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Quantum Turing bifurcation: Transition from quantum amplitude
death to quantum oscillation death
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An important transition from a homogeneous steady state to an inhomogeneous steady state via the Turing
bifurcation in coupled oscillators was reported recently [Phys. Rev. Lett. 111, 024103 (2013)]. However, the
same in the quantum domain is yet to be observed. In this paper, we discover the quantum analog of the Turing
bifurcation in coupled quantum oscillators. We show that a homogeneous steady state is transformed into an
inhomogeneous steady state through this bifurcation in coupled quantum van der Pol oscillators. We demonstrate
our results by a direct simulation of the quantum master equation in the Lindblad form. We further support our
observations through an analytical treatment of the noisy classical model. Our study explores the paradigmatic
Turing bifurcation at the quantum-classical interface and opens up the door toward its broader understanding.
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I. INTRODUCTION

The Turing bifurcation [1] leads to heterogeneity from
a homogeneous solution through a spontaneous symmetry-
breaking mechanism and has been widely studied in the
context of pattern formation in chemistry, biology, and physics
[2,3]. Although originally proposed to explain the formation
of patterns in the macroscopic world, recent studies found that
this idea is very much applicable even in the atomic scale
and the microscopic quantum domain where the rules are
governed by quantum mechanical constraints. For example,
Ardizzone et al. [4] reported the appearance of Turing patterns
in a coherent quantum fluid of microcavity polaritons. Fuseya
et al. [5] provided an experimental evidence of Turing patterns
in the atomic scale (e.g., in the atomic bismuth monolayer).
The observation of Turing patterns in quantum systems is
a promising topic of research as it leads to a broader un-
derstanding of Turing patterns and their possible application
potentiality [4].

Koseska et al. [6] discovered the Turing bifurcation in
“classical” coupled oscillators that governs a transition from a
homogeneous steady state to an inhomogeneous steady state.
The homogeneous steady state is widely known as the am-
plitude death (AD) state [7], and the inhomogeneous one is
called the oscillation death (OD) state [8]. Unlike the orig-
inal spatiotemporal Turing scenario, in the case of coupled
oscillators the space is discrete and the oscillator index plays
the role of the space variable. Later on, this significant tran-
sition was verified experimentally in electronic circuits and
chemical oscillators [9]. The Turing transition from AD to
OD in classical oscillators is generally believed to be relevant
in understanding cellular differentiation and other symmetry-
breaking phenomena in biological systems [8]. A recent burst
of publications reported this transition in a variety of classical
systems under diverse coupling schemes [8,10–16].
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Although many important emergent dynamics of coupled
oscillators, such as synchronization [17–22] and oscillation
suppression [23–26], have been explored in the quantum
regime, surprisingly, the quantum analog of the Turing bi-
furcation route from homogeneous to inhomogeneous steady
state has remained been unobserved. Recent studies on Pyra-
gas control [27], coherence resonance [28], and relaxation
oscillations [29,30] in quantum systems broadened our un-
derstanding of the well-known dynamical behaviors in the
quantum world. A continuous pursuit of unravelling the
classical dynamics in the quantum regime motivates us to
search for the Turing-type bifurcation in coupled quantum
oscillators.

The quantum amplitude suppression was reported by
Ishibashi and Kanamoto [23]. They found that unlike the
classical AD state, in the quantum AD (QAD) state the quan-
tum noise resists the complete cessation of oscillations. In
the quantum domain, QAD is manifested in the pronounced
reduction in the bosonic excitations (e.g., phonon or photon).
Later, Amitai et al. [24] found that a Kerr-type nonlinear-
ity enhances the QAD state. However, earlier studies did
not observe the quantum inhomogeneous steady state or the
quantum OD (QOD) state. The QOD state has recently been
discovered by Bandyopadhyay et al. [25] and appears only in
the deep quantum regime. In the deep quantum regime, the
notion of QAD is elusive because in this region the number of
bosonic excitations is sparse and the inherent quantum noise
dominates the dynamics. Although Refs. [25,26] reported
QOD in the deep quantum regime, the Turing bifurcation
route of QAD-QOD transition was not observed there as in
this regime the QAD is indistinguishable from a quantum
limit cycle. Since, the QAD and QOD appear in two different
regimes of quantum domain (QAD: Weak quantum regime;
QOD: Deep quantum regime), the direct transition from QAD
to QOD through the Turing bifurcation has remained been
unobserved.

In this paper, we discover the quantum analog of the Turing
bifurcation that gives a transition from QAD to QOD. We
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found both QAD and QOD and their transition in the weak
quantum regime in quantum van der Pol oscillators coupled
through a conjugate coupling. The conjugate coupling scheme
was proposed by Karnatak et al. [31] as a general scheme to
induce AD. This coupling is relevant in systems where the
state of a variable interacts with the outcome of a dissimilar
variable; for example, in the case of semiconductor lasers, the
photon intensity interacts with the injection current [32]. Here
we propose the quantum version of this coupling scheme and
apply it to quantum van der Pol oscillators. We constitute
the quantum master equation of the coupled system in the
Lindblad form. Direct simulation of the master equation gives
the evidence of the Turing bifurcation. We further support our
results using the analytical treatment of the equivalent noisy
classical model.

II. COUPLED VAN DER POL OSCILLATORS

We start with two coupled “classical” van der Pol (vdP)
oscillators [33], which are coupled via scalar conjugate cou-
pling. A mathematical model of the coupled system reads

ẋ j = ωy j + ε(y j′ − x j ), (1a)

ẏ j = −ωx j + (
k1 − 8k2x j

2
)
y j, (1b)

where j = 1, 2, j′ = 1, 2, and j �= j′. ω is the intrinsic fre-
quency of each oscillator. Here k1 is the coefficient of linear
pumping, k2 is the coefficient of nonlinear damping (k1, k2 >

0), and ε is the coupling strength. For ε = 0, Eq. (1) represents
the uncoupled van der Pol oscillators.

Note that (1) has a trivial steady state at the origin,
FHSS ≡ (0, 0, 0, 0), and additionally, it has one nontrivial
fixed point, FIHSS ≡ (x∗, y∗,−x∗,−y∗), where x∗ = ω−ε

ε
y∗

and y∗ =
√

k1− ω(ω−ε)
ε√

8k2(1− ω
ε

)
. A bifurcation analysis shows that, with

increasing ε oscillations cease through an inverse Hopf bifur-
cation at εHB = k1 and AD emerges where all the oscillators
arrive at the stable homogeneous steady state (HSS). The
HSS or the AD state losses its stability through a super-
critical pitchfork bifurcation at εPB = ω2

ω+k1
and as a result

two inhomogeneous steady states (IHSS) emerge: This is
the well known Turing bifurcation that gives heterogene-
ity from a homogeneous solution through a spontaneous
symmetry-breaking mechanism. Figure 1 presents the bifurca-
tion diagram (using XPPAUT [34]) with ε/k1 that clearly shows
this scenario (for ω = 2, k1 = 1, and k2 = 0.2).

We can express Eq. (1) in terms of a complex amplitude
α j = x j + iy j and the corresponding amplitude equation is
derived using the harmonic approximation [25], which reads

α̇ j = − iωα j +
(

k1

2
− k2|α j |2

)
α j

− ε

2
[(α j + α j

∗) + i(α j′ − α j′
∗)]. (2)

At ε = 0, the uncoupled oscillators show a limit cycle oscilla-

tion with an amplitude
√

k1
2k2

. Note that Eq. (2) (with ε = 0) is
nothing but the paradigmatic Stuart-Landau oscillator. In the
literature of quantum nonlinear dynamics, it is designated as
the vdP oscillator under harmonic approximation [17,18].

FIG. 1. Classical bifurcation diagram of (1). x1,2 vs ε/k1. It
shows a Turing bifurcation route from a homogeneous state (AD) to
an inhomogeneous state (OD). HB, Hopf bifurcation; PB, pitchfork
bifurcation. Red (gray), stable steady state; black, unstable steady
state; green (light gray), stable limit cycle. Other parameters are
ω = 2 and (k1, k2) = (1, 0.2).

The coupled quantum van der Pol oscillators [Eq. (2)] can
be represented by the quantum master equation in the density
matrix ρ:

ρ̇ = − i

[
ω(a1

†a1 + a2
†a2) + ε

2
(a1

†a2 + a2
†a1)

− ε

2
(a1

†a2
† + a1a2) − iε

4

(
a1

†2 + a2
†2 − a1

2 − a2
2
)
, ρ

]

+ k1

2∑
j=1

D[a j
†](ρ) + k2

2∑
j=1

D
[
a j

2
]
(ρ)

+ ε

2∑
j=1

D[a j](ρ), (3)

where D[L̂](ρ) is the Lindblad dissipator having the form
D[L̂](ρ) = L̂ρL̂† − 1

2 {L̂†L̂, ρ}, where L̂ is an operator (with-
out any loss of generality we set h̄ = 1). a j and a j

† are
the bosonic annihilation and creation operators of the jth
oscillator, respectively. The implications of k1 and k2 in the
quantum regime can be understood from Eq. (3): k1 is the rate
of single photon creation (equivalent to the linear pumping),
and k2 gives the rate of two-photon absorption (equivalent
to the nonlinear damping). The last term of (3) gives the
coupling-dependent single-photon annihilation whose rate is
determined by the coupling strength ε (�0). Intuitively, this
last term induces an additional loss of photons that may result
in oscillation suppression.

In the semiclassical limit, the linear pumping rate domi-
nates over the nonlinear damping rate, i.e., k1 > k2, and one
may approximate 〈a〉 ≡ α. Under this condition, the quantum
master equation (3) is equivalent to the classical amplitude
equation (2) by the following relation [25]: ˙〈a〉 = Tr(ρ̇a).

III. RESULTS

A. Simulation of quantum master equation

We numerically solve the master equation (3) using a
PYTHON-based quantum simulator package QUTIP [35]. To
visualize the dynamics of the coupled system, we compute the
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FIG. 2. The Wigner function at (a) ε = 0.1, quantum oscillatory
state; (b) ε = 1.3, quantum amplitude death (QAD) state; and (c)
ε = 1.99, quantum oscillation death (QOD) state. (d) Quantum Tur-
ing bifurcation: The variation of the y component of local maximum
values of the Wigner function (�y) plotted with ε/k1. Note the tran-
sition from QAD to QOD through the quantum Turing bifurcation.
Other parameters are ω = 2 and (k1, k2 ) = (1, 0.2).

Wigner function using the steady-state solution of the density
matrix [36]. The Wigner function is a quasiprobability distri-
bution function that provides a reliable picture of the quantum
dynamics [19]. Moreover, it is also accessible in experimental
setups [37]. In the numerical simulations, we choose the fol-
lowing parameters: ω = 2 and (k1, k2) = (1, 0.2). Note that
k1 > k2 ensures that the system resides in the weak quantum
regime where semiclassical treatments are applicable and the
QAD is distinguishable from a quantum limit cycle.

We plot the Wigner function at three exemplary values of ε.
At ε = 0.1, Fig. 2(a) demonstrates a quantum limit cycle that
is visible from the ring-shaped Wigner function. Figure 2(b)
presents the same but at a higher coupling constant ε = 1.3:
It depicts a QAD state as now the Wigner function shows
the maximum probability at the origin. Note that unlike the
classical AD, here the complete cessation of oscillation is
prohibited due to the presence of inherent quantum noise.
Also, significantly, the QAD state is a squeezed quantum
state that has no counterpart in the classical dynamics. At a
stronger coupling strength, the QAD state is transformed into
a quantum OD (QOD) state, which is depicted by a bimodal
Wigner function; see Fig. 2(c) for ε = 1.99. Here the maxi-
mum probability is shifted from the origin and two prominent
lobs appear, representing two branches of the inhomogeneous
steady state. Note that, in spite of the quantum noise which
tends to homogenize the inhomogeneous steady states, the
lobs are distinguishable.

To show that this transition from QAD to QOD is contin-
uous, we define a variable �y, which is the distance between
the local maxima of the projection of the Wigner function on
the y axis [see Fig. 2(c)]. Figure 2(d) demonstrates the varia-

FIG. 3. Mean photon number from the quantum model (〈a†
1a1〉)

and the averaged amplitude from the noisy classical model (|α1|nc
2).

Insets show the occupation of the Fock levels for quantum limit cycle
ε = 0.1, QAD (ε = 1.3) and QOD (ε = 1.99). Other parameters are
ω = 2 and (k1, k2 ) = (1, 0.2).

tion of �y with increasing ε. The oscillatory zone (indicated
by Osc) shows a decreasing amplitude with an increasing cou-
pling strength. Beyond a certain ε, the QAD appears, where
we have only a single local maxima (i.e., �y = 0). Further
increase of coupling strength results in a transition from QAD
to QOD where the unimodal Wigner function splits into a
bimodal shape whose lobs are separated by �y �= 0. Remark-
ably, the parametric zone of the QAD and QOD qualitatively
matches with the corresponding classical counterparts (cf.
Fig. 1).

The occurrence of oscillation suppression can be better
understood from the mean photon number, 〈a1

†a1〉. This is
shown in Fig. 3: It shows a decreasing mean photon number
with increasing ε/k1, indicating the suppression of oscillation.
Due to the quantum noise, 〈a1

†a1〉 does not reach to zero;
however, it shows a moderate collapse of the oscillation. The
mean photon number attains lower values between εHB and
εPB (as calculated in Sec. II for the classical case), indicating
the onset of QAD. The occupation of the corresponding Fock
states for exemplary ε/k1 values are also shown in the inset. It
can be seen that in the quantum oscillatory state (ε/k1 = 0.1)
the higher Fock levels are populated; however, in the QAD
(ε/k1 = 1.3) and QOD states (ε/k1 = 1.99) only the lowest
lying Fock levels are populated.

Therefore, the observed scenario of the transition from
QAD to QOD states has a striking one-to-one resemblance
with the classical Turing bifurcation and clearly provides
evidence for the quantum version of the Turing bifurcation.

B. Noisy classical model: Analysis

To further support the observed quantum Turing bifurca-
tion [Figs. 2(a)–2(d)], we compare the quantum scenarios with
the corresponding noisy classical model (or the semiclassical
model). It will give a conclusive analytical evidence of the
observed behavior in the presence of noise whose intensity
is equal to the inherent quantum noise [23]. We evaluate the
intensity of quantum noise from the quantum master equa-
tion following Ref. [23]. The quantum master equation (3) is

024214-3



BANDYOPADHYAY, KHATUN, AND BANERJEE PHYSICAL REVIEW E 104, 024214 (2021)

represented in the phase space using a partial differential
equation of the Wigner distribution function (W (α)) [38] that
reads

∂tW (α) =
2∑

j=1

[
−

(
∂

∂α j
μα j + c.c.

)

+ 1

2

(
∂2

∂α j∂α j
∗ Dα jα j

∗ + ∂2

∂α j∂α j′
∗ Dα jα j′ ∗

)

+ k2

4

(
∂3

∂α j
∗∂α j

2
α j + c.c

)]
W (α), (4)

where the elements of the drift vector (μ) are μα j = [−iω +
k1
2 − k2(|α j |2 − 1) − ε

2 ]α j − ε
2α j

∗ − iε
2 α j′ + iε

2 α j′
∗, and the

elements of the diffusion matrix D are Dα jα j
∗ = k1 +

2k2(2|α j |2 − 1) + ε, Dα jα j′ ∗ = 0, with j = 1, 2, j′ = 1, 2, and
j �= j′. In the weak nonlinear regime (k2 	 k1), the linear
pumping dominates over the nonlinear damping. Here, the
mean number of bosonic excitations is high enough to treat
them semiclassically and we can neglect the term associated
with k2. Under this condition, Eq. (4) reduces to the Fokker-
Planck equation, which is given by

∂tW (X) =
2∑

j=1

[
−

(
∂

∂x j
μx j + ∂

∂y j
μy j

)

+ 1

2

(
∂2

∂x j∂x j
Dxj x j + ∂2

∂y j∂y j
Dyj y j

+ ∂2

∂x j∂x j′
Dxj x j′ + ∂2

∂y j∂y j′
Dyj y j′

)]
W (X), (5)

where X = (x1, y1, x2, y2). The elements of drift vector are

μx j = ωy j +
[

k1

2
− k2

(
x j

2 + y j
2 − 1

) − ε

]
x j + εy j′ , (6a)

μy j = −ωx j +
[

k1

2
− k2

(
x j

2 + y j
2 − 1

)]
y j . (6b)

The diffusion matrix has the following form:

D = 1

2

⎛
⎜⎝

ν1 0 0 0
0 ν1 0 0
0 0 ν2 0
0 0 0 ν2

⎞
⎟⎠, (7)

where ν j = k1
2 + k2[2(x j

2 + y j
2) − 1] + ε

2 . From Eq. (5), the
following stochastic differential equation can be derived,

dX = μdt + σdWt , (8)

where σ is the noise strength and dWt is the Wiener incre-
ment. As the diffusion matrix D [given in Eq. (7)] is diagonal,
we can analytically derive σ from it as σ = √

D.
By solving the stochastic differential equation [Eq. (8)’

(using JiTCSDE module in PYTHON [39]), we compute the
behavior of the noisy-classical system starting from ran-
dom initial conditions (we take 1000 independent run). The

average amplitude from the noisy classical model (|α1|nc
2)

with ε/k1 is demonstrated in Fig. 3. It shows a decreas-
ing amplitude with increasing coupling strength resembling

FIG. 4. Noisy classical case: Phase space plot for (a) ε = 0.1,
noisy limit cycle; (b) ε = 1.3, noisy AD; and (c) ε = 1.99, noisy
QOD. The corresponding histograms are shown in panels (d)–(f). (g)
Bifurcation diagram using the local maxima of the phase trajectories
showing a Turing bifurcation route from noisy AD to OD. Note that
in the OD state, �y gives the distance between two local maxima of
the histogram. Other parameters are ω = 2 and (k1, k2) = (1, 0.2).

the quantum scenario. Note that the mean photon number,

〈a1
†a1〉, of the quantum case always lies below |α1|nc

2, which
is a general indicator of the quantum oscillation suppression
scenario [23,25,26].

Figures 4(a)–4(g) summarize the results of the noisy clas-
sical model. The noisy limit cycle is demonstrated in the
phase space in Fig. 4(a) at ε = 0.1. A weighted histogram
of the same is shown in Fig. 4(d). The scenario at a larger
coupling strength, ε = 1.3, is shown in Figs. 4(b) and 4(e).
Figure 4(b) demonstrates that in the phase space the phase
points are crowded around the origin and Fig. 4(e) presents
the corresponding histogram, which obeys a Gaussian distri-
bution. Both of these indicate the occurrence of a noisy AD.
Finally, Fig. 4(c) shows the appearance of an inhomogeneous
steady state or the noisy OD at a higher coupling strength, ε =
1.99: Two distinct but noisy lobs correspond to two different
branches of the OD. The corresponding histogram [Fig. 4(f)]
exhibits a two-hump nature, indicating the occurrence of two
lobs.

We draw a representative bifurcation diagram in Fig. 4(g)
showing the local maxima of the averaged phase trajectories.
In the case of a noisy AD state, there is only one local
maxima situated at zero. However, in the case of a noisy
OD state, two local maxima are separated by a distance �y
( �= 0) in the y axis. They are equivalent to the two lobs or
branches of the QOD. Note the striking resemblance of noisy
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classical results (Fig. 4) with the quantum results (Fig. 2).
Both the quantum and noisy classical results confirm the
occurrence of the Turing bifurcation route from homoge-
neous to inhomogeneous steady states in coupled quantum
oscillators.

IV. CONCLUSIONS

In this paper, we have reported a transition from a homo-
geneous steady state (QAD) to an inhomogeneous steady state
(QOD) via the quantum Turing bifurcation in coupled quan-
tum oscillators. The direct simulation of the quantum master
equation and analytical investigations through the noisy clas-
sical model of the coupled system established the appearance
of the quantum Turing bifurcation. Unlike earlier studies
[25,26], where QOD was found to appear in the deep quantum
regime only, here we have observed both QAD and QOD and
their transition in the weak quantum regime. This enables us
to give conclusive evidence of the Turing bifurcation in the
quantum regime as now the notion of both QAD and QOD are
unambiguous. Our study reveals that the Turing bifurcation
scenario of transition from homogeneous to inhomogeneous
steady states as reported in Ref. [6] for classical oscillators is
indeed a general phenomenon and occurs even in the quantum
regime.

The present study is based on the quantum Stuart-Landau
oscillator, also generally known as quantum vdP oscillator

(under harmonic limit). In the classical domain, the paradig-
matic Stuart-Landau oscillator has been serving as the test
bed for the study of emergent behaviors in coupled oscillators
and the results are found to be general. Therefore, we believe
that our results of quantum vdP oscillator will be valid for
complex quantum oscillators such as relaxation quantum vdP
oscillators proposed recently in Refs. [29,30].

Further, we believe that the recent advancement of ex-
perimental techniques would enable one to implement our
coupled system in experimental setups, such as the trapped-
ion experiment [17,40] and the optomechanical setup [41].
Moreover, the symmetry breaking mechanism studied here
can be extended to networks of quantum oscillators to explore
the possibility of partial synchronization and chimera death
states [16,42–45] in the quantum regime. The present study
significantly broadens our understanding of the symmetry-
breaking mechanism in the interface of quantum-classical
domain. Finally, the quantum Turing mechanism can be ex-
plored in the light of its applications in quantum computations
and cryptography [4].
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