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We apply the framework of optimal nonlinear control to steer the dynamics of a whole-brain network of
FitzHugh-Nagumo oscillators. Its nodes correspond to the cortical areas of an atlas-based segmentation of the
human cerebral cortex, and the internode coupling strengths are derived from diffusion tensor imaging data of the
connectome of the human brain. Nodes are coupled using an additive scheme without delays and are driven by
background inputs with fixed mean and additive Gaussian noise. Optimal control inputs to nodes are determined
by minimizing a cost functional that penalizes the deviations from a desired network dynamic, the control energy,
and spatially nonsparse control inputs. Using the strength of the background input and the overall coupling
strength as order parameters, the network’s state-space decomposes into regions of low- and high-activity fixed
points separated by a high-amplitude limit cycle, all of which qualitatively correspond to the states of an isolated
network node. Along the borders, however, additional limit cycles, asynchronous states, and multistability can
be observed. Optimal control is applied to several state-switching and network synchronization tasks, and the
results are compared to controllability measures from linear control theory for the same connectome. We find
that intuitions from the latter about the roles of nodes in steering the network dynamics, which are solely based
on connectome features, do not generally carry over to nonlinear systems, as had been previously implied.
Instead, the role of nodes under optimal nonlinear control critically depends on the specified task and the system’s
location in state space. Our results shed new light on the controllability of brain network states and may serve as
an inspiration for the design of new paradigms for noninvasive brain stimulation.
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I. INTRODUCTION

The widespread use of noninvasive electrical brain stimu-
lation in clinical applications has sparked ongoing interest in
studying the effects of external inputs on brain activity. Stimu-
lation with electric fields in the range of 1–2 V/m can already
modulate oscillatory brain activity [1,2], affect cross-regional
synchronization [3,4], and modulate cognitive performance
[5]. Clinical studies have successfully demonstrated the ef-
ficacy of targeted transcranial stimulation in the treatment of
neurological and psychiatric disorders and diseases such as
epilepsy [6,7], schizophrenia [8,9], Alzheimer’s disease [10],
and depression [11].

Brain network models offer a way to simulate and under-
stand the human brain as a nonlinear dynamical system, in
which each brain region is represented by a node, and the node
dynamics is defined by a model of the average neural activity
in that region [12]. Nodes interact with each other according
to empirically measured human structural neural connectivity,
which quantifies how neural activity in one brain region is
coupled to the activity of connected regions.

Parcellation of human brains has yielded various brain
atlases [13], which provide information on spatial and func-
tional segregation, dividing the brain into distinct areas
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[14,15]. The relative connectivity strength between these ar-
eas is defined by the number of axonal fibers, which can be
estimated using structural neuroimaging scans of individual
subjects. This results in a network model of the human brain
where the edges reflect the relative strengths of axonal fiber
bundles and the nodes represent individual brain regions.
These nodes are then equipped with a dynamical system
modeling the average neuronal activity in that region [16]. It
has been repeatedly shown that when the parameters of brain
network models are fitted to functional brain data, optimal
operating points were close to the bifurcation lines of these
models. This ensures that the model is in a state in which noise
fluctuations can be amplified and produce realistic spatial cor-
relation structures which are similar to empirical functional
connectivity measurements [17–20].

Previous theoretical investigations into the impact of exter-
nal perturbations mostly relied on the assumption of a linear
node dynamics, allowing the application of methods from
linear control theory [21]. Thus, one can draw conclusions
on the effects of external inputs to the system, based on
the network topology and independent of its dynamical state
[22,23]. However, linear node dynamics cannot reproduce the
dynamics of neural processes close to bifurcations [17,24]. To
describe the transitions from one dynamical regime to another,
Muldoon et al. [25] consider nonlinear node dynamics. They
conclude that the effects of stimulation-based control can be
predicted by diagnostics from linear control theory based only
on the structural connectivity of the network.
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In this work we go beyond linear control theory and ex-
plore the framework of optimal nonlinear control [26] for the
assessing the impact of perturbations on networks of coupled
nonlinear systems. Optimal control is an optimization method
that derives control policies based on the minimization of
a cost functional which depends on the state and control
variables. Here, we define a cost functional that penalizes
the deviation to the desired network dynamics, the control
energy, and the spatial sparsity. The latter allows us to find
optimal control signals that apply to only a few control sites,
as introduced by Ref. [27] and further studied by Ref. [28].
We used methods presented by Tröltzsch in Ref. [29] for their
calculation, while the handling of the stochastic term is based
on the work of Stannat et al. [30]. The resulting mathemati-
cal formulation is analogous to the formulation presented by
Casas et al. [31] for partial differential equations.

We evaluate the framework of optimal control for a brain
network of FitzHugh-Nagumo (FHN) [32,33] oscillators with
additive coupling and white Gaussian noise, where each
oscillator represents a brain region and where the connec-
tions between them were chosen according to the human
connectome derived from diffusion tensor imaging (DTI)
measurements. FHN oscillators are well studied models for
neural dynamics and detailed analyses of the dynamical
states exist for single oscillators [34] and various network
configurations, like two coupled units [35,36], lattices [37],
rings and hierarchical architectures [38], as well as random
and small-world topologies [39,40], and multiplex networks
[41–43]. Similar empirical DTI-measured brain connectivities
were used with FHN dynamics to model highly synchro-
nized epileptic-seizure-like states [44,45], unihemispheric
sleep [46], and the functional organization of the resting brain
[47–49].

We consider two different classes of control problems, tar-
geted attractor switching between multistable network states
and increasing network synchronization. The solutions ob-
tained for given energy, precision, and sparseness constraints
are well interpretable and result in intuitively sensible optimal
control inputs for all network nodes over time.

We then correlate the control energies to controllability
measures from linear control theory. We confirm the findings
of Muldoon et al. [25] for the investigated state transition
(from the low fixed-point state to the oscillatory regime).
For other control tasks, however, we show, that diagnostics
from linear control theory do not correlate with results from
optimal nonlinear control. Conclusions drawn from the struc-
tural connectivity alone lead to contradictions, which can only
be resolved if the dynamical state of the network and the
nonlinear interactions between nodes are taken into account.
Applications of nonlinear control theory to whole-brain mod-
els enables us to investigate control mechanisms also close
to bifurcations. It thus may help in the search for more ef-
fective paradigms for realistic transcranial brain stimulation
protocols.

II. NONLINEAR OPTIMAL CONTROL

A. Network model and control inputs

We consider networks of N equivalent d-dimensional and
“noisy” nodes with additive and zero-delay internode cou-

pling. Internode coupling strength is described by a N ×
N-dimensional adjacency matrix A which is scaled by a global
coupling strength σ . We allow for an instantaneous and ad-
ditive control input to the network, which is described by
N × d independent control variables u = (u1, . . . , uN ) with
ui = (ui1, . . . , uid ). The equations describing the controlled
network dynamics thus read

d

dt
x(t ) = h[x(t )] + σ (A ⊗ G)x(t )

+ (B ⊗ K )u(t ) + (IN ⊗ D)ξ(t ), (1)

where ⊗ denotes the Kronecker product. The state of
the network is described by a vector x = (x1, . . . , xN ),
where xi = (xi1, . . . , xid ) characterize the individual states
of the nodes. The local node dynamics is given by
h(x) = (h(x1), . . . , h(xN )) with h(xi ) = [h1(xi), . . . , hd (xi )].
All nodes additionally receive Gaussian white noise of similar
intensity η, which may be correlated within but is uncorrelated
across the nodes of the network. The stochastic variables ξ =
(ξ1, . . . , ξN ) with ξi = (ξi1, . . . , ξid ) are independently drawn
from a Gaussian distribution, ξi j ∈ N (0, 1), with zero mean
and unit variance. Within node correlations are quantified by
the d × d dimensional local noise scheme D, while the across-
node statistical independence is assured by a N-dimensional
identity matrix IN . The internode coupling term consists of the
Kronecker product of the adjacency matrix A and the d × d
dimensional local coupling scheme G, where the purpose
of the former is to describe the relative interaction strength
between nodes while the purpose of the latter is to distribute
the between-node interactions across the d variables which
describe the local node dynamics. The N × N matrix B in the
control term allows for the control of multiple nodes with dif-
ferent strength . The d × d dimensional matrix K implements
the local control scheme, which is similar for every node in
the network. Initial conditions are denoted by x(t = 0) = x0.

B. The cost functional and the optimality condition

The control u is considered to be optimal (u = u), if it
minimizes an appropriate cost functional. To this end, we
construct a cost functional F [x(u), u] for a state switching
task, where the control input drives the network model from
one stable state to another (see Sec. IV A), and for a node
synchronization task, where the control input increases the
degree of synchronization among its nodes (see Sec. IV B).
For finite noise, i.e., for finite values of η in Eq. (1), the overall
cost functional F is defined as a mean over noise realizations
[30],

F [x(u), u] = 〈Fn[x(u), u]〉 = 〈
F x

n (x)
〉 + F u(u), (2)

where Fn denotes the cost functional for one noise realization
n and the angle brackets 〈·〉 denote the mean. In the noise-free
case no averaging is performed. The state dependent term
F x

n (x) only implicitly depends on the control and penalizes
the deviation from the desired output. It will be different for
the switching, F x

n,sw, and synchronization, F x
n,syn, tasks (see

below). The control dependent term F u(u) accounts for the
cost of the control itself.

For the state switching task, we consider a noise-free sys-
tem (η = 0), and the state dependent cost functional F x

n,sw is
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defined in terms of the deviation of the controlled state to a
predefined target state xT (t ):

F x
n,sw(x, t ) = F x

sw(x, t )

=
∫ T

0

Ip(t )

2
[x(t ) − xT (t )]2dt, (3)

where we consider the control being active within the time pe-
riod 0 � t � T . To penalize the precision only toward the end
of the controlled time interval rather than during the transition
between the initial and target states, the precision-penalizing
variable Ip can be time-dependent (see Sec. IV A).

The state dependent cost functional for the synchronization
task F x

n,syn is defined in terms of the deviations of the normal-
ized pairwise cross-correlations Ri j for all nodes i and j from
RT , the desired mean cross-correlation in the synchronized
target state:

F x
n,syn(x, t ) = Ip

4N2

N∑
i, j=1

(Ri j − RT )2. (4)

The cross-correlation in component m is defined as

Rm
i j =

∫ T

0

[xim(t ) − 〈xim〉t ][x jm(t ) − 〈x jm〉t ]

σ〈xim〉t σ〈x jm〉t

dt, (5)

with i, j ∈ [0, . . . , N] and where 〈.〉t and σ〈.〉t denotes the
temporal mean and the standard deviation. The mean Rm over
all values Rm

i j ,

Rm = 1

N2

N∑
i=1

N∑
j=1

Rm
i j, (6)

is the componentwise network cross-correlation. Later we
specialize to m = 1 and suppress the index m.

The input dependent cost functional F u(u) penalizes the
energy of the control signal and enforces its directional spar-
sity [27,28]. It is given by

F u(u) = Ie

2

∫ T

0
u2(t )dt + Is

N∑
k=1

[∫ T

0
u2

k (t )dt

] 1
2

, (7)

where Ie and Is are the weights for the energy and sparsity
terms. The first term corresponds to the L2-regulation and
the second term to the L1-regulation of the cost-functional.
Typically, increasing the sparsity Is reduces the number of
controlled nodes, i.e., the nodes for which the control input is
nonzero for at least part of the time period 0 � t � T , while a
higher penalty on the energy term typically leads to an overall
reduction of control strengths.

Our goal is to find the optimal control u that minimizes
the cost functional for chosen Ip, Ie, and Is, leading to the
minimization problem

u = arg min
u

〈Fn[x(u), u]〉. (8)

Similar to Troeltzsch et al. and Casas et al. [29,31,50], we
analyze the gradient g = ∇uF of the cost functional, which
has to vanish when evaluated at the optimal control u. By
applying the method of Lagrange multipliers, we obtain an
expression for the optimality condition that depends on the

adjoint states φ(x, u, t ) corresponding to the Lagrange multi-
pliers. The control u is optimal, if

g(t ) = (B ⊗ K )T 〈φ(x, u, t )〉 + Ieu(t ) + Isλ(t )
!= 0 (9)

for 0 � t � T , where λ(t ) is the derivative of the sparsity
term, Eq. (7), with respect to the control inputs u. The adjoint
states are governed by a set of linear differential equations:

− d

dt
φ(t ) = [Dx(h) + σ (A ⊗ G)]T φ(t ) + ∇x f x

n (x, t ),

(10)

where Dx(h) is the Jacobian matrix of the state equations of
the dynamical system, and f x

n (x) is the integrand of the cost
functional, F x

n (x) = ∫ T
0 f x

n (x)dt . The adjoint state satisfies the
boundary condition φ(T ) = 0, and the differential equation is
solved backwards in time.

Following Ref. [28], λ(t ) is given by

λk (t ) =
{ uk (t )√

Ek
if Ek �= 0,

− 1
Is

[(B ⊗ K )T 〈φ(x, u, t )〉]k otherwise.
(11)

Here, k ∈ [1, N], and Ek is the nodewise control energy of the
resulting optimal control u, which is defined as

Ek =
∫ T

0
u2

k (t )dt, (12)

resulting in the total control energy E = ∑
k Ek . A detailed

derivation of Eqs. (9) and (10) is provided in Appendix A.

C. Numerical solution of the minimization problem

The optimization problem is numerically solved using the
conjugate gradient method. We integrate the equations for the
network state and the adjoint given in Eqs. (1) and (10) (see
Appendix B for details). The direction d l for each step of the
conjugate gradient algorithm is defined by the Polak-Ribiere
method [51], while its step size sl is derived using simple
bisection [52]. We apply the Fletcher and Reeves algorithm
[53] as presented in the following.

We initialize at iteration l = 0 by choosing an initial
control u0 and drawing 20 noise realizations ξn(t ). The cor-
responding states x0(t ), Eq. (1), and adjoint states φ0(t ),
Eq. (10), are calculated for every noise realization. Then g(t )
as given in Eq. (9) is evaluated. The descent direction is initial-
ized with d0(t ) = −g(t ). We then iterate until convergence:

While ‖g(t )‖∞ > ε:
(1) compute the step size sl using bisection
(2) set ul+1(t ) = ul (t ) + sld l (t )
(3) calculate the states xl+1(t ) and the adjoint states

φl+1(t ) for every noise realization and compute the mean
〈φl+1(t )〉

(4) evaluate the gradient gl+1(t )
(5) compute βl using the Polak-Ribiere method: βl =

gl+1(gl+1−gl )
‖gl+1‖2

(6) set the direction d l+1(t ) = −gl+1(t ) + βld l (t )
(7) if d l+1(t ) is not a descent direction, set d l+1(t ) =

−gl+1(t )
(8) set l = l + 1
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FIG. 1. Bifurcation diagram of an uncoupled FitzHugh-Nagumo
oscillator, as given in Eq. (13), with the parameters α = 3, β = 4,
γ = 1.5, δ = 0.5, and τ = 20. The blue line shows the minimal and
maximal values of the activity variable x1 (identical in fixed points)
for the respective background input μ to the node. The red line shows
the frequency of the oscillation (time and therefore also frequency are
measured in arbitrary units).

Gradient-based optimization is only guaranteed to con-
verge to local optima of the cost function. In general, however,
multiple initial conditions u0 converged to the same optimum.
The only exception occurred for the state-switching task for
high values of the sparseness parameter Is, for which a solu-
tion with finite values of u coexists with the solution u(t ) = 0
(see Appendix B for details).

III. THE WHOLE-BRAIN NETWORK

A. The local node dynamics

We consider a single FitzHugh-Nagumo (FHN) oscillator,
with the activity variable x1 and the linear recovery variable
x2:

h(x) =
(

h1(x)
h2(x)

)
=

(
d
dt x1

d
dt x2

)
=

(
R(x1) − x2 + μ

1
τ

(x1 − δx2)

)
, (13)

where μ is a node-independent, constant background input
and R(x) = −αx3 + βx2 − γ x. The parameters in R are cho-
sen to obtain the bifurcation diagram shown in Fig. 1. This
bifurcation diagram, depending on the background input μ,
shows three distinct states. In the down state, the node is in a
stable fixed point and has a low constant value of the activity
variable x1 (in blue). In the oscillatory state, the activity vari-
able x1 oscillates at an input-dependent frequency (in red). In
the up state, the node is again in a stable fixed point with a
high constant value of the activity variable x1.

The succession of these states in the single node
dynamics—a supercritical Andronov-Hopf bifurcation from
the down state to the oscillatory state and another supercritical
Andronov-Hopf bifurcation from the oscillatory state to the
up state [34,54]—closely resembles the states found in large
random networks of excitatory and inhibitory spiking neuron
models and their corresponding mean-field description [55].
The mean firing rate of these models changes as a function of
background input in a way which is qualitatively similar to the
value of the activity variable shown in Fig. 1. For this reason
one can interpret the value of the activity variable x1 as the

FIG. 2. Weighted adjacency matrix A describing the topology
of the whole-brain network. Color denotes the relative connection
strength of the structural connectivity for every pair of the N = 94
nodes.

difference between the output firing rate of a cortical node to
a baseline value.

B. The brain network model

The topology of the whole-brain network model is de-
rived from diffusion tensor imaging (DTI) data of 12 human
subjects (all male and 26–30 years old) from the Human Con-
nectome Project [56] (see Appendix D for subject IDs). The
N = 94 nodes in the network correspond to the cortical and
subcortical regions defined by the AAL2 atlas-based segmen-
tation [14] (cerebellum excluded). We performed probabilistic
fiber tracking (using the Functional Magnetic Resonance
Imaging of the Brain Software Library (FSL) [57], details on
the processing pipeline in Appendix D) to determine the rel-
ative connection strength (edges) between these brain regions
(nodes). The pairwise structural connectivity is summarized in
the weighted adjacency matrix A shown in Fig. 2. Since DTI
data carries no directional information, A must be symmetric.
For the following, we define the weighted degree dk of a
node k as the sum over all afferent connection strengths, i.e.,
dk = ∑N

i=1 Aik .
As motivated in Sec. III A, the dynamics of each node in

the network is described by a FHN oscillator [Eq. (13)]. The
general network dynamics, Eq. (1), then simplifies to

d

dt
xk1(t ) = h1[xk (t )] + σ

N∑
i=1

Akixi1(t ) + ξk (t ) + uk (t ),

d

dt
xk2(t ) = h2[xk (t )], (14)

for all nodes k ∈ [1, N]. This implies setting the control
matrix B = IN , which means that all individual nodes can
potentially receive independent control inputs. The local cou-
pling, control, and noise schemes are set to G = K = D =
[[1, 0], [0, 0]], i.e., the individual FHN nodes receive node-
external inputs only through their activity variables xk1.

We do not consider finite delays for reasons of simplicity.
Finite delays induce additional dynamical states. Although of
high interest in terms of whole-brain modeling, these would
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FIG. 3. Overview of the state space of the brain network model, Eqs. (13) and (14), for the noise free case (η = 0). Time t measured in
arb. units and simulations of each parameter configuration are started with initial conditions x0 based on continuation and evaluated [except
for (c1) and (c8)] after t̄ = 5000 (see text for details). (a) Each pixel corresponds to a network with a particular parameter configuration for
μ ∈ [0.35, 1.4] and σ ∈ [0, 0.3]. States are classified based on the network oscillations, and oscillatory states are distinguished depending on
whether no (laLC, light gray), some (mixLC, dark gray), or all (haLC, white) nodes fulfill the criterion of Eq. (16). Parameter configurations
for which multiple stable solutions were detected (see text for details) and visually confirmed are marked with red pixels. Red lines enclose
regions where we observe bistability between FP and mixLC (around point A1), laLC and mixLC (around points A2, B2), and mixLC and
haLC (around point B1), as well as multistability in mixLC (around points A3, B3). Examples for bi- and multistable states are shown in Fig. 4.
Points S1 and S2 indicate states with a low mean network cross-correlation R that are explored in Sec. IV B. (b) One dimensional bifurcation
diagram for a network as a function of μ for a fixed coupling strength of σ = 0.08. The dominant network frequency (red line) is calculated
according to Eq. (15). Minimal and maximal values of the activity variable xk1 are plotted for each node individually, where line color indicates
the weighted degree (green to blue indicates high to low values). (c) Example traces of the activity of all nodes in the network for different
values of μ [see (b)] and for σ = 0.08, showing different dynamical states. Line color indicates the weighted degree of the nodes [see (b)].
Traces at the FPs (1, 8) are shown after t̄ = 0 (see text for details) to show the stability of the respective fixed point.

not add to the conclusions drawn in Secs. IV and IV B about
the impact of nonlinear optimal control and its comparison
with diagnostics [23] derived from linear control and based
on connectome properties only. Please refer to Sec. VI for a
discussion of the biological plausibility of this assumption.

C. State space exploration

In this section, we describe and characterize the different
dynamical states that can emerge in a whole-brain network of
coupled FHN oscillators for a large range of parameter config-
urations. Having such an overview of the dynamical landscape
of the system will allow us to formulate well defined control
tasks in Sec. IV. Throughout the state space exploration we do
not apply any control input [uk (t ) = 0 ∀ k, t].

Initially we consider the noise free case (η = 0). Here,
only two free model parameters remain: the global coupling
strength σ and the time independent background input μ

which is the same for each FHN oscillator. The state space
of the FHN network is explored by simulating the network
dynamics for wide ranges of these parameters (see Appendix
B for details). The initial conditions x0 are drawn randomly
from a uniform distribution in the interval [0, 1) or taken as
the state vector x′(tend) of the last time step of the previous
simulation with same σ and slightly smaller μ (continuation).

To avoid analyzing transient effects, we show and evaluate the
network states only after a sufficiently long transient time t̄ .

If oscillations are present, then the dynamical state is char-
acterized by the strength of synchronization quantified by the
total cross-correlation, Eq. (6), and by the dominant frequency
fdom. The latter is given by the frequency of the highest peak
of the combined power spectrum of all nodes,

fdom = arg max
f

N∑
i=1

Sxx,i1( f ), (15)

where Sxx,i1 = |(Fxi1)( f )|2, with Fourier transform F , de-
notes the power spectral density of an individual node.

Figure 3 provides an overview of the state space of the
FHN network. Similar to the case of a single FHN oscillator
(cf. Fig. 1), the network shows two regions in parameter space,
for which a stable fixed point (FP) exists. For small values of
μ and σ the activity variable xk1 has a low value for all nodes
[down state, cf. Fig. 3(c)(1)]; for large values of μ and σ the
activity value is high [up state, cf. Fig. 3(c)(8)]. Figure 3(a)
shows that the dynamics can transition from an down state to
an oscillatory state, as well as from an oscillatory state to an
up state by either increasing μ or σ . For convenience, we call
these transitions low and high bifurcation, respectively.
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Within the oscillatory regime, we observe network states
that are qualitatively different in their appearance, which we
explain in the following by their different underlying mech-
anisms. A single, uncoupled FHN node oscillates in its limit
cycle (LC) if it receives a background input in the range of
μ ∈ [0.73, 1.33] (cf. Fig. 1). We therefore expect a node in
the network to show sustained oscillation (indiv. LC)—and
consequently affecting the dynamics of the network—if its
combined input is in this interval. We thus call a node “to be
in its individual LC regime” if

0.73 � μ + σ

N∑
i=1

Akixi1(t ) � 1.33, (16)

for at least one point in time within the considered time in-
terval. This criterion is further motivated by observations of
the dynamics (cf. Fig. S1 in Ref. [78]) which show qualitative
changes in behavior depending on whether it is met by all,
some, or none of the nodes in the network.

If all nodes fulfill Eq. (16), then we observe the network
to be in a synchronous, high-amplitude limit cycle [haLC
in Fig. 3(a), cf. Fig. 3(c)(5)]. If, however, no node fulfills
Eq. (16), then the network either inherits the fixed point solu-
tion from the individual nodes, or a new state emerges due to
network effects. We observe both cases: The first one is true in
both down and up state of the network in Fig. 3(a). The second
case appears for low and intermediate coupling strength σ at
the transition from down or up state to oscillatory state. In
these states the FP of the network dynamics is unstable due to
coupling effects and a self-sustained low amplitude limit cycle
[laLC in Fig. 3(a), cf. Fig. 3(c)(2, 7)] emerges. The geometric
interpretation of this laLC is a rotation around the FP that
would be transient for an isolated node, but is prevented from
converging to a fixed-point by the network couplings.

It is also possible that only a fraction of the network
nodes fulfill the criterion in Eq. (16), which can lead—even
in the absence of noise and without network delays—to
asynchronous and apparent aperiodic behavior (mixLC in
Fig. 3(a), cf. Fig. 3(c)(3, 6), further indications for aperiodicity
are provided in Ref. [78]). On the network level, this can
be seen as the result of the different frequencies of the two
coexisting network limit cycles, laLC and haLC, interacting.
Close to the bifurcation the frequency of the individual nodes
(cf. Fig. 1), and their trajectories (cf. Fig. S3 in Ref. [78]),
are particularly sensitive to their respective input. If the ad-
ditive coupling input between the nodes is not sufficient to
entrain a common frequency, this may result in asynchronous
and potentially aperiodic network oscillations. States that
are classified as mixLC are, however, not necessarily asyn-
chronous. If the driving force of nodes that fulfill the criterion
in Eq. (16) is high enough, it will lead to frequency entrain-
ment. Therefore, the oscillations of the driven nodes [where
Eq. (16) is not fulfilled] are similar to the ones of the driver
nodes, resulting in dynamics that are similar to the haLC state
[cf. Fig. 3(c)(4, 5)].

The distinction between different dynamical states and
types of network oscillations (laLC, mixLC, haLC) is par-
ticularly interesting since the transitions between these are
the regions in state space, where we find multistable network
states. Multistability is detected by simulating the network

dynamics for 21 different initial conditions x0 and comparing
the resulting time series by calculating their nodewise correla-
tion in the activity variable. We ignore the first t̄ = 5000 arb.
units of each time series to avoid analyzing transient effects
and then compare the interval t ∈ [5000, 6000] (equiv. to 10–
35 periods) of one initial condition with t ∈ [5000, 6200] of
all other traces (second interval is sufficiently longer to ac-
count for all phase shifts). If the autocorrelation of at least one
initial condition is close to one, this indicates the existence of
a stable (periodic) state, and if the cross-correlation between
two (or more) initial conditions is different from one, this
indicates bistability (or multistability). Red pixels in Fig. 3(a)
show states with more than one stable solution, which are
observed along both, the low and high bifurcation.

Numerically we found regions of bistability between FP
and mixLC (A1), laLC and mixLC (A2, B2), and mixLC and
haLC (B1), as well as multistability in mixLC with different
numbers of nodes fulfilling the criterion in Eq. (16) (A3, B3)
[cf. Fig. 3(a)]. The corresponding time series of the activity
variables xk1 are shown in Fig. 4. The automatic detection
of multistability might not capture all multistable states, es-
pecially because some of the states may be very similar [cf.
Fig. 4(b), bottom panel]. More detailed analyses could thus
also uncover bistabilities between up state and mixLC, as
well as between mixLC and haLC at the low bifurcation. We
inspected the detected multistable states visually to assure
that their difference are not due to transient effects and con-
firm their assignment to the specified multistable regions in
Fig. 3(a). We do not observe state switches in this noise-free
case even for very long simulation times [200 000 arb. units
simulated for multiple initial conditions in each multistable
region, A1–3, B1–3, of Fig. 3(a)], meaning that the states are
stable and no temporal intermittency is found.

Adding noise to the network most strongly affects the dy-
namics of the states close to the bifurcations. The influence
of noise on synchronous, mono-stable oscillatory states is,
as expected, comparably small (cf. Figs. S4(d) and S4(e)
in Ref. [78]). If the network dynamics is in a FP far away
from the bifurcation line, the additional Gaussian white noise
results in uncorrelated fluctuations in the activity variable (cf.
Fig. S4(i) in Ref. [78]). Parametrizations that without noise
would lead to a stable FP close to the bifurcation, show os-
cillations when sufficient noise is introduced (cf. Figs. S4(a)
and S4(h) in Ref. [78]). The clear distinction between the FP
and laLC network states in the noise-free case [cf. Fig. 3(a)]
is therefore blurred for noisy dynamics. For asynchronous
mixLC states, the additional noise can have a synchronizing
effect (cf. Fig. S4(c) in Ref. [78]). This can be explained
by more nodes fulfilling the criterion in Eq. (16), resulting
in a stronger drive for the remaining nodes and therefore
more synchronous oscillation. These effects lead to a shift
of the bifurcation lines compared to the noise-free case and
consequently also affects the location of multistable network
states.

In the case of multistability, we observe that this stochastic
additional input can lead to sufficient perturbations that drive
the dynamics from one attractor to the other. This results in
noise-induced state switching, as shown in Fig. 4(c), at the
bifurcation lines of the noisy state space. Such noise-induced
transitions are a known phenomenon in systems of coupled
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FIG. 4. Example traces of the activity variable xk1 of each node from the regions of bi- and multistability indicated by the labeled points
in Fig. 3(a). Plots show the dynamics for random initial conditions after a sufficiently long transient time (t̄ = 5000 arb. units). Line color
indicates the weighted degree (green to blue indicates high to low values). (a) Traces at low bifurcation, top: bistability between laLC (left) and
mixLC (right) in point A2 (μ = 0.44, σ = 0.17, η = 0); bottom: bistability between states in mixLC in point A3 (μ = 0.64, σ = 0.07, η =
0). (b) Traces at high bifurcation, top: bistability between mixLC (left) and haLC (right) in point B1 (μ = 1.2, σ = 0.29, η = 0); bottom:
multistability between states in mixLC in point B3 (μ = 1.28, σ = 0.17, η = 0). The main difference between left and middle panels is the
trajectory of the node with the smallest in-degree (highlighted in red). (c) Traces showing noise induced state switching. Locations N1 and N2
are also close to the bifurcations but are not shown in Fig. 3(a) since the state space changes under the influence of noise. Top: Example at
the low bifurcation in point N1 (μ = 0.39, σ = 0.2, η = 0.024). Bottom: Example at the high bifurcation in point N2 (μ = 1.2, σ = 0.3, η =
0.024).

oscillators [58] and may be exploited for the control of the
neural dynamics in practice [59].

IV. OPTIMAL CONTROL OF THE BRAIN
NETWORK DYNAMICS

A. Switching between bistable network states

In this section, we present optimal control inputs that in-
duce a switch between previously identified multistable states.
All control inputs optimize the cost functional given in Eq. (2)
with the state dependent terms given in Eq. (3) and the energy
and sparsity terms given in Eq. (7). Energy and sparsity terms
are evaluated over the whole time interval during which the
control is active. The cost functional itself, however, considers
the deviation from the target state only the end of the control
period. For this we set Ip(t ) = I∗

p for (T − τ ) � t � T and
Ip = 0 else. The convergence criterion of the numerical solu-
tion of the minimization problem, as described in Sec. II C,
is set to ε = 10−5 for all our applications. We ensured for all
presented examples that the method actually converges and
that results do not change for lower values for ε. We computed
the optimal control for different phase shifts of the initial and
target states with respect to the control onset and present the
results for the phase shift which leads to the smallest total
control energy E .

Figure 5 shows the result of applying optimal control at
point A1 in Fig. 3(a), where a low-activity fixed point co-
exists with an oscillatory mixed state. The weight Is for the
sparseness term in Eq. (7) was set to zero. Since the target
state in this task is always stable, the network remains in
this state once it is reached also after the control is turned
off. If the initial state is the down state FP, then the obtained
optimal control input oscillates synchronously for all nodes
with increasing amplitude. The frequency of the control input
[ fdom(u1) = 35.0] corresponds to the frequency of the fixed
point’s focus [ fdom(xFP

1 ) = 35.0, measured by perturbing the
FP], inducing resonance effects in the node activity. This strat-

egy can be well observed in Video 1 (in Ref. [78]), showing
the node oscillations and the respective optimal control inputs
in state space.

When switching from the oscillatory to the down-state, as
in Fig. 5(d), the optimal control input consists of one short
biphasic pulse applied to all of the nodes followed by minor
corrections. It is a known result from control theory, that
applying a biphasic control pulse around an extreme point
is an efficient way to drive an oscillating system to a stop.
Interestingly, the optimal control strategy in this example is
not to apply the pulse at an extreme point of the activity vari-
ables xk1, but rather in a way that the gradient of the control is
highest when the phase velocity of the limit cycle oscillation

FIG. 5. State switching with optimal control between bistable
states at the low bifurcation [point A1 in Fig. 3(a)]. (a) Switch
from down-state to oscillatory state and (b) vice versa. Activities
xk1 of each node k are shown over time. The colored lines show the
controlled activities with green to blue indicating nodes with high to
low weighted degree. The black lines correspond to the uncontrolled
activities. (c, d) Corresponding optimal control inputs uk1 to each
node. The red bar indicates the time interval during which the control
is active (from t = 0 to t = 400). The deviation from the target state
is penalized in the last τ = 25 time units of the control. Parameters
were: μ = 0.378, σ = 0.21, η = 0.0, I∗

p = 0.0005, Ie = 1.0, Is = 0.
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FIG. 6. State switching with optimal control between bistable
states at the high bifurcation [point B2 in Fig. 3(a)]. (a) Switch from
low-amplitude oscillation to high-amplitude oscillation and (b) vice
versa. Activities xk1 of each node k are shown over time. The colored
lines show the controlled activities with green to blue indicating
nodes with high to low weighted degree. The black lines correspond
to the uncontrolled activities. (c, d) Corresponding optimal control
inputs uk1 to each node. The red bar indicates the time interval
during which the control is active (from t = 0 to t = 400). The
deviation from the target state is penalized in the last τ = 25 time
units of the control. Parameters were μ = 1.22, σ = 0.26, η = 0.0,
I∗

p = 7 × 10−5, Ie = 1.0, Is = 0.

is the lowest (best observed in Video 2 in Ref. [78]). Although
the deviation from the target state is only penalized at the end
of the control interval, the pulse is applied early to give the
system enough time to come to rest.

Figure 6 shows the result of applying optimal control at
point B1 in Fig. 3(a), where a low amplitude limit cycle (laLC)
around the high-activity up-state coexists with an oscillatory
mixed state (mixLC, cf. Sec. III). When switching from the
laLC to the mixLC state [Figs. 6(a) and 6(c)], the frequency
of the control input [ fdom(u1) = 30.0] is again adapted to
the frequency of the initial state [ fdom(xlaLC

1 ) = 30.0], utiliz-
ing resonance effects. While the nodes in the laLC state all
oscillate with the same frequency ( fk = fdom = 30.0 ∀ k),
their phase speed is not the same at all times (reflected by
lower synchrony R(xlaLC

1 ) = 0.861, best observed in Video 3
in Ref. [78]). This results in a less synchronous oscillation of
the control signals in Fig. 6(c) (R(u1) = 0.714) compared to
the control inputs at the low bifurcation [Fig. 5(c), R(u1) =
0.999]. In the other direction [Figs. 6(b) and 6(d), Video
4 in Ref. [78]), the optimal control finds a short, off-phase
biphasic pulse analogous to Fig. 5(d). As a result, the ampli-
tude of the network oscillation decreases to almost zero [for
t ∈ [200, 250] in Fig. 6(b)]. Since there is no stable FP, the
oscillation amplitude increases again over time and converges
to the laLC target state approx. 550 time units after the control
pulse (see also Fig. S5 in Ref. [78]).

By increasing the sparsity parameter Is of the cost func-
tional, we can tune the number of controlled nodes. Figure 7
shows the control energy Ek [Eq. (12)] of the optimal control
input uk1 to each node k as a function of the sparsity parameter
Is. For low values of Is, all nodes receive a finite control signal.
When Is is increased, less nodes are controlled, until Is be-
comes so large, that the target state can no longer be reached.
As expected, decreasing the number of controlled nodes needs
to be compensated for with a higher control energy.

FIG. 7. State switching with sparse optimal control. The nodes
are sorted from lowest (bottom) to highest (top) weighted degree.
The length of the bars indicate up to which value of the spatial
sparsity parameter Is the node still receives finite control input.
Their color denote the corresponding optimal control energies Ek

[Eq. (12)] for each node. (a) Switching from the down state (FP)
to the oscillatory state (mixLC) with parameters close to the low
bifurcation as in Fig. 5 and (b) Switching from low-amplitude (laLC)
to high-amplitude oscillatory state (mixLC) with parameters close to
the high bifurcation as in Fig. 6. (c) Same as panel (a) but switching
from mixLC to FP. (d) Same as panel (b) but switching from mixLC
to laLC.

The results also show that at the low bifurcation [Figs. 7(a)
and 7(c)], nodes with a high weighted degree receive, indepen-
dent of the switching direction, a stronger control signal and
remain controlled even for high values of Is. This shows that at
the low bifurcation it is most important to control the network
hubs since they act as driver nodes for attractor switching. At
the high bifurcation [Figs. 7(b) and 7(d)], however, nodes with
low weighted degree receive the strongest control inputs.

This different behavior can be explained based on the
additive coupling scheme between the nodes (cf. Sec. III),
which causes nodes with higher degree to typically receive
stronger inputs. When choosing parameters close to the low
bifurcation, these high degree nodes therefore have higher os-
cillation amplitudes (cf. Fig. 1) and are consequently driving
the oscillation of the remaining nodes in the network. Close to
the high bifurcation the nodes with lower degree, who receive
less inputs, are more likely to remain in the limit cycle regime.
Consequently – and in contrast to the dynamics close to the
low bifurcation – the low degree nodes drive the oscillation
of the network hubs. Videos 1 and 3 (in Ref. [78]) illustrate
how the control inputs on the respective driver nodes force
the network dynamics to the high-amplitude oscillation target
states.

The optimal control inputs to the control sites have well
interpretable shapes. When the objective is to transition from
a low-amplitude state to one with a higher amplitude [mixLC,
Figs. 5(a) and 6(a)], the optimal control strategy utilizes
the characteristics of the flow field in state space and syn-
chronously drives the network with its resonant frequency
from one attractor toward the other. Switching in the oppo-
site direction, and therefore leaving this basin of attraction,
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FIG. 8. Synchronizing the noise-free network with optimal con-
trol inputs. (a) Synchronization task at point S1 (low bifurcation) in
Fig. 3(a). Activities xk1 of each node k are shown over time. The
colored lines show the controlled activities (average cross-correlation
R = 0.995 [Eq. (6)]) with green to blue indicating nodes with high to
low weighted degree. The black lines show the uncontrolled activities
(R = 0.289). (b) Synchronization task at point S2 (high bifurcation)
in Fig. 3(a) (controlled: R = 0.996, uncontrolled: R = 0.368). (c, d)
Corresponding optimal control input uk1 to each node. The red bar
indicates the time interval during which the control is active (from
t = 0 to t = 500). The vertical black dashed line indicates the critical
time tc (see text). Parameters were: Point S1 μ = 0.7 and σ = 0.025,
point S2 μ = 1.3 and σ = 0.025, other parameters: η = 0, Ip = 0.1,
Ie = 1.0, Is = 0.

is achieved most efficiently with one strong, biphasic pulse.
This deflects the system from its initial mixLC trajectory and
causes it to drop to the attractor with a lower amplitude.

B. Synchronizing the network dynamics

In this section, we apply the nonlinear control method to
find the optimal inputs to synchronize the dynamics of the in-
dividual nodes. For this application we use the state dependent
cost functionals given in Eq. (4) to penalize the deviation from
the target cross correlation (RT = 1, fully synchronous state)
and in Eq. (7) to penalize the energy of the control and enforce
its sparsity in space.

We parametrize the system to be in the two asynchronous
regions marked by the labels S1 and S2 in Fig. 3(a), close
to the low and high bifurcation lines. The optimal control
method is then applied to synchronize the dynamics for the
noise-free (Fig. 8) and noisy (Fig. 10) case. Both figures
show the controlled (synchronous) and uncontrolled (asyn-
chronous) time series and the corresponding optimal control
inputs. Since the dynamics in points S1 and S2 are monos-
table, the synchronous state is not a stable solution and the
system returns to its original state as soon as the control is
switched off. The network dynamics and the optimal control
strategies are best seen in Videos 5–8 (in Ref. [78]).

Figure 8 shows how the optimal control inputs synchronize
the oscillation of all nodes in the network. In the uncon-
trolled state [in gray, Figs. 8(a) and 8(b)] the nodes at both
bifurcations oscillate with similar frequencies (mean and stan-
dard deviation of oscillation frequencies across nodes at S1:
〈 f 〉N = 32.2, σ〈 f 〉N = 1.1, and at S2: 〈 f 〉N = 27.0, σ〈 f 〉N =
0.9). Close inspection of the control inputs in Figs. 8(c) and
8(d) show that the optimal control acts in two phases. First,
the control aligns the phases of all oscillators until all nodes

FIG. 9. Mean energies Ek of the control inputs [Eq. (12)] as
a function of the weighted node degree dk for the noise-free syn-
chronization task. The error bars show the standard deviation over
10 different initial conditions of the network dynamics. (a, b) The
control signal for time t ∈ [0, tc ) is considered. Linear regression (red
line) coefficients are r = 0.83, p < 10−24 and r = −0.49, p < 10−6.
(c, d) The control signal for time t ∈ [tc, T ] is considered. (a, c) Point
S1 (low bifurcation) in Fig. 3(a). (b, d) Point S2 (high bifurcation) in
Fig. 3(a). All parameters are as in Fig. 8.

are synchronized for the first time, which we defined as the
critical time tc (please refer to Ref. [78] for details about the
computation of tc). Second, a periodic input maintains the
synchronous oscillation during the period the control is active.

For times t < tc, Fig. 9(a) shows that at the low bifurcation
the energies Ek of the control inputs to the nodes are posi-
tively correlated with the weighted node degrees. Thus, it is
beneficial to focus the control input on the network hubs for
alignment. A possible interpretation for this strategy is that
the optimal control utilizes the influence of the network hubs
on the remaining nodes to force them on the synchronous limit
cycle trajectory. However, we again observe a different behav-
ior at the high bifurcation, as shown in Fig. 9(b). Here, Ek is
negatively correlated with the weighted node degree for times
t < tc. In this case, the network coupling is much smaller
compared to the background input μ and the node’s phase
space oscillations are similar to the trajectory of the limit
cycle of an uncoupled node (cf. Video 6 in Ref. [78]). The
negative correlation in Fig. 9(b) suggests that if the dynamics
of the nodes are similar in the first place, it is beneficial to
focus the control on more weakly coupled nodes and align
their phase space trajectory with the trajectory of the network
hubs. Similar to the attractor switching at the high bifurcation
[cf. Figs. 7(b) and 7(d)], the control of the low degree nodes
drives the network oscillation toward the target state.

In the second phase, for t � tc, the high degree nodes
without control would have a higher (or lower) phase velocity
than the nodes with intermediate degree, while the opposite is
true for nodes with low degree. The optimal control strategy
is thus to act on the low and high degree nodes in opposite
directions, which can be observed as antiphase control inputs
shown in Figs. 8(c) and 8(d), where nodes with intermediate
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FIG. 10. Synchronizing the noisy network with optimal control
inputs. (a) Synchronization task at point S1 (low bifurcation) in
Fig. 3(a). Activities xk1 of each node k are shown over time with
green to blue indicating nodes with high to low weighted degree
(average cross-correlation R = 0.845 [Eq. (6)], uncontrolled: R =
0.210). (b) Synchronization task at point S2 (high bifurcation) in
Fig. 3(a) (controlled: R = 0.853, uncontrolled: R = 0.321). (c, d)
Corresponding optimal control input uk1 to each node. The red bar
indicates the time interval during which the control is active (from
t = 0 to t = 500). Parameters were η = 0.024, Ip = 0.1, Ie = 1.0,
Is = 0, all other parameters are as in Fig. 8.

degree receive only small control inputs. (Videos 5 and 6 in
Ref. [78] show how the control inputs keep the nodes together
in phase space.) This is reflected in the arclike form of the
mean energies Ek of the control inputs at both bifurcations,
as seen in Figs. 9(c) and 9(d), with high control energies for
nodes with low or high degree. As a result, the optimal control
achieves a mean network cross-correlation of R = 0.995 in
the time interval t ∈ [tc, T ], compared to the uncontrolled sce-
nario with R = 0.289 at point S1 [Fig. 8(a)], and R = 0.996
compared to R = 0.368 at point S2 [Fig. 8(b)].

Figure 10 shows results for the application of optimal con-
trol to the synchronization task for the case of finite noise. We
obtain a mean network cross-correlation of R = 0.83 (analysis
of the deviation from RT in Ref. [78], uncontrolled: R =
0.25) at point S1 [Fig. 10(a)] and R = 0.85 (uncontrolled:
R = 0.35) at point S2 [Fig. 10(b)]. We conclude that the
optimal control input successfully synchronizes the network
dynamics, just as in the noise-free case.

The control strategy that leads to the respective target state,
however, changes substantially when noise is added to the
system. The control input in the noise-free case is tailored
individually for each node, slowing the phase space velocity
of some nodes down and speeding others up at the same
time [cf. blue inset in Fig. 8(d), mean cross-correlation of the
control inputs during this control period is 0.03]. In contrast
to that, the control input for the noisy network dynamics has a
similar shape for all nodes (cf. blue inset in Fig. 10(d), mean
cross-correlation of the control inputs during control period is
0.88) with varying amplitude depending on the weighted node
degree dk .

This change in control strategy is also reflected in Fig. 11,
which shows the control energy Ek per node for different
noise levels. The control energy increases for all nodes with
increasing noise strength, both at the low [Fig. 11(a)] and the
high bifurcation [Fig. 11(b)]. With increasing noise level η, we
observe a gradual transition of the optimal control strategy. In-

FIG. 11. Mean energies Ek of the optimal control inputs
[Eq. (12)] as a function of the weighted node degree dk for different
noise levels η for the synchronization task. The error bars show the
standard deviation over 10 different initial conditions of the network
dynamics with 20 independent noise realizations of the optimization
each. Ek is, in contrast to Fig. 9, calculated over the whole interval
during which the control is active. (a) Point S1 (low bifurcation) in
Fig. 3(a). (b) Point S2 (high bifurcation) in Fig. 3(a). Parameters were
Ip = 0.1, Ie = 1.0, Is = 0, all other parameters are as in Fig. 8.

stead of balancing out the phase velocity differences between
nodes toward the phase of nodes with intermediate degree
(cf. Videos 5 and 7 in Ref. [78]), the control in the noisy
case forces the system on a limit cycle with a slightly higher
oscillation amplitude (cf. Videos 6 and 8 in Ref. [78]). This
strategy requires a higher control energy but is independent of
the specific realization of the noise.

By imposing sparsity constraints on the system, we can
investigate to what extent synchronization can be achieved
with fewer control sites. Figure 12 shows the relation of the
synchrony in the network, measured by the average cross-
correlation R [Eq. (6)], to the sparsity parameter Is. The
average cross-correlation R decreases with increasing sparsity
parameter Is at both locations in state space and for all noise
levels. This shows that, under the imposed constraints, it is not
possible to fully synchronize the network with sparse control.
Optimally synchronizing aperiodic states is a collective effort.
Unlike state switching it cannot be achieved by controlling
only a few sites, because the reduced number of control sites
cannot sufficiently be compensated for by a higher control en-
ergy. Especially in the case of noisy network dynamics, where
the control must drive all nodes, the network’s synchrony

FIG. 12. Average network cross-correlation R [Eq. (6)] with
sparse optimal control as a function of the sparsity parameter Is

[Eq. (7)] for different noise levels η. The mean and standard deviation
are shown for 5 different initial conditions of the network dynamics,
each with 20 independent noise realizations. Horizontal lines indicate
the cross correlation R for the uncontrolled case. (a) Point S1 (low
bifurcation) in Fig. 3(a). (b) Point S2 (high bifurcation) in Fig. 3(a).
Parameters were Ip = 0.1, Ie = 1.0, all other parameters are as in
Fig. 8.
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quickly drops to the value of the uncontrolled network when
Is is increased. For fixed Is the number of controlled nodes
and the control sites optimal for synchronizing the network
changes for each initial condition x0 (cf. Fig. S1 in Ref. [78]),
as it depends on details of the exact network dynamics.

V. COMPARISON WITH CONTROLLABILITY MEASURES
DERIVED FROM LINEAR CONTROL THEORY

When relating functional properties of a neural system to
properties of the underlying connectome, neural activity is
often approximated by linear dynamical systems [23,60,61].
This has obvious benefits for analyzing the effects of pertur-
bations. Calculating optimal control inputs for linear systems,
as in Refs. [12,22], can be done analytically and with little
computational effort, and conclusions about the effects of
external inputs can be drawn from controllability measures,
which depend on network topology only [21].

Two of these measures have previously been applied to
quantify the impact of perturbations in a whole-brain network
setting [22,23,25]. Modal controllability refers to the ability
of a node to control each evolutionary mode of a dynamical
network [62], and the average controllability is given by the
average control input energy to the respective node over all
possible target states [23,25] (mathematical description in
Appendix C). Nodes with high average controllability require
only low energy input to move a linear system into “easy-
to-reach” states, while nodes with high modal controllability
require a high control energy input to have an effect on the
dynamics but are crucial when the target state of the system is
“difficult-to-reach” [21,23,63]. It has also been shown that the
average controllability of a node is strongly correlated with
its weighted degree dk (r = 0.85, p < 10−26 for our structural
connectivity matrix) while the modal controllability is known
to have a strong inverse correlation (r = −0.82, p < 10−23,
see Fig. S7 in Ref. [78]).

We now apply the diagnostics from linear control theory
to the brain network model, Eq. (14). Figure 13 shows the
correlations of the energies Ek of the optimal control inputs
with the average and modal controllability for the attractor
switching tasks. At the low bifurcation A1 [Figs. 13(a) and
13(c)] we find, that the energy of the control input for a
node is positively correlated with its average controllability
and negatively correlated with its modal controllability, both
irrespective of the switching direction. Therefore, the most
efficient strategy for switching between the attractors is to
control the network hubs with high average controllability
which then force the other nodes toward the target state. These
results can be considered consistent with predictions from
linear control theory [23] and previous results on the global
impact of stimulation [25].

At the high bifurcation at location B2 [Figs. 13(b) and
13(d)], however, we observe the opposite trend, with the con-
trol energy being negatively correlated with the average and
positively correlated with the modal controllability. Predic-
tions based on linear control theory alone are indifferent to the
actual dynamics and therefore not able to distinguish between
the two cases. Yet, nodes with high modal controllability play
a much more important role in affecting the global dynamics
at this location in state space.

FIG. 13. Mean energies Ek of the optimal control inputs
[Eq. (12)] plotted against measures from linear control theory for
state switching tasks from down state / low amplitude oscillation
toward high-amplitude oscillation (black) and the opposite direction
(red). (a) Ek vs. average controllability when switching at the low
bifurcation [Point A1 in Fig. 3(a)]. (b) Same as (a) but at the high
bifurcation [Point B2 in Fig. 3(a)]. (c) Ek vs. modal controllability
at A1 and (d) at B2. Solid lines denote the results of a linear re-
gression with the following obtained coefficients: (a) r = 0.66, p <

10−12 for the down-to-up switch (black) and r = 0.61, p < 10−10

for the up-to-down switch (red). (b) r = −0.33, p = 0.001 (black)
and r = −0.24, p = 0.02 (red). (c) r = −0.62, p < 10−10 (black)
and r = −0.57, p < 10−8 (red). (d) r = 0.31, p = 0.003 (black) and
r = 0.21, p = 0.04 (red). Same parameters as in Figs. 5 and 6, for
low and high bifurcation, respectively.

For the synchronization task, we observe a similar pat-
tern. While there is a clear correlation between the optimal
nodewise control energies Ek with the average controllability
when aligning the phases (i.e., t < tc) at the low bifurcation
[Fig. 14(a)], no correlation is observed at the high bifurca-
tion [Fig. 14(b)]. (The corresponding results involving modal
controllability are shown in Fig. S8 in Ref. [78].) In the case
of maintaining the synchronous network dynamics [t � tc,
Figs. 14(c) and 14(d)], we observe—at both bifurcations—a
similar but less obvious arclike shape as in Figs. 9(c) and
9(d). For noisy network dynamics (cf. Fig. S9 in Ref. [78]),
however, Ek is negatively correlated with the average control-
lability at both bifurcations (cf. Fig. S9 in Ref. [78]).

This shows that in our nonlinear setting, linear controllabil-
ity measures do not provide additional insights compared to
the weighted node degree, and that intuitions based on these
measures can be misleading. Diagnostics from linear control
theory have previously been claimed to be predictive for a
node’s role in driving brain state transitions [22,23] or for
the global impact of local brain stimulation [25]. Our results
however show, that the optimal control inputs and sites in
nonlinear systems not only depend on the structural network
connectivity, but also on the location in state space, the control
task, and other factors like the amount of noise.

VI. DISCUSSION

In this contribution we apply techniques from the optimal
control of nonlinear dynamical systems to the dynamics of
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FIG. 14. Mean energies Ek of the optimal control inputs
[Eq. (12)] plotted against the average controllability for the syn-
chronization task (cf. Fig. 9). (a) Ek vs. average controllability, with
control signal considered during the initial time interval t ∈ [0, tc ),
at the low bifurcation [Point S1 in Fig. 3(a)]. (b) Same as (a) but at
the high bifurcation [Point S2 in Fig. 3(a)]. Solid red lines denote
the linear regression results with the following obtained coefficients:
(a) r = 0.87, p < 10−29, (b) r = −0.16, p = 0.12 (not significant).
(c) Ek vs. average controllability, with control signal considered for
time t ∈ [tc, T ], at S1. (d) Same as (c) but at S2. All parameters as in
Fig. 9.

brain network models. Nodes were equipped with FitzHugh-
Nagumo oscillators, since they are simple and well studied
nonlinear models for neural dynamics. Changing the back-
ground input for the FHN nodes or the global coupling
strength of the network can both lead to transitions between
two different stable fixed points and two different limit cycle
attractors (laLC and haLC). The interaction between nodes
in different oscillation states (mixLC) can lead to an asyn-
chronous network dynamics. At the bifurcations, we also find
different coexisting stable states.

The general mathematical framework of the optimal con-
trol of partial differential equations [29] is adapted for noisy
dynamical systems on graphs, where the local network dy-
namics, the noise level, the network connectivity, and the local
coupling schemes [Eq. (1)] can be freely chosen. The state
dependent part of the cost functional is averaged over multiple
noise realizations and penalizes the deviation of the network
dynamics from a task dependent control target [Eq. (3) for
attractor switching, Eq. (4) for synchronization]. The part
of the cost functional which depends on the control input
[Eq. (7)] penalizes the control energy and nonsparse solutions.
The presented method is applicable to any network that can be
described in the form of Eq. (1), including models of power
grids, social networks, or climate dynamics.

A common problem for gradient based methods are po-
tential local optima of the cost functional which may prevent
the convergence to a globally optimal solution. To alleviate
this problem we performed the minimization as described in
Sec. II C with different initial conditions u0 for the control
time-series and choose the result with minimal cost. The set
of initial conditions included u0 = 0 as well as valid control
time-series taken from different parametrizations.

We use the optimal control method to cause targeted attrac-
tor switching between previously identified coexisting stable

states. When no sparsity is enforced, we show that it is
optimal to resonantly drive all nodes to transition to the high-
amplitude oscillatory state. When the task is to switch to a
state with lower amplitude or no oscillation, the optimal strat-
egy is to apply a precisely timed biphasic pulse. The nodes
that receive the largest control energy are the same for both of
these switching directions and are also the ones that are still
controlled when we enforce sparsity in space. Depending on
the location in state space, either nodes with high degree (at
the low bifurcation) or low degree (at the high bifurcation)
are the ones that most efficiently drive the network dynamics
from the initial to the target state. When sparsity is enforced,
controlling only a small number of these driving nodes with
increased control energies Ek is sufficient to switch from one
attractor to another in an optimal way.

In the second application, we show that our method can
also be used to control global properties of the network dy-
namics, such as the average cross-correlation between node
activities in the oscillating regime. Immediately with con-
trol onset, the control signal acts on all nodes to align their
phases. As soon as this is achieved, the control maintains the
synchronous oscillation with periodic control signals. Which
nodes receive larger control input for the initial alignment
again depends on the location in the state space. Both at the
low and high bifurcation, individually adapted control inputs
lead to a successful synchronization of the network dynamics.
While the average cross-correlation R is increased also with
sparse control, the synchronous target state is only achieved
in an optimal way, when all nodes in the network receive
a finite control input. This suggests that synchronizing all
nodes needs collective intervention, while attractor switching
can be caused by controlling a few selected nodes only. The
introduction of noise to the system makes the dynamics of
each node less predictable, resulting in a loss in specificity
and more similar control inputs to the nodes. Consequently,
the optimal control of noisy network dynamics requires higher
total control energy E (cf. Fig. 11) while resulting in a lower
precision (cf. Fig. 12 for Is = 0).

The information on the different states and bifurcations,
which we show to be a decisive factor for choosing the opti-
mal control sites in our applications, is lost when techniques
from linear control theory are applied. While predictions
do qualitatively agree for certain dynamical systems, con-
trol tasks, and locations in state space (cf. Ref. [25]), this
agreement does not hold in a general setting. It would,
however, be worthwhile investigating for what classes of dy-
namical systems and control tasks “controllability measures”
can be defined, which only depend on the properties of the
connectome.

In this contribution, the techniques of nonlinear optimal
control were applied to a simplified model of the global brain
dynamics. The bifurcations in our FHN model (cf. Fig. 1) phe-
nomenologically capture the state transitions found in more
complex, biophysically motivated network models [55] as we
have adapted the FHN parameters to resemble their dynamics.
Consequently, the activity variables of the FHN nodes can be
interpreted as relative output firing rates of cortical nodes, and
their total input μ + σ

∑N
i=1 Akixi1(t ) can – at least qualita-

tively – be interpreted as a proxy of the local field potential
[64]. Given this interpretation, model down-(up-)states are
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related to down-(up-)states in cortical physiology, while an
oscillatory regime of the whole-brain model corresponds to
a brain state with oscillations present. Locations at the lower
bifurcation of the network model were implicated as proper
“operating points” for modeling the brain’s resting state ac-
tivity [17–19], while locations at the high bifurcation can be
considered a cartoon model for the global brain dynamics dur-
ing non-Rapid Eye Movement (non-REM) sleep (see Ref. [20]
for a biophysically more detailed model).

In this work we consider a network with instantaneous
couplings, although coupling delays in human white matter
are finite. The interpretation of results regarding the model’s
state space should thus be limited to cortical states whose
dynamics is slow compared to these delays. Given that delays
are of the order of approx. 5–15 ms [65] brain oscillations
with periods of approx. 1 s or less would qualify. These in-
clude the so-called slow oscillations, which are the prominent
brain rhythm during non-REM sleep and which have already
been subject to external perturbation experiments in human
neuroscience and clinical settings [66,67].

In lieu of a biologically more detailed model of the effects
of control inputs on whole-brain dynamics, delays must be
included as soon as brain oscillations with frequencies above
a few Hz are of interest. Relative delays can be computed from
DTI-based estimates of the length of white matter fiber tracts
and included in the coupling terms of Eqs. (1) and (14).

When relative delays are scaled by a global delay constant,
the ratio of the coupling delays to the FHN oscillation period
can be adapted to match the physiologically observed ratios
for any given brain rhythm of interest. The formalism of non-
linear optimal control summarized in Sec. II must extended,
though, to cover finite delays by modifying the coupling term
in Eq. (1) to, e.g., σ (A ⊗ G)x(t − d ) for the case of constant
delays. The adapted coupling term reappears when computing
the adjoint state with the differential equation [Eq. (10)], and
thus the iterative algorithm for the numerical optimization (cf.
Sec. II C) has to be adapted accordingly in the calculation of
step 3.

Here we used a highly simplified model of the global brain
dynamics to showcase the applicability of nonlinear optimal
control and its added value beyond connectome-based diag-
nostics derived from linear control theory. When applied to
biophysically more realistic models of whole-brain activity
(cf. Ref. [20]), nonlinear optimal control may serve as a tool
to evaluate the impact of external stimulation and to facilitate
the design of new brain stimulation protocols. Noninvasive
brain stimulation like transcranial current stimulation [68–70]
is a highly promising technique to perturb the global brain
dynamics with the goal to improve sensory [71], motor [72],
and cognitive abilities [66] of human subjects. Using a cost
functional which penalizes spatial sparseness and control en-
ergy may—for example—help reducing the required current
applied to a subject’s brain as well as focusing the electrical
perturbation on the relevant brain areas only. While exact
target trajectories are unlikely to be available in a practical
setting, state-dependent cost functionals which refer to global
quantities [cf. Eq. (4) for the synchronization task] may well
be. Particularly, reformulating the control formalism in fre-
quency space will be beneficial here. It would for example
allow for computing optimal interventions for changing the

power of certain brain rhythms, which can be monitored by
electroencephalography and which are common control tar-
gets in clinical settings (cf. Ref. [67]). As shown in other
computational and physiological studies [55,73] and empha-
sized again by our results, the timing of the control inputs may
also be crucial for successful interventions. Here we see a high
potential of nonlinear optimal control in guiding electrical
brain stimulation under electro- or magnetoencephalography
[74,75], a setting which allows for such precisely timed con-
trol inputs.

For quantitative predictions, an application of nonlinear
optimal control to biophysically grounded network models
(cf. Ref. [20]) is desirable, where the coupling of neurons to
externally applied electric fields is included in a biophysically
realistic way. Still, results obtained with simplified brain-
network models will strongly facilitate biologically detailed
but computationally expensive in silico experiments and may
already inspire physiological studies on brain-stimulation to
explore new control paradigms for clinical stimulation pro-
tocols with potentially better control results, reduced energy
expenditure, and higher spatial sparseness.
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APPENDIX A: MATHEMATICAL FORMULATION OF THE
OPTIMAL CONTROL PROBLEM

1. Optimization problem: General formulation

In this section the mathematical foundations for control-
ling the network dynamics are laid. We use nonlinear sparse
optimal control. All derivations below are similar to the ones
in Refs. [29,31], where sparse optimal control was applied
to a system of partial differential equations with diffusive
coupling.

We consider a network of N nodes with d-dimensional
dynamics each. Its dynamics is defined by a system of N
stochastic differential equations,

d

dt
x(t ) = h[x(t )] + σ (A ⊗ G)x(t )

+ (B ⊗ K )u(t ) + η(IN ⊗ D)ξ(t ), (A1)

with the state vector x = (x1, ..., xN ) and xi = (xi1, . . . , xid ).
⊗ denotes the Kronecker product. The local node dynam-
ics is governed by h(x) = (h(x1), ..., h(xN )) with h(xi ) =
[h1(xi ), . . . , hd (xi )]. The coupling term consists of the
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N × N-dimensional adjacency matrix A and the d × d-
dimensional local coupling scheme G. u = (u1, ..., uN ) with
ui = (ui1, . . . , uid ) denotes the vector of control inputs, B
is a diagonal N × N-dimensional control matrix, and K the
d × d-dimensional local control scheme. The noise term con-
sists of the Kronecker product of an N-dimensional identity
matrix A and the d × d-dimensional local noise scheme G.
The independent white Gaussian stochastic process is given
by ξ with standard deviation η. Boundary conditions are given
by

x(t = 0) = x0. (A2)

Since our system is stochastic while the control is deter-
ministic, the optimal control must minimize a cost functional
which is an expectation over many realizations of the noise. It
is defined as

〈F [x(u), u]〉 =
∫ T

0
〈 f [x(u), u]〉dt, (A3)

where the angle brackets denote the expectation.
Our goal is to find the optimal control u that minimizes the

above mean cost functional. Hence, the variational inequality

〈F [x(ui ), ui]〉 − 〈F [x(ui ), ui]〉 � 0 (A4)

holds when regarding every dimension i separately. We lin-
earize around the optimal solution and write δui = (ui − ui )
to obtain

〈F [x(ui ), ui]〉 − 〈F [x(ui ), ui]〉

≈ ∂

∂ui
〈F [x(ui ), ui]〉

∣∣∣∣
ui

δui � 0. (A5)

Since inequality Eq. (A5) has to hold for all δui and −δui, we
find the stronger necessary condition

〈F [x(ui ), ui]〉 − 〈F [x(ui ), ui]〉 = 0 (A6)

for the optimal solution.
Inserting the expression from the right-hand side of

Eq. (A3) yields∫ T

0
[〈 f [x(ui ), ui]〉 − 〈 f [x(ui ), ui]〉]dt

≈
∫ T

0

∂

∂ui
〈 f [x(ui ), ui]〉

∣∣∣∣
ui

(ui − ui )dt

= 0. (A7)

Since Eq. (A7) must hold for all components i, we write∫ T

0
∇u〈 f [x(u), u]〉 ◦ (u − u)dt = 0, (A8)

where ◦ denotes the elementwise multiplication (Schur prod-
uct). Here we assume that the cost functional can be separated
into a part F u(u), which depends on control inputs only and
which is deterministic, and a part 〈F x[x(u)]〉, which is a func-
tion of the network state x and only indirectly depends on the
applied control, i.e.,

〈F [x(u), u]〉 = F u(u) + 〈F x[x(u)]〉. (A9)

Equivalently, one can write∫ T

0
〈 f [x(u), u]〉dt =

∫ T

0
[ f u(u) + 〈 f x[x(u)]〉]dt . (A10)

Applying the chain rule in Eq. (A8) yields∫ T

0
∇u〈 f [x(u), u]〉 ◦ (u − u)dt

=
∫ T

0

[∇u f u(u) + 〈
DT

u [x(u)]∇x f x(x(u))
〉] ◦ (u − u)dt

= 0, (A11)

where Du[x(u)] is the Jacobian matrix of the state x with
respect to the control vector u, evaluated at the optimal
control u.

To calculate the above derivative we must find an ex-
pression for the Jacobian matrix Du[x(u)]. However, the
dependence of the network state on the control inputs cannot
be provided in closed form. The Lagrange Formalism enables
us to derive an alternative expression for the second term on
the right-hand side of Eq. (A11), which can be evaluated to
find the optimal control.

2. The method of Lagrange multipliers

We can use the formalism of Lagrange multipliers to for-
mulate conditions for the optimization of the cost functional,
Eq. (A3), that is subject to the constraint given in Eq. (A1)
and the boundary conditions given in Eq. (A2). Our approach
is similar to the method used in Ref. [68], and we will obtain
a result that resembles what is found in Ref. [31] for a system
reaction-diffusion equations.

We define the mean Lagrange function 〈L[x(t ), u(t )]〉 as

〈L[x(t ), u(t )]〉

=
〈
F (x, u) −

∫ T

0

[
d

dt
x − h(x) − σ (A ⊗ G)x

− (B ⊗ K )u − (IN ⊗ G)ξ

]T

φ(t ) dt

〉

=
〈 ∫ T

0

{
f (x, u) −

[
d

dt
x − h(x) − σ (A ⊗ G)x

− (B ⊗ K )u − (IN ⊗ G)ξ
]T

φ(t )

}
dt

〉
. (A12)

Equation (A1) for the dynamics of the network state x has to
be satisfied for all times 0 � t � T , which is ensured by the
time integration of the constraint. φ(t ) = [φ1(t ), ...,φN (t )],
with φi(t ) = [φi1(t ), . . . , φid (t )] is the d × N-dimensional
vector of time-dependent Lagrange multipliers.

Linearizing around the optimal solution [cf. Eqs. (A4) and
(A8)], we obtain the optimality conditions〈∫ T

0
∇uL[x(u), u] ◦ δu dt

〉
= 0 (A13)

and 〈∫ T

0
∇xL[x(u), u] ◦ δx dt

〉
= 0, (A14)

with δu = u − u and δx = x(u) − x(u).
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After inserting the Lagrange function, Eq. (A12), into
Eq. (A14), we apply partial integration and the chain rule, and
obtain

〈∇xL[x(u), u] ◦ δx〉

=
〈 ∫ T

0
∇x f [x(u), u] ◦ δx dt

−
∫ T

0
∇x

[
d

dt
x(u)

]T

φ ◦ δx dt

−
∫ T

0
∇x({−h[x(u)] − σ (A ⊗ G)x(u)

− (B ⊗ K )u − (IN ⊗ G)ξ}T φ) ◦ δx dt

〉

=
〈 ∫ T

0

{
[∇x f x(x)] + ∂

∂t
φ

+ [Dx(h) + σ (A ⊗ G)]T φ

}
◦ δx dt − φ(T ) ◦ δx(T )

〉

= 0. (A15)

The boundary term

φ(T ) ◦ δx(T ) = 0 (A16)

must hold for every realization. Since δx(T ) could be finite,
the boundary condition φ(T ) for the vector of Lagrange mul-
tipliers is

φ(T ) = 0. (A17)

Equation (A15) is fulfilled if the integrand vanishes. We
thus obtain a d × N-dimensional system of linear ordinary
differential equations for the so-called adjoint states φ,

− d

dt
φ(t ) = [Dx(h) + σ (A ⊗ G)]T φ(t ) + ∇x f x(x), (A18)

where Dx(h) denotes the Jacobian matrix of the local dynam-
ics with respect to the network state x. The adjoint states are
obtained for every realization by solving Eq. (A18) backwards
in time obeying the boundary conditions Eq. (A17).

Inserting the Lagrange function [Eq. (A12)] into Eq. (A13),
we obtain

〈∇uL[x(u), u] ◦ δu〉

=
〈 ∫ T

0
∇u f [x(u), u] ◦ δu dt

−
∫ T

0

d

dt
{Du[x(u)]}T φ ◦ δu dt

−
∫ T

0
∇u({h[x(u)] − σ (A ⊗ G)x(u)

− (B ⊗ K )u}T φ) ◦ δu dt

〉

= 0. (A19)

The first term in Eq. (A19) vanishes [see Eq. (A8)]. Fur-
thermore, after applying partial integration and the chain rule,

above Eq. (A19) simplifies to

〈∇uL ◦ δu〉 =
〈 ∫ T

0
{Du[x(u)]}T d

dt
φ ◦ δu dt

+
∫ T

0
[{Du[x(u)]}T (∇x{h[x(u)]

+ σ (A ⊗ G)}T φ) + (B ⊗ K )T φ] ◦ δu dt

〉

=
〈 ∫ T

0
({Du[x(u)]}T

[
d

dt
φ + Dx(h)

+ σ (A ⊗ G)

]T

φ

+ (B ⊗ K )T φ) ◦ δu dt

〉

= 0, (A20)

where the boundary term of the partial integration was set to
zero because of the boundary conditions imposed on φ and x.

Inserting the differential Eq. (A18) that governs the dynam-
ics of the adjoint states into Eq. (A20), we obtain〈 ∫ T

0

{−DT
u [x(u)]∇x f x[x(u)] + (B ⊗ K )T φ

} ◦ δu dt

〉

= 0. (A21)

The first term corresponds to the expression found in
Eq. (A11). We can solve Eq. (A21) for this term and insert
it into Eq. (A11) to obtain the optimality condition∫ T

0
[∇u f u(u) + (B ⊗ K )T 〈φ〉] ◦ δu dt =

∫ T

0
g(t ) dt

= 0. (A22)

Equation (A22) is fulfilled if the stronger optimality condi-
tion

g(t ) = ∇u f u(u) + (B ⊗ K )T 〈φ〉 = 0 (A23)

holds for all times t ∈ [0, T ]. This equation is similar to the
equation derived by Casas et al. [31] for a system of reaction-
diffusion equations.

APPENDIX B: NUMERICAL INTEGRATION METHOD
AND LOCAL OPTIMA

We integrate the equations for the network dynamics
[Eq. (1)] and the adjoint state [Eq. (10)] using the fourth order
Runge-Kutta (RK4) method. A small step size of �t = 0.1
arb. units is used to ensure numeric stability and small trun-
cation errors. The noise term is scaled with the factor 1√

�t
,

such that the effective noise strength does not depend on the
integration step size.

When solving the minimization problem for the optimal
control numerically (see Sec. II C) using gradient based op-
timization, we may converge to a local minimum of the cost
functional. To alleviate this problem, we choose multiple ini-
tial conditions u0 for the conjugate gradient algorithm. In
the case of synchronizing the network dynamics, the control

024213-15



CHOUZOURIS, ROTH, CAKAN, AND OBERMAYER PHYSICAL REVIEW E 104, 024213 (2021)

scheme was robust to changes in u0. The coexistence of mul-
tiple local minima of the cost functional was observed only
in the case of switching between network states using sparse
control (cf. Fig. 7). For larger values for Is [cf. Eq. (7)] we find
one minimum at u(t ) = 0 (smaller cost for the sparsity term)
coexisting with another minimum corresponding to a control
input u(t ) affecting a small number of nodes (smaller cost for
the precision term). Which of these local optima has minimal
cost depends on the value of Is.

To ensure that the global optimum was found in the latter
case for a given value of Is, we systematically varied the
initial conditions. Starting with Is = 0, we first calculated the
optimal control signal, then increased the value of Is, and
used the previous optimal control as the new initial condition
(continuation). Likewise, starting with a high enough value
for Is, this process is repeated, but for decreasing values of Is.
For a given value of Is the control input with the lower cost
was chosen for further analysis.

APPENDIX C: DEFINITIONS OF AVERAGE AND MODAL
CONTROLLABILITY

We consider a simplified linear network dynamics of the
form

x(t + 1) = Ax(t ) + Bu(t ), (C1)

with activity vector x, adjacency matrix A, control matrix B,
and control inputs u. To calculate the average controllability
of node k in the network, we choose the input matrix B(k) to
target a single node, i.e., B(k)

i j = 1 for i, j = k and B(k)
i j = 0,

otherwise. The controllability Gramian of this system is de-
fined as

W (k) =
∞∑

τ=0

Aτ B(k)B(k)T (Aτ )T (C2)

and the average controllability as its trace (cf. Ref. [23])

cav
k = TrW (k). (C3)

Network nodes with high average controllability have a large
impact on the network dynamics. This makes them important
control sites since by controlling these nodes a large number
of possible activity vectors x can be reached with little control
energy. They are consequently said to be able to move the
system to many easy-to-reach states [23].

The modal controllability is defined based on on an eigen-
value decomposition of the network adjacency matrix A,

cmod
k =

N∑
j=1

(
1 − λ2

j

)
v2

k j, (C4)

where vk j are the elements of the eigenvector matrix V =
[vk j] and λ1 . . . λN are the corresponding eigenvalues [23].

Nodes with high modal controllability tend to be sparsely
connected. They are capable of pushing the network dynamics
toward activity vectors x which require substantial control
energy to be reached. Thus, nodes with high modal control-
lability are said to be capable of steering the network into
difficult-to-reach states [23].

For a detailed description and derivation of these regional
controllability measures please refer to Refs. [23,25,63]. We
use the matlab code provided with the publication of Ref. [23]
to compute the controllability measures [79]. For their calcu-
lation, only the adjacency matrix A (cf. Fig. 2) is required.

APPENDIX D: DIFFUSION TENSOR IMAGING

1. Subjects

We use the Diffusion Tensor Imaging (DTI) data of 12
human subjects from the Human Connectome Project (Young
Adults HCP) [56] with the following IDs: 101309, 121416,
211215, 211619, 212116, 213522, 219231, 220721, 268749,
284646, 303119, 329844. All subjects are male, healthy, and
26–30 years old.

2. Data processing pipeline

Data acquisition and preprocessing is described in
Ref. [56]. We used BEDPOSTX (Bayesian Estimation of Dif-
fusion Parameters Obtained using Sampling Techniques) from
the FSL toolbox [57] for building up distributions on diffusion
parameters, which automatically determines the number of
crossing fibres per voxel. Based on these diffusion parameters
at each voxel, we then applied the PROBTRACKX (proba-
bilistic tractography) algorithm from the same toolbox with
5000 samples per voxel. The resulting connectivity matrix
As for each subject s was normalized by dividing the con-
nections between any two regions by the number of voxels
in the source region multiplied by 5000. Self connections

were deleted, As
ii

!= 0, ∀ i, and we averaged the structural
connectivity matrices of the individual subjects to obtain the
adjacency matrix A = 1

12

∑N=12
s As. Probabilistic fiber track-

ing does not provide information about directionality; hence
the resulting graph must be undirected. Following standard
procedures (cf. Ref. [76]), the structural connectivity matrix
was symmetrized (A ← A+AT

2 ), as any deviations from sym-
metry are artifacts of the processing method. Since application
of the PROBTRACKX algorithm typically results in a certain
number of false positive fibers and thus assigns nonzero con-
nection strengths to all pairs of brain regions, we enforced
a sparsity of 20% [77] by discarding all connections with a
relative connection strength smaller than 0.00071 (0.15% of
strongest relative connection strength).
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