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Stability and superfluidity of the Bose-Einstein condensate in a two-leg ladder with magnetic field
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The stability and superfluidity of the Bose-Einstein condensate in two-leg ladder with magnetic field are
studied. The dispersion relation and the phase diagram of the system are obtained. Three phases are revealed: the
Meissner phase, the biased ladder (BL) phase, and the vortex phase. The dispersion relation and phase transition
of the system strongly depend on the magnitude of atomic interaction strength, the rung-to-leg coupling ratio
and the magnetic flux. Particularly, the change of the energy band structure in the phase transition region is
modified significantly by the atomic interaction strength. Furthermore, based on the Bogoliubov theory, the
energetic and dynamical stability of the system are invested. The stability phase diagram in the full parameter
space is presented, and the dependence of superfluidity on the dispersion relation is illustrated explicitly. The
atomic interaction strength can produce dynamical instability in the energetic unstable region and can expand
the superfluid region. The results show that the stability of the system can be controlled by the atomic interaction
strength, the rung-to-leg coupling ratio and the magnetic flux. In addition, the excitation spectrums in the
Meissner phase, BL phase and vortex phase are further studied. The modulation of the excitation spectrum
and the energetic stability of the system by the atomic interaction strength, the rung-to-leg coupling ratio and
magnetic flux is discussed. Finally, through the numerical simulation, the dynamical instability of the system is
verified by the time evolution of the Bloch wave and rung current. This provides a theoretical basis for controlling
the superfluidity of the system.
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I. INTRODUCTION

Ultracold bosonic atoms in optical lattices offer a clean and
highly controlled experimental platform to explore intrigu-
ing phenomena in condensed physics. By overlapping and
interfering laser beams, various kinds of trapping potentials
can be created and the atomic interaction strength can also
be controlled by magnetic fields or by selecting different
atomic species [1–5]. The realization of optical lattice has
stimulated a lot of theoretical and experimental research work
and found some interesting phenomena [6–10]. In particular,
recent progress in creating artificial gauge fields for ultra-
cold atoms in discrete as well as continuum systems has
opened up many new field for the study of quantum phase
transitions, such as vortex nucleation [11,12], the Hofstadter
model [13,14], and vortices [15,16]. The behavior of charged
particles in magnetic field can be simulated by Bose-Einstein
condensate (BEC) in an optical lattice subject to an artifi-
cial magnetic field. The atoms can be manipulated by the
laser-assisted tunneling to induce a phase resembling an effec-
tive magnetic field, i.e., the so-called artificial magnetic field
[17,18]. The introduction of artificial magnetic field induces
a Lorentz like force and breaks time-reversal symmetry and
modifies the energy band structure of the system. The re-
alization of the artificial magnetic field in an optical lattice
has provided physicists a new fertile ground for exploring
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many aspects of nonlinear phenomena, including quantum
hall states [19,20], the Bose glass phase [21], and the Bose-
Hubbard model [22,23].

The bosonic two-leg ladder is the simplest model for study-
ing the response of bosons to a magnetic field. Due to the
experimental observations are particularly easy to interpret,
researchers show great interests in this system both theoret-
ically and experimentally [24–26]. Thus, the ladder system
opens up a significant controllable path to study the Hofs-
tadter butterfly [27,28], the Mott-insulator-superfluid phases
[29] and the topologically protected phases [30]. Recently,
the ladder system has been used to successfully realize the
phase transition from Meissner to vortex state with nonin-
teracting impact [31], which not only lays the foundation
for the cold atom system to simulate the superconductor but
also provides a new way to realize the spin-orbit coupling
in low-dimensional quantum gases. For the interacting case,
the interplay between single-particle degeneracies and atomic
interaction leads to interesting physics, such as Mott phases
with staggered loop currents [32], vortex flux, charge density
waves, and biased ladder phase [33,34]. However, most of the
studies about the two-leg ladder system focus on the discus-
sion of the ground state and the phase transition process, but
the stability of the system, especially its superfluidity, is still
not clear [35–37]. Furthermore, how the atomic interaction
strength modifies the dispersion relation and the ground-state
phase diagram of the system is still an open subject.

In the optical lattice, superfluidity of BEC can be repre-
sented by a Bloch wave, which can be regarded as a plane
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wave modulated by the periodic potential [38]. Bloch wave
and Bloch band play important role to the study of superfluid-
ity and many of its related phenomena in this periodic system.
The Landau instability is determined by whether the ele-
mentary excitation around a Bloch wave lowers the system’s
energy. If it does not, then the Bloch wave is a local energy
minimum of the system which represents a superfluidity, the
system is energetic stable. Otherwise, the Bloch wave is an
energy saddle point which results in Landau instability, i.e.,
energetic unstable [39]. Apart from the atomic interaction,
the BEC in the optical lattice is always dynamical stable.
Dynamical unstable occurs when both the atomic interaction
and the periodic lattice exist, which causes the system to
deviate from the original Bloch state during small transient
disturbance [40].

In this work, we study the stability and superfluidity of
BEC with atomic interaction trapped in two-leg ladder subject
to an artificial magnetic field. By calculating the ground-state
energy, atomic density, and the rung current, the dispersion
relation and the ground-state phase diagram are obtained.
Three phases in the ground state are revealed: the Meissner
phase, the biased ladder (BL) phase, and the vortex phase.
The atomic interaction strength, the rung-to-leg coupling ra-
tio, and the magnetic flux can modify the dispersion relation
and result in the phase transition. Furthermore, the energetic
and dynamical instablility of the system are studied based
on the Bogoliubov theory. The stability phase diagram in
the full parameter space is obtained, the physical mechanism
of superfluid generation is further clarified. The excitation
spectrums in the Meissner phase, BL phase, and vortex phase
are also studied respectively. The modulation of the excita-
tion spectrum and the energetic stability of the system by
the atomic interaction strength, the rung-to-leg coupling ratio
and magnetic flux is discussed. Finally, through the numerical
simulation, the dynamical instablility is verified by the time
evolution of the Bloch wave and rung current.

This paper is organized as follows. In Sec. II, we present
the model of BEC trapped into a two-leg ladder with an artifi-
cial magnetic flied. In Sec. III, the dispersion relation and the
ground-state phase diagram are presented in detail. In Sec. IV,
the energetic and dynamical instability are studied based on
the Bogoliubov theory. The stability phase diagram and the
physical mechanism of superfluid generation are given. In
Sec. V, the excitation spectrums in the three phases are de-
termined. In Sec. VI, the numerical validation results of the
dynamical stability are clearly presented. Finally, in Sec. VII,
a brief summary is given.

II. MODEL

We study the stability and superfluidity of BEC in two-
leg ladder subject to an artificial magnetic field. The two-leg
bosonic ladder is an infinite ladder composed of square pla-
quettes. In the experiment [31], along the rungs, by using
a superlattice, an array of isolated double-well potentials is
generated, and there is a bare tunneling Jx and an energy
offset � that inhibits left-right tunneling inside each ladder.
The pair of running-wave beams with frequency difference
ω = ω1 − ω2 = �/h̄ can create an artificial magnetic field,
which restores the tunneling and induces a complex hopping

term K̃ � JxV 0
K /(2

√
2�) and has a spatially dependent phase,

where V 0
K is the running-wave beams intensity. The tunneling

along the legs is determined through J̃ = JyJ0[V 0
K /(2

√
2�)],

where Jy is tunneling along the legs and J0 is Bessel function
of order 0. The total phase accumulated by a particle when
completing a closed trajectory on a single plaquette corre-
sponds to the magnetic flux per unit cell. By changing the
wavelength of the running-wave beams or the angle between
them, one can in principle engineer any flux. The tight-binding
Hamiltonian for this two-leg bosonic ladder is given by

Ĥ = −J̃
∑

n

(eiφ ân,Lâ†
n+1,L + e−iφ ân,Râ†

n+1,R + H.c.)

− K̃
∑

n

(â†
n,Lân,R + H.c.)

+ g̃

2

∑
n

(â†
n,Lâ†

n,Lân,Lân,L + â†
n,Râ†

n,Rân,Rân,R), (1)

where the summation index and subscript n refer to the nth
site, ân,σ and â†

n,σ are the bosonic annihilation and creation
operators on the left or right leg of the ladder at position n
(σ stands for L or R). J̃ and K̃ represent the hopping matrix
elements along the legs and rungs of the ladder, respectively,
and φ is the magnetic flux piercing each unit cell; g̃ is atomic
interaction strength between arbitrary two atoms in a site; H.c.
denotes the conjugate term.

Using the mean-field approximation, i.e., 〈ân,σ 〉 = an,σ , the
tight-binding Hamiltonian (1) is given by

H = − J̃
∑

n

(eiφan,La∗
n+1,L + e−iφan,Ra∗

n+1,R + H.c.)

− K̃
∑

n

(a∗
n,Lan,R + H.c.) + g̃

2

∑
n

(|an,L|4 + |an,R|4),

(2)

where the an,σ is the probability amplitude of atoms on the leg
of the ladder at position n. In order to study the dynamic char-
acteristics of the system, by using the Heisenberg equation
of motion (ih̄dan,σ /dt = ∂H/∂a∗

n,σ ), the discrete nonlinear
Schrödinger equation associated with an,σ corresponding to
Hamiltonian (2) can be obtained,

iȧn,L = − (e−iφan+1,L + eiφan−1,L ) − Kan,R + g|an,L|2an,L

iȧn,R = − (eiφan+1,R + e−iφan−1,R) − Kan,L + g|an,R|2an,R,

(3)

where we used the natural element h = 1, K = K̃/J̃ , and
g = g̃/J̃ , and an,σ satisfies the normalization condition, i.e.,
�n(|an,L|2 + |an,R|2) = 1. Note that the time has been rescaled
as t → [h̄/J̃]t .

It is easy to measure the currents in real space along the
legs and rungs of ladder in experiment, so we can define
current operators along the legs and rungs as

j‖n,σ = i(e±iφa†
n+1,σ an,σ − H.c.)

jn = iK (a†
n,Ran,L − H.c.). (4)

In addition, the chiral current jc along the legs plays an impor-
tant role in characterizing each phase. The chiral current jc is
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defined as

jc = j‖n,L − j‖n,R. (5)

III. THE DISPERSION RELATION AND PHASE DIAGRAM

We employ the two superimposed Bloch waves (the super-
position state)

an,σ = aσ+ei(kn−μt ) + aσ−e−i(kn+μt ) (6)

as the stationary solution of Eq. (3), so that

μaL± = −2aL± cos(k ∓ φ) − KaR± + g|aL±|2aL±
+ 2g|aL∓|2aL±

μaR± = −2aR± cos(k ± φ) − KaL± + g|aR±|2aR±
+ 2g|aR∓|2aR±, (7)

where k and μ are the quasimomentum and chemical potential
of the system.

For noninteracting particles, the dispersion relation of the
band is described as follows:

μ± = −2 cos k cos φ ±
√

K2 + 4 sin2 k sin2 φ. (8)

Because the characteristics of the lower band are very im-
portant for study the ground state and phase transition of the
system, we mainly discuss the dispersion relationship of the
lower band. It is obvious that the period of the two bands
is 2π . Consistent with relevant theoretical and experimental
researches, as the rung-to-leg coupling ratio K increases, the
lower band minimum shifts from two nonzero k values to
k = 0, and the two nonzero k are degenerate and symmetric
around the origin. Using ∂μ−/∂k = 0, we obtain the criti-
cal condition for this bifurcation. For K � 2 sin φ tan φ, the
lower band μ− has a single minimum at k = 0, while for
K < 2 sin φ tan φ, μ− has two minima at k = ±k0, where
k0 = arccos

√
K/4 tan2 φ + cos2 φ. The ground states of these

two lower band structures correspond to the Meissner phase
and the vortex phase, respectively.

Now we concentrate on the weakly atomic interacting limit
and calculate how the phase transition is affected by the pres-
ence of atomic interaction. The dispersion relation Eq. (7)
depends on the magnitude of atomic interaction strength, the
rung-to-leg coupling ratio and the magnetic flux, thus it cannot
be obtained analytically, but can be described numerically. By
calculating the ground-state atomic density and the rung cur-
rent, we find three phases which are shown in Fig. 1: (1) The
Meissner phase corresponds to the ground state of the zero
quasimomentum state, where the atomic density is uniform,
and equal and opposite currents flow along the two legs of the
ladder. The rung current vanishes. (2) The BL phase, where
the atomic density is uniform but different on the left and
right legs. The fluid velocity is higher (lower) on the lower
(higher) density leg, so the rung current is zero. (3) The vortex
phase, where the atomic density is modulated along the ladder
and has the rung current. Both the BL phase and the vortex
phase corresponds to the ground state of the nonzero quasi-
momentum state and these phases have a twofold degeneracy
which are associated with symmetry k0 −→ −k0, the choice
of the leg with a higher (lower) density is arbitrary. In the BL

FIG. 1. The ground-state phase diagrams in K-g plane for
φ = π/4 (a) and in φ-g plane for K = 1.1 (b).

phase, due to only one of the two minima is macroscopically
populated, the system in this phase can be described by the
plane-wave state, i.e., aσ− = 0 in Eq. (6), which is consistent
with the system in Meissner phase. Furthermore, the vortex
phase is characterized by a macroscopic occupation of a su-
perposition state involving two momentum modes k = ±k0,
so the system in vortex phase can be described by the super-
position state.

The ground-state phase diagram in K-g plane for φ = π/4
is depicted in Fig. 1(a). It can be clearly seen that there
exists a tricriticality gc at the phase boundary of the Meiss-
ner, BL and vorter phases. With K increases, when g < gc,
the system experiences vortex-BL-Meissner phase transition,
while when g > gc, the system experiences vortex-Meissner
phase transition. Figure 1(b) shows the ground-state phase
diagram in φ-g plane for K = 1.1. Similarly to Fig. 1(a),
there also exists a tricriticality gc at the phase boundary of
the three phases. With φ increases, when g < gc, the sys-
tem experiences Meissner-BL-vortex phase transition, while
when g > gc, the system experiences Meissner-vortex phase
transition. According to the two phase diagrams, with the
increase of g, the BL phase region decreases until it disappears
when g = gc, while the Meissner phase region increases. This
indicates that the stronger atomic interaction strength makes
the ground state of the system easier to be in the Meissner
phase, but difficult to maintain the BL phase. That is, when
g < gc, although the particle number density distribution is
uneven on the left and right legs, the particles only propagate
on the left and right legs without mutual interference within a
certain parameter range. In addition, the magnetic flux φ also
plays an important role for the phase transition of the system.
The system is more likely to be in the vortex phase under a
larger φ, and when φ → π

2 , the system is only in the vortex
phase. Since the BL phase region under the K-g plane is much
larger than that under the φ-g plane, the phase transition is
sensitive to the intensity of φ. In short, the phase transition of
the system depends on the magnitude of the atomic interaction
strength, the rung-to-leg coupling ratio and the magnetic flux.

Figure 2 shows the dispersion relations under different
phases with the smaller atomic interaction strength (g =
0.2 < gc) and the larger atomic interaction strength (g =
0.8 > gc). Corresponding to Fig. 1, when g = 0.2 < gc, the
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FIG. 2. The dispersion relations of the lower band under g =
0.2 < gc and g = 0.8 > gc. The black line, red line, and blue line
indicate that the ground state of the system is in the Meissner phase,
the BL phase, and the vortex phase, respectively.

ground state shows three phases and Figs. 2(a) and 2(c),
respectively, draw the dispersion relations under the three
different phases. The lower band has two structures in the
parameter space: In the Meissner phase, the lower band min-
imum is at k = 0, the system is in the zero quasimomentum
state; while in the BL or vortex phase, the lower band min-
imum is at the two symmetric quasimomentum ±k0, the
system is in the nonzero quasimomentum state. In addition,
due to the emergence of the BL phase in the transition region
of zero quasimomentum state to nonzero quasimomentum
state, the lower energy band structure gradually transition
from the zero quasimomentum state to nonzero quasimomen-
tum state with K (φ) decrease (increase).

When g = 0.8 > gc, the ground state of the system only
shows the Meissner phase and the vortex phase, Figs. 2(b)
and 2(d), respectively, draw the dispersion relations under the
two different phases. As shown in the figures, the lower band
still has two structures, that is, under the Meissner phase,
the magnetic ladder system is in the zero quasimomentum
state, and under the vortex phase, the system is in the nonzero
quasimomentum state. However, due to the absence of the BL
phase, the lower energy band changes abruptly at the phase
transition point.

In order to further study the phase transition, the chiral cur-
rent jc and quasimomentum |k0| corresponding to the ground
state as functions of K and φ for g = 0, g = 0.2 and g = 0.8
are plotted in Fig. 3. As shown in Fig. 3(a), for fixed φ, jc
increases with the increase of K in the vortex and BL phases,
and jc reaches saturation in the Meissner phase. Figure 3(b)
shows that, for fixed K , in the Meissner phase, jc increases
with the increase of φ, while in the BL and vortex phases, jc
decreases with the increase of φ. When g = 0, the system ex-
periences vortex-Meissner phase transition with K increases
or φ decreases, during which jc is continuous across the phase
transition point. However, atomic interaction breaks this con-
tinuity. jc has a discontinuous jump between the vortex phase

FIG. 3. [(a) and (b)] The chiral current jc as a function of K
and φ. [(c) and (d)] The quasimomentum |k0| corresponding to the
ground state as a function of K and φ. The dotted line represents the
dividing line of the different phases.

and BL phase at g = 0.2 or the vortex phase and Meissner
phase at g = 0.8. Especially, since absence of BL phase at
g = 0.8, jc has strong jump across the phase transition point.
In addition, it can be clearly seen from Figs. 3(c) and 3(d)
that the system belongs to the nonzero quasimomentum state
(|k0| 
= 0) in the vortex phase or BL phase and the zero quasi-
momentum state (|k0| = 0) in the Meissner phase. Moreover,
the continuity of |k0| against K and φ is consistent with that
of jc against K and φ.

In general, atomic interaction causes jc or |k0| has a discon-
tinuous jump between the vortex and BL phases or vortex and
Meissner phases and makes the ground state of the system eas-
ier to be in the Meissner phase. This discontinuity represents
a first-order transition, which is caused by the transition from
the vortex phase to BL phase or Meissner phase. That is, the
atomic density changes from a modulated form in the vortex
phase to an uniform form in the BL phase or Meissner phase
along the ladder. Especially in the case of g = 0.8 > gc, due
to the absence of BL phase, the lower band structure changes
from double-well structure to single-well structure rapidly,
resulting in a strong jump of jc or |k0| at the phase transition
point. However, when the BL phase exists, jc or |k0| is contin-
uous while its slope with K or φ is discontinuous across the
phase transition point between the BL and Meissner phase,
indicating the transition from BL phase to Mansner phase
is a second-order transition. With the increase of K or the
decrease of φ, the atomic density difference between the left
and right legs in BL phase gradually decreases until it tends
to 0 in the Meissner phase. This is a continuous changing
process, so the transition of the lower band structure from the
nonzero quasimomentum state to zero quasimomentum state
is gradually, and jc or |k0| is continuous with K or φ.

In the experiment [31], a local density measurement can
distinguish the three phases. For the Meissner phase, the chiral
current is saturated; for the vortex phase, the spatial inhomo-
geneities of the chiral current along each leg is consistent with
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the transition to vortex phase. For the BL phase, atoms appear
to have a state which is translationally invariant along the
ladder, and has a nonsaturated chiral current. Another direct
probe of these states is the time-of-flight measurement. In
the Meissner phase, there is only one momentum peak for
each leg, the momentum peaks are located at k = ±π/(4dy),
where dy is lattice constants along the legs; in the BL phase,
there is still only one momentum peak for each leg, but the
characteristic momentum is reduced to k < ±π/(4dy). In the
vortex phase, there are two different momenta on each leg and
the momentum distribution is bimodal [41]. In addition,the
BL phase can be readily identified by the susceptibility mea-
surement [33].

IV. THE ENERGETIC AND DYNAMICAL INSTABILITY

We now study the stability of BEC in two-leg ladder by
using the Bogoliubov theory. The stability analysis of such a

state can be carried out by perturbing the superimposed Bloch
waves with small-amplitude phonons:

an,σ = [aσ+ + uσ+ei(qn−iωt ) + ν∗
σ+e−(iqn−iωt )]ei(kn−μt )

+ [aσ− + uσ−ei(qn−iωt ) + ν∗
σ−e−(iqn−iωt )]e−i(kn+μt ),

(9)

where uσ±, ν∗
σ±, q, and ω are the two quasiparticle amplitudes,

the quasimomentum, and the frequency of the perturbation,
respectively. The perturbation is a periodic disturbance that
depends on the quasimomentum excited by the particle
and the position of the optical lattice. Experimentally, this
perturbation can be produced by a sudden movement of the
magnetic potential along the lattice. Substituting Eq. (9) into
Eq. (3) and retaining only linear terms in the perturbation,
we obtain Bogoliubovde Gennes (BDG) equation
Âψ = ωψ with ψ = (uL+,uL−,uR+,uR−, νL+, νL−, νR+, νR−)T ,
where

Â =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U (a + q) 2gaL+a∗
L− −K 0 ga2

L+ 2gaL+aL− 0 0
2ga∗

L+aL− U (b − q) 0 −K 2gaL+aL− ga2
L− 0 0

−K 0 V (b + q) 2gaR+a∗
R− 0 0 ga2

R+ 2gaR+aR−
0 −K 2ga∗

R+aR− V (a − q) 0 0 2gaR+aR− ga2
R−

−ga∗2
L+ −2ga∗

L+a∗
L− 0 0 −U (a − q) −2ga∗

L+aL− K 0
−2ga∗

L+a∗
L− −ga∗2

L− 0 0 −2gaL+a∗
L− −V (b + q) 0 K

0 0 −ga∗2
R+ −2ga∗

R+a∗
R− K 0 −V (b − q) −2ga∗

R+aR−
0 0 −2ga∗

R+a∗
R− −ga∗2

R− 0 K −2gaR+a∗
R− −V (a + q)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(10)

with U (a ± q)= − 2 cos(k−φ±q)+2g|aL+|2+2g|aL−|2−μ,
U (b ± q) = −2 cos(k + φ ± q) + 2g|aL+|2 + 2g|aL−|2 − μ,
V (a ± q) = −2 cos(k − φ ± q) + 2g|aR+|2 + 2g|aR−|2 − μ,
V (b ± q) = −2 cos(k + φ ± q) + 2g|aR+|2 + 2g|aR−|2 − μ.
As discussed before, the system in the Meissner and BL
phases can be well described by the plane-wave state, so
both the energetic and dynamical stability in Meissner and
BL phases are actually described with the Bloch wave
quasiparticle excitation, i.e., an,σ = [aσ+ + uσ+ei(qn−iωt ) +
ν∗

σ+e−(iqn−iωt )]ei(kn−μt ) (aσ− = uσ− = ν∗
σ− = 0). Therefore, Â

is reduced to a fourth-order matrix.
The dynamical instability is excited if Â has one or more

nonzero imaginary eigenvalues. In this case, the instability
is characterized by the exponential growth of the perturba-
tion. The system is dynamical stable if all eigenvalues are
real numbers. Furthermore, the Landau instability, i.e., ener-
getic instability, can be studied by solving the BDG equation,
βψ = τ̂zÂψ , where τ̂z = (I 0

0 −I) and I is the identity matrix.
The system is said to be Landau unstable if one or more
eigenvalues of τ̂zÂ are negative. Physically, the Bloch wave
with Landau instability is not the local energy minimum of the
system. The system is energetic stable if all eigenvalues are
positive; at this time the Bloch wave has the local minimum
energy which represents the existence of superfluid.

We systematically study the stability of the system at
the lower band for various parameters. The stability phase
diagram in q-k plane for different K and g is clearly depicted

in Fig. 4. Due to the symmetry in q-k plane, we only show
the region of 0 � k � π and 0 � q � π . As K (for fixed g)
or g (for fixed K) increases, the superfluid region gradually
shifts from around k 
= 0 region to around k = 0 region, which
corresponds to the transition of the system from the nonzero
quasimomentum state to the zero quasimomentum state. The
superfluid region appears near the ground state, which is
closely related to the quasimomentum k0 corresponding to
the lowest energy of the system, and strongly depends on
K or g modified dispersion relations. The distribution of the
superfluid region can clearly reflect the phase transition of the
system, i.e., the system experiences the vortex-BL-Meissner
or vortex-Meissner phase transition with K (for fixed g) or
g(for fixed K) increases, which agrees with the results show in
Fig. 1(a). In the case of g = 0, the superfluid region increases
with the increase of K in the vortex phase until it becomes sta-
ble in the Meissner phase, which results from the K-modified
dispersion relation. The system is always dynamical stable.
However, in the case of g 
= 0, the atomic interaction can
affect the stability of the system and produce dynamical in-
stability in the energetic unstable region. With the increase of
g, in the region away from k0, the dynamical unstable region
increases, which indicates that the strong g cannot maintain
the stability of the system in the region away from the ground
state. In the vortex phase (the figures in Fig. 4 marked with
inverted triangle symbol line), the stability of the system is
described by the superposition state, the superfluid region
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FIG. 4. The stability phase diagram in k-q plane for different K and g. φ = π/4. From the first row to the seventh row: K = 0.8, 0.9,

1.0, 1.1, 1.2, 1.3, 1.5; from the first column to the fifth column: g = 0, 0.1, 0.2, 0.3, 0.4. Gray shaded region: the dynamical unstable region;
light gray shaded region: the energetic unstable region; and white area: the stable superfluid region. The symbol line represents the
quasimomentum k = k0 corresponding to the ground state. The graphs with symbol line belong to nonzero quasimomentum state and the
rest belong to zero quasimomentum state. The inverted triangle symbol indicates that the ground state is in the vortex phase, and the star
symbol indicates that the ground state is in the BL phase.

decreases gradually with the increase of K for fixed g and
almost does not change with the increase of g for fixed K . The
boundary of the dynamical unstable region coincidences with
the boundary of the energetic unstable region near k = k0,
which clearly outlines the superfluid region of the system.
In Meissner phase and BL phase, the stability of the system
in all phase regions is actually revealed with the plane-wave
state, the superfluid region expands with the increase of K (for
fixed g) or g(for fixed K). In addition, during the transition
from nonzero quasimomentum state to zero quasimomentum
state, the superfluidity in the transition region is affected by
the change of the energy band structure [Figs. 4(f2), (e3)–(f3),
(d4)–(e4), and (c5)–(e5)]. That is, during the transition region,

the dynamical instability can occur near the ground state when
the perturbation quasimomentum q is small.

Figure 5 shows the stability phase diagram in q-k plane for
different φ and g. Similarly to Fig. 4, the superfluid region is
always distributed around k = k0, which strongly depends on
φ or g modified dispersion relations. Distribution of the su-
perfluid region corresponds to the ground-state phase diagram
of the φ-g plane [Fig. 1(b)]. The system changes from zero
quasimomentum state to nonzero quasimomentum state with
the increase of φ, which makes the ground state experiences
the Meissner-BL-vortex or Meissner-vortex phase transition.
With the increase of φ, the dynamical unstable region in-
creases, while the superfluid region decreases in the Meissner
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FIG. 5. The stability phase diagram in k-q plane for different φ and g. K = 1.1. From the first row to the fifth row: φ/π = 0.24, 0.25,

0.26, 0.27, 0.28; from the first column to the fifth column: g = 0.1, 0.2, 0.3, 0.4, 0.5. Gray shaded region: the dynamical unstable region; light
gray shaded region: the energetic unstable region; white area: the stable superfluid region. The symbol line represents the quasimomentum
k = k0 corresponding to the ground state. The graphs with symbol line belong to nonzero quasimomentum state and the rest belong to zero
quasimomentum state. The inverted triangle symbol indicates that the ground state is in the vortex phase, and the star symbol indicates that the
ground state is in the BL phase.

phase and BL phase and increases gradually in the vortex
phase.

In order to further understand the dependence of stability
on the K , φ and g, the stability phase diagrams and the corre-
sponding quasimomentum of the ground state k0 in different
phase planes are depicted in Figs. 6. Figures 6(a) and 6(b)
and Figs. 6(c) and 6(d) display the stability phase diagrams
in K-k plane and φ-k plane, respectively. For g = 0.2 < gc,
according to the change of |k0| against K or φ (dashed lines),
the ground state experiences the vortex-BL-Meissner phase
transition as K (φ) increases (decreases). However, when
g = 0.8 > gc, |k0| mutates to zero abruptly as K (φ) increases
(decreases) and only the vortex phase and the Meissner phase
exist. The superfluid takes place around k0 
= 0 due to the
nonzero quasimomentum state and around k0 = 0 due to the
zero quasimomentum state, which is closely related to the dis-
persion relations corrected by K and φ. Figures 6(e) and 6(f)
demonstrate the stability phase diagram and the correspond-
ing |k0| in the g-k plane; g can expand the superfluid region
and make the system change from nonzero quasimomentum
state to zero quasimomentum state, resulting in the superfluid
region shifting from k 
= 0 to k = 0. This is also related to K
and φ.

In a word, the energetic and dynamical instability of BEC
in two-leg ladder with magnetic field can be precisely ma-
nipulated by the atomic interaction strength, the rung-to-leg
coupling ratio and magnetic flux. The coupling effect of these
parameters can make the superfluid appear in the region either
around or deviated from the center of the Brillouin zone,
which is closely related to quasimomentum of the ground
state. The stability phase diagram can well illustrate the phase
transition process of the system. Furthermore, the atomic
interaction strength can expand the superfluid region and
generate the dynamical instability in the region of energetic
unstable. These can provide a theoretical evidence for control
the superfluidity of the system in experiment.

V. EXCITATION SPECTRUM
AND ENERGETIC STABILITY

Now let us discuss the excitation spectrum of the two-leg
ladder system. The presence of the nonlinearity leads to rich
phenomena within the collective excitation spectrum which
are absent in the single-particle dispersion. The resulting spec-
tral can be calculated by using the BDG equation to calculate
the eigenvalue of Â given by Eq. (10).
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FIG. 6. The stability phase diagrams in K-k plane [(a) and (b)],
φ-k plane [(c) and (d)], and g-k plane [(e) and (f)]. Gray shaded
region: the dynamical unstable region; light gray shaded region:
the energetic unstable region; and white area: the stable superfluid
region. Dashed lines: the quasimomentum |k0| corresponding to the
ground state. [(a) and (b)] φ = 0.25π and q = 0.2π ; [(c) and (d)]
K = 1.1 and q = 0.25π ; [(e) and (f)] φ = 0.25π and q = 0.2π .
Points A–F marked in Fig. 6(a) are selected for numerical simulation
in different phase regions to verify the dynamical instability, and the
relevant conclusions are shown in Figs. 9 and 10.

A. Excitation spectrum in the Meissner phase

In the Meissner phase, the ground-state solution for the
condensate wave function is uniform and corresponds to a
condensate occupying the k = 0 state, so that the system can
be described by the plane-wave state. Then the matrix Â has
the form

Â =

⎡
⎢⎣

U (−q) −K gρ 0
−K U (q) 0 gρ
−gρ 0 −U (q) K

0 −gρ K −U (−q)

⎤
⎥⎦ (11)

with aL+ = aR+ = √
ρ, U (±q) = −2[cos(φ ± q) − cos φ] +

K + gn and μ = −2 cos φ − K + gn. This matrix is diagonal-
izable and the positive eigenvalues read

ε = 1√
2
{2K2 + U (q)2 + U (−q)2 − 2g2n2

± [4K2U 2
+ + (U 2

+ − 4g2n2)U 2
−]

1
2 } 1

2 , (12)

where U+ = U (q) + U (−q) and U− = U (q) − U (−q).
The excitation spectrums in the Meissner phase under dif-

ferent g and K are shown in Fig. 7. Obviously, the excitation
spectrum is symmetry about q = 0 and the excitation en-
ergy ε > 0. The system is energetic stable in the Meissner
phase, which corresponds to the superfluid characteristics of
the ground state. Figure 7(a) shows the difference between

FIG. 7. Excitation spectrum in the Meissner phase for various
values of g (a) and K [(b) and (c)].

excitation spectrums with and without atomic interaction.
The atomic interaction sharpens the excitation spectrum and
provides a single phonon mode close to q = 0. In addition,
it can be seen from Figs. 7(b) and 7(c) that the excitation
spectrum is sharpened with the increase of K and larger φ

makes the change of excitation spectrum against K more ob-
vious. Furthermore, by comparison, the increase of φ makes
the excitation spectrum smoother.

B. Excitation spectrum in the BL and vortex phases

In the BL and vortex phases, the ground state with nonzero
quasimomentum k = ±k0 has a twofold degeneracy. The nu-
merical result of Eq. (10) for the excitation spectrums in the
BL and vortex phases (k = ±k0) under different K , g, and φ

are shown in Fig. 8.
In the BL phase, only one of the two minima is macro-

scopically populated, so the excitation spectrum ε is obtained
with the plane-wave state and is asymmetric about q = 0
[Figs. 8(a1)–8(c1)]. The excitation energy ε > 0, the ground
state is energetic stable, which corresponds to the stable phase
diagram. Furthermore, in addition to phonon mode branches,
there is also a rotonlike mode, and g and K enhance the
excitation energy of the rotonlike mode and make the roton-
like mode close to phonon mode. When g and K go up to a
certain value, the rotonlike mode disappear and the excitation
spectrum degenerates to the case of the Meissner phase. The
magnetic flux smoothes the excitation spectrum causing the
rotonlike mode to move away from phonon mode, thus pro-
moting the generation of vortex phase.

The vortex phase is characterized by a macroscopic oc-
cupation of a superposition state involving two momentum
modes k = ±k0, the excitation spectrum ε is obtained with the
superposition state. Therefore, different from BL phase, the
excitation spectrum in vortex phase is symmetric about q = 0
and has two symmetric rotonlike modes [Figs. 8(a2)–8(c2)].
In the vortex phase region, consistent with BL phase, ε > 0
and the ground state is also energetic stable. The excitation
energy of the rotonlike mode increases with the increase of g
and φ, while decreases with the increase of K .

VI. THE NUMERICAL SIMULATION
OF THE DYNAMICAL STABILITY

Dynamical instability can cause the system to deviate from
its original Bloch state with small instantaneous perturbations,
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FIG. 8. Excitation spectrums in the BL phase [(a1)–(c1)] and vortex phase [(a2)–(c2)] for various values of g, K , and φ.

so it is easy to be simulated numerically. Through the nu-
merical simulation of Eq. (3), the dynamical instability can
be verified through the time evolution of the Bloch wave.
Figure 9 shows the time evolution diagrams of the Bloch
wave in the Meissner phase region as marked by A and B

in Fig. 6(a) and the BL phase region as marked by C and
D in Fig. 6(a), respectively. For the zero quasimomentum
state, i.e., the ground state is in the Meissner phase, the su-
perfluid always occurs near the center of the Brillouin area
(k = 0), corresponding to the point A in Fig. 6(a). In this

FIG. 9. The time evolution of the Bloch wave in different phase regions as marked by A, B, C, and D in Fig. 6(a). g = 0.2, φ = π/4, and
q = 0.2π . [(a1) and (a2)] k = 0.05π and K = 1.5, as marked by A in Fig. 6(a); [(b1) and (b2)] k = 0.73π and K = 1.5, as marked by B in
Fig. 6(a); [(c1) and (c2)] k = 0.02π and K = 1.0, as marked by C in Fig. 6(a); [(d1) and (d2)] k = 0.16π and K = 1.1, as marked by D in
Fig. 6(a).

024212-9



JIAN, QIAO, LIANG, YU, ZHANG, AND XUE PHYSICAL REVIEW E 104, 024212 (2021)

FIG. 10. The exciting rung current jn in different states as marked by A, B, C, D, E, and F in Fig. 6(a) as a function of lattice site n for
different times. g = 0.2, φ = π/4, and q = 0.2π . (a) k = 0.05π and K = 1.5; (b) k = 0.73π and K = 1.5; (c) k = 0.02π and K = 1.0; (d)
k = 0.16π and K = 1.1; (e) k = 0.27π and K = 0.75; and (f) k = 0.73π and K = 0.75.

region, the ground state is stable and the corresponding Bloch
wave periodically oscillates within a certain range due to the
perturbation, as shown in Fig. 9(a). When the k is far away
from the center of the Brillouin area, the dynamical instability
occurs, corresponding to the point B in Fig. 6(a), and the
Bloch wave is unstable. As shown in Fig. 9(b), the ampli-
tude of the Bloch wave suddenly increases with time and the
whole system is unstable. For the nonzero quasimomentum
state, i.e., the ground state is in the BL phase, the dynamical
instability occurs near the center of the Brillouin area and the
superfluid always occurs near k = k0 area. Figures 9(c) and
9(d) show the numerical simulation of the states as marked
by the point C in the dynamical unstable region and the point
D in the superfluid region [see Fig. 6(a)], respectively. The
numerical results are in good agreement with the theoretical
results.

In addition, in order to further explore the superfluidity
characteristics, the exciting rung current jn is numerically
simulated. Figure 10 shows jn in different states as marked
by A, B, C, D, E, and F in Fig. 6(a) as a function of lat-
tice site n for different times. Figures 10(a) and 10(b) and
Figs. 10(c) and 10(d) show the results with the plane-wave
state in the Meissner phase and BL phase, respectively. It
can clearly see that in the superfluid region [Figs. 10(a) and
10(d)], corresponding to the points as marked by A and D
in Fig. 6(a), when t = 0, jn = 0 and when t > 0, jn → 0.
This shows that the particles only propagate on the two legs
and do not interfere with each other and the system is stable.
However, in the dynamical unstable region [Figs. 10(b) and
10(c)], corresponding to the points as marked by B and C in
Fig. 6(a), jn 
= 0 and the perturbation of jn increases obvi-
ously and jn changes disorderly with time. This indicates that
the particles move disorderly in the two-legged ladder and
proves that the system is dynamical unstable. In the vortex

phase, the particle number density is modulated between two
ladder legs. Figures 10(e) and 10(f) show the results with the
superposition state in the vortex phase, corresponding to the
points as marked by E and F in Fig. 6(a). In the superfluid
region [Fig. 10(e)], jn oscillates around 0 along the rung and
does not change with time, which well capture the propaga-
tion characteristics of the particles under the vortex phase.
In the dynamical unstable region [Fig. 10(f)], the oscillation
of jn with time becomes disordered, which indicates that the
dynamic instability makes the propagation of the particles
become disordered. This further proves that the dynamical
stability of the system can be well revealed by the plane-wave
state in the Meissner and BL phases and the superposition
state in the vortex phase.

VII. CONCLUSION

In this work, we have investigated the stability and super-
fluidity of BEC with atomic interaction trapped in two-leg
ladder subject to an artificial magnetic field. By studying
the dispersion relation, three phases in the ground state are
obtained: the Meissner phase, the BL phase, and the vortex
phase. The dispersion relation strongly depend on the magni-
tude of atomic interaction strength, the rung-to-leg coupling
ratio and the magnetic flux. The transition of the vortex-BL-
Meissner or vortex-Meissner phase is vividly demonstrated by
the evolution of the chiral current and the quasimomentum
of the ground state. In addition, we discuss the energetic and
dynamical stability of the system. The stability phase diagram
in the full parameter space is presented, and the dependence
of superfluidity on the dispersion relation is illustrated explic-
itly. The superfluid region closely related to quasimomentum
of the ground state, which can be precisely manipulated by
the atomic interaction strength, the rung-to-leg coupling ratio
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and magnetic flux. Atomic interaction strength can produce
dynamical instability in the energetic unstable region and
can expand the superfluid region. Furthermore, the excita-
tion spectrums in the three phases are studied, respectively.
The excitation spectrums present a phonon mode at long
wavelength in the Meissner phase and one or two rotonlike
modes in the BL or vortex phase. The energetic stability of
the system can be well described by the excitation spectrum.
Finally, through the numerical simulation, the dynamical in-
stability of the system is verified by the time evolution of
the Bloch wave and the exciting rung current. This pro-
vides a possible way to design the superfluid of the system
experimentally.
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