asymmetric inlet-length conditions (linlet,1 = 340 mm, linlet,2 = 680 mm). The decoupled thermoacoustic oscillators (DTO: no cross-talk
tube) and decoupled VDP oscillators (DVDP: kd = kτ = 0) are denoted by dark yellow and dark green borders, respectively. The
coupled thermoacoustic oscillators (CTO: ε = 1.0, η = 0.25) and coupled VDP oscillators (CVDP: kd = kτ = 0.013, τ = 1.6) are de-
noted by light yellow and light green borders, respectively. Experimental calibration of the VDP model gives (β1a, β1b, β1c, β1d ) =
(0.04, 0.03, −0.01, −0.02), (β2a, β2b, β2c, β2d ) = (−0.005, 0.005, 0.025, 0.025), (ωn,1a, ωn,1b, ωn,1c, ωn,1d ) = (1.01, 1.05, 1.06, 1.07), and
(ωn,2a, ωn,2b, ωn,2c, ωn,2d ) = (1.00, 1.02, 1.03, 1.05). Legend: LC = limit cycle; FP = fixed point; PL = phase locking; AD = amplitude
death; NEP = nonlinear energy pumping; 2SC = two steady oscillators coupled together.

In addition to QP and PL, NEP can also be reproduced by
the VDP model. This can be seen in the partially (Fig. 2: S1c–
S2b, S1d–S2b) and completely (Fig. 2: S1c–S2a, S1d–S2a)
suppressed states that arise when an initially steady oscillator
(Fig. 2: S1c or S1d), representing an energy sink, is coupled
to a limit-cycle oscillator (Fig. 2: S2a or S2b). We observe a
similar suppression of the self-excited mode in the thermoa-
coustic system.

There are, however, two notable features of the thermoa-
coustic system that could not be reproduced by the VDP
model: (i) the triggering of a nonlinearly unstable mode when
a steady oscillator is coupled to a limit-cycle oscillator (Fig. 2:
S1c–S2b � E1c–E2b), and (ii) the generation of globally
synchronized limit-cycle motion when two initially steady os-
cillators are coupled together (Fig. 2: S1c–S2c � E1c–E2c).

B. Asymmetric inlet length: linlet,2 = 2 linlet,1

Next we consider experiments in which the two ther-
moacoustic oscillators have different inlet lengths: linlet,1 =
340 mm and linlet,2 = 680 mm [34,35]. We keep all the other
operating and coupling conditions the same as they were in
Sec. III A. Figure 4 shows the pressure spectra from the ex-
periments, with the dark yellow borders corresponding to the
decoupled cases (no cross-talk tube) and the light yellow bor-
ders corresponding to the coupled cases (ε = 1.0, η = 0.25),
as per Fig. 2. The case labels are also defined as per Fig. 2.

We find a variety of synchronization phenomena in Fig. 4.
Some of these—such as PL, and NEP from a limit-cycle
mode to an energy sink—were also seen in the symmet-
ric inlet-length cases (Fig. 2). There are, however, subtle
differences when the inlet lengths become asymmetric. For
example, we find two unusual PL cases (Fig. 4: E1a–E2b,
E1a–E2c) in which the global frequency of the synchronized
system is markedly lower than the limit-cycle frequencies
of the individual decoupled thermoacoustic oscillators. We
attribute this low-frequency synchronization to the emergence
of a new half-wave push-pull mode in the coupled thermoa-
coustic system [34]. This long-wavelength mode, however,
is sufficiently damped when the inlet lengths are symmetric
(Fig. 2).

We find unusual cases of NEP as well (Fig. 4: E1c–E2b,
E1c–E2c, E1c–E2d): the amplitude of the periodic motion of
the initially steady oscillator (blue peak) is even higher than
that of the limit-cycle oscillator itself (red peak). This behav-
ior could be due to the triggering of a nonlinearly unstable
mode in the initially steady oscillator (Fig. 4: E1c), which
was discussed earlier (Fig. 2: E1c). After being triggered,
this new mode synchronizes with the natural limit-cycle mode
from the other oscillator (Fig. 4: E2b, E2c, E2d), causing both
oscillators to evolve at the same global frequency.

Crucially, we find a phenomenon not seen in the symmetric
inlet-length cases of Fig. 2: AD (Fig. 4: E1b–E2b). As noted
in Sec. I, AD refers to the quenching of an ensemble of self-
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FIG. 5. Spectral comparison between thermoacoustic experiments (yellow borders) [35] and VDP simulations (green borders) under
symmetric inlet-length conditions (linlet,1 = linlet,2 = 340 mm) and symmetric equivalence-ratio conditions [(φ1, φ2) = (0.65, 0.65)]. The
decoupled thermoacoustic oscillators (DTO: no cross-talk tube) and decoupled VDP oscillators (DVDP: kd = kτ = 0) are denoted by dark
yellow and dark green borders, respectively. The coupled thermoacoustic oscillators (CTO) and coupled VDP oscillators (CVDP) are denoted
by light yellow and light green borders, respectively. Experimental calibration of the VDP model gives β1 = 0.02, β2 = 0.018, ωn,1 = 1.00,
and ωn,2 = 0.98. Legend: LC = limit cycle; PL = phase locking; QP = quasiperiodicity; PAD = partial amplitude death.

excited oscillators when they are coupled appropriately, leav-
ing the overall coupled system in a steady state [20,21]. This
phenomenon has been used to passively suppress self-excited
oscillations in various systems, such as electronic circuits and
lasers [20,21]. In fluid mechanics, AD has been observed
experimentally in laminar thermoacoustic systems [22–25],
but rarely in turbulent ones [34]. Although notable progress
has been made to model the effects of dissipative and time-
delay coupling on the onset of AD [22,23,32,62], the focus
to date has been on laminar thermoacoustic systems. As
we will show below, this study represents the first suc-
cessful attempt to model AD in a turbulent thermoacoustic
system.

As for the VDP model (Fig. 4: green borders), we find that
it can reproduce many of the phenomena observed experi-
mentally, such as synchronization leading to PL, NEP from
a limit-cycle mode to an energy sink, and even AD. The value
of τ = 1.6 at which AD occurs is consistent with the time-
delay criterion proposed theoretically by Reddy et al. [26]
and Atay [28] and demonstrated experimentally by Reddy
et al. [63] and Biwa et al. [22]: AD tends to occur when
the time delay is near an odd integer multiple of a quarter
period of the oscillations, i.e., τ = nT/4 = nπ/2ω, where
ω ≈ 1 here and n is odd. The fact that AD is observed at
only one of the many combinations shown in Fig. 4 sug-
gests that its emergence depends not just on the coupling
parameters, but also on the parameters of the individual os-
cillators themselves, such as their relative amplitudes and
frequencies.

However, despite the similarities between the simulations
and experiments, there are several key differences. These in-
clude the inability of the VDP model to reproduce (i) the
low frequency of synchronization observed during PL (Fig. 4:
E1a–E2b, E1a–E2c), and (ii) the mode amplification in the
initially steady oscillator observed during NEP (Fig. 4: E1c–
E2b, E1c–E2c, E1c–E2d).

C. Dissipative and time-delay coupling

We now explore the effects of the coupling parame-
ters. First we consider experiments in which the nondi-
mensional diameter (ε ≡ DXT/DXT,0) and length (η ≡
lXT/lc) of the cross-talk tube are independently var-
ied: ε = [0.25, 0.50, 1.00] and η = [0.20, 0.25, 0.30]. Here
we keep the inlet lengths the same (linlet,1 = linlet,2 =
340 mm) but use two different sets of equivalence ratios:
a symmetric set where (φ1, φ2) = (0.65, 0.65) [Fig. 5],
and an asymmetric set where (φ1, φ2) = (0.69, 0.61)
[Fig. 6].

Starting with the symmetric-φ cases, we find that, when
decoupled, both thermoacoustic oscillators are individually
self-excited at a limit cycle (Fig. 5: E1, E2). When coupled,
they exhibit QP if both η and ε are small (Fig. 5: η1–ε1, η1–ε2,
η2–ε1, η2–ε2). However, if either η or ε is large, PAD or PL
occurs, respectively. When both η and ε are large (Fig. 5:
η3–ε3), a new thermoacoustic mode emerges at a slightly
higher frequency. This new mode interacts with the original
limit-cycle mode, producing QP on a T 2 torus attractor.
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FIG. 6. The same as for Fig. 5 but under asymmetric equivalence-ratio conditions [(φ1, φ2) = (0.69, 0.61)]. Experimental calibration of
the VDP model gives β1 = −0.015, β2 = 0.025, ωn,1 = 0.98, and ωn,2 = 1.00. The two VDP oscillators are coupled to each other using the
same parameters (kd = kτ , τ ) as in Fig. 5. Legend: LC = limit cycle; FP = fixed point; NEP = nonlinear energy pumping.

As for the simulations, we find that the VDP model can
reproduce all the synchronization phenomena observed exper-
imentally, with the exception of PAD (Fig. 5: η3–ε1, η3–ε2)
and the QP case found at the largest values of η and ε

(Fig. 5: η3–ε3). Crucially, the four QP cases found at small
and intermediate values of η and ε (Fig. 5: η1–ε1, η1–ε2,
η2–ε1, η2–ε2) are reproduced well by the model with small
and intermediate values of τ and kd = kτ . In these QP cases,
two incommensurate modes arise in both VDP oscillators,
producing T 2 dynamics similar to that seen in Figs. 3(a2)–
3(c2). When kd (and thus kτ ) increases, however, the two
incommensurate modes synchronize to a common frequency
(Fig. 5: τ1–kd3–kτ3, τ2–kd3–kτ3), producing a PL state similar
to that observed experimentally (Fig. 5: η1–ε3, η2–ε3), albeit
with reduced amplitudes. This PL state is similar to that seen
in Figs. 3(d2)–3(f2). Although we do not observe PAD in the
model, this is not a limitation of the model itself [28], but is
due to the specific range of system and coupling parameters
used here.

Turning to the asymmetric-φ cases, we find that, when
decoupled, one thermoacoustic oscillator is initially steady
(Fig. 6: E1), but the other is initially self-excited at a limit
cycle (Fig. 6: E2). When coupled, they exhibit NEP for all
the examined values of η and ε. These NEP cases include
(i) a complete suppression of the limit-cycle mode, resulting
in a steady coupled system (Fig. 6: η2–ε3), and (ii) mode
amplification in the initially steady oscillator, resulting in the
two oscillators evolving at a common frequency but with
different amplitudes. The model can accurately reproduce
these synchronization phenomena, including the case where a
limit-cycle oscillator is completely quenched via coupling to
a steady oscillator (Fig. 6: τ2–kd3–kτ3). As well as reinforcing

the analogy between kd = kτ and ε and between τ and η, these
results show that the mutual synchronization of two turbulent
thermoacoustic oscillators can be modeled with just a pair
of VDP oscillators interacting via dissipative and time-delay
coupling.

IV. CONCLUSIONS

We have used a low-order model to investigate the mutual
synchronization of two thermoacoustic oscillators coupled via
a cross-talk tube. Each oscillator consists of a lean-premixed
CH4-air flame stabilized in the turbulent swirling flow of
a cylindrical combustor. The model consists of two VDP
oscillators coupled via dissipative and time-delay terms. By
varying the parameters of the model, we were able to show
that it can reproduce many of the synchronization phenomena
observed experimentally, such as amplitude death, desynchro-
nization (quasiperiodicity), synchronization (phase locking),
and nonlinear energy pumping from a limit-cycle mode to a
damped mode, i.e., to an energy sink. However, we also found
several phenomena that could not be reproduced by the model.
These include (i) the triggering of a nonlinearly unstable mode
when an initially steady oscillator is coupled to a limit-cycle
oscillator, e.g., Fig. 2: E1c–E2b; (ii) the generation of globally
synchronized limit-cycle motion when two initially steady
oscillators are coupled together, e.g., Fig. 2: E1c–E2c; (iii)
mode amplification in an initially steady oscillator during
nonlinear energy pumping, e.g., Fig. 4: E1c–E2d; and (iv)
partial amplitude death, e.g., Fig. 5(η3–ε1). The inability of
the model to reproduce some of these phenomena, such as
partial amplitude death, may be due to the specific values
of the system and coupling parameters used in this study,
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whereas others may be due to the simplicity of the model
itself: (i) each VDP oscillator contains just a single self-
excited or damped mode, whereas an actual thermoacoustic
oscillator typically contains multiple such modes interacting
with one another; and (ii) the VDP kernel used here contains
up to only cubic nonlinearity and thus generates a super-
critical Hopf bifurcation in the decoupled state, whereas the
simplest oscillator model (normal form) exhibiting triggering
of a nonlinearly unstable mode should have at least quintic
nonlinearity. In this study, we did not explore higher-order
nonlinearities because our aim was to keep the model as sim-
ple as possible. Nevertheless, despite its simplicity, the model
was still able to reproduce many of the phenomena observed
experimentally. Crucially, the fact that the mutual synchro-
nization dynamics of a turbulent thermoacoustic system can
be reproduced with just a low-order VDP model suggests
that such a model could be used (i) to aid the analysis and
interpretation of experimental data collected from real com-
bustion systems, and (ii) to identify new strategies for

quenching self-excited thermoacoustic oscillations, e.g., by
exploiting universal phenomena such as nonlinear energy
pumping and amplitude death. With further development (e.g.,
via asymptotic methods [58,59]), this modeling approach
could provide a means of predicting the synchronization
dynamics of practical thermoacoustic systems, such as gas
turbines and rocket engines.
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