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Period-doubling route to mixed-mode chaos
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Mixed-mode oscillations (MMOs) are a complex dynamical behavior in which each cycle of oscillation
consists of one or more large amplitude spikes followed by one or more small amplitude peaks. MMOs typically
undergo period-adding bifurcations under parameter variation. We demonstrate here, in a set of three identical,
linearly coupled van der Pol oscillators, a scenario in which MMOs exhibit a period-doubling sequence to chaos
that preserves the MMO structure, as well as period-adding bifurcations. We characterize the chaotic nature of
the MMOs and attribute their existence to a master-slave-like forcing of the inner oscillator by the outer two with
a sufficient phase difference between them. Simulations of a single nonautonomous oscillator forced by two sine
functions support this interpretation and suggest that the MMO period-doubling scenario may be more general.
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I. INTRODUCTION

Period-doubling (PD) and mixed-mode oscillations
(MMOs) are two of the major paradigms of nonlinear
dynamics. In PD, as a parameter is varied, alternate,
previously equal extrema of a periodic orbit assume different
values, thereby doubling the period of the oscillation and
ultimately leading to chaos. MMOs are periodic oscillations
consisting of M large (LAOs) and n small (SAOs) amplitude
oscillations per cycle (Mn). On varying a parameter, MMOs
typically undergo period-adding bifurcations, e.g., from Mn to
Mn+1 [1–4]. In this work, we describe a bifurcation sequence,
in which a single type of MMO exhibits PD bifurcations
leading to chaos in its SAOs only, while its LAOs and its Mn

structure remain unchanged.
Mixed-mode oscillations have been studied in many

systems. For example chemical systems such as the Belousov-
Zhabotinsky reaction have been reported to show MMOs
[1,5–10]. MMOs are also found in neural systems [11–19] as
well as in electrochemical systems [20–24]. Some of these
systems exhibit complex MMOs under weak perturbations.
Over long time intervals, the MMOs occasionally produce
bursts, thereby making the system chaotic, in what the au-
thors sometimes refer to as intermittent chaotic MMOs. In
such cases, both the LAOs and SAOs behave chaotically [25].
Studies performed in developing inner hair cells have revealed
that complex MMO oscillations can be produced [26,27]. The
period doubling to chaos is observed with additional periods
added to the small amplitude oscillations until the system
shows mixed patterns as shown in label 4 of Fig. 3 b in
Ref. [26]. The work we present here is different because the
period doubling occurs with the whole MMOs but it is appar-
ent only by looking at the small amplitude oscillations. The
MMOs structure is maintained as the system goes to chaos.

*epstein@brandeis.edu

We analyze here a system of three van der Pol oscilla-
tors [28,29] in Liénard form coupled linearly [see Fig. 1(a)]
through diffusion of the variable, w, which is analogous to
the recovery variable in the FitzHugh-Nagumo model [30,31].
The system evolves as shown in Eq. (1). With this model, there
is no direct link between the outer oscillators 1 and 3, though
they interact indirectly through the central oscillator 2. The
system is invariant to exchange of oscillators 1 and 3,

dv1

dt
= −hv3

1 + av1 − w1,

dw1

dt
= ε(v1 − ϕ) + Dw(w2 − w1),

dv2

dt
= −hv3

2 + av2 − w2,

dw2

dt
= ε(v2 − ϕ) + Dw(w3 − 2w2 + w1),

dv3

dt
= −hv3

3 + av3 − w3,

dw3

dt
= ε(v3 − ϕ) + Dw(w2 − w3),

(1)

where 0 < ε � 1, h, and a are nonnegative constants, ϕ de-
termines the relative position of the w nullcline with respect
to the v nullcline for an uncoupled system and Dw represents
the coupling strength.

II. RESULTS

A. Fully coupled system

Numerical simulations of Eq. (1) show a variety of in-
teresting dynamics, keeping h, a, ε and Dw constant, as
we vary ϕ. The dynamics of system (1) depends on the
value of ϕ, i.e., on the relative position of the w null-
cline with respect to the v nullcline. The orbit diagram in
Fig. 2(a) shows four regions where different behaviors are
observed. In Region I, at low ϕ, the three oscillators display
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FIG. 1. Representation of different coupling schemes. (a) Fully coupled. (b) Master-slave. (c) Forced uncoupled.

a homogeneous steady state followed by nearly harmonic
in-phase SAOs born through a supercritical Hopf bifurca-
tion as ϕ increases. By increasing ϕ further (Region II), a
transition to in-phase LAOs for two of the oscillators may
occur via a canard explosion, where an oscillator switches
from SAOs to LAOs with an infinitesimal change in the bi-
furcation parameter, while one of the oscillators maintains
its SAOs. As ϕ increases, all oscillators transition to in-

phase LAOs before breaking symmetry, allowing one of the
oscillators to display SAOs. The oscillator with the SAOs
goes through triperiodic oscillations followed by quasiperi-
odic oscillations and then chaos. We observe two symmetry
breakings (SB), one involving oscillator 3 and the other with
oscillator 2 [Region II of Fig. 2(a)]. For different initial con-
ditions, either one oscillator undergoes a reverse canard or no
symmetry-breaking occurs. The symmetry breaking shown in

FIG. 2. Orbit diagram showing maximum amplitude of oscillations with varying ϕ. Parameters: a = 3.0, ε = 0.1335, h = 2.0 and Dw =
1.865 × 10−3. Initial conditions: (v1, w1) = (−0.6242, −1.31378), (v2, w2) = (0.15636, 1.79106), and (v3, w3) = (0.97553, 1.14483).
(a) All three oscillators. (b) Oscillator 2. (c) Expanded from Fig. 2(b). (d) Expanded from Fig. 2(c). (e) Expanded from Fig. 2(d). (f) Expanded
from Fig. 2(e). Blue: oscillator 1, red: oscillator 2, green: oscillator 3. In (a), where blue, red, and green overlap, only green is seen. Similarly,
only green is seen where blue and green overlap. Black boxes labeled with letters indicate region expanded in the following panel.
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FIG. 3. Time series and phase portraits of oscillator 2 from numerical simulations. Parameters and initial conditions: same as Fig. 2. Top:
time series; middle panel: phase portraits; bottom panel: 3D plot of v2, w2 vs. time. (a), (d), (g) Period-6 MMOs at ϕ = −0.66830. (b), (e),
(h) Period-12 MMOs at ϕ = −0.66820. (c), (f) Period-24 MMOs at ϕ = −0.66812.

Regions II of Fig. 2(a), in which identical coupled oscilla-
tors display chimeralike behavior, with one showing nearly
periodic LAOs and the other aperiodic SAOs, resembles that
seen in earlier work [32,33] on coupled Lengyel-Epstein os-
cillators and with heterogeneous phase oscillators [34–36]
where the coupling strength, phase lags and other param-
eters used in the studies were different and with nonlocal
coupling. In Regions III, all three oscillators exhibit in-
phase LAOs, oscillating with the same amplitude, period, and
phase.

Our focus in this work is on Region IV, which extends
from ϕ ≈ −0.66830 to ϕ ≈ −0.648264. In this region, os-
cillator 2 begins to exhibit MMOs. We observe five distinct

MMO patterns, each of which displays a period-doubling
sequence to chaos as ϕ increases, as shown in Fig. 2(b).
After each MMO pattern, a brief period of chaotic mixed-
pattern MMOs is observed before the system transitions to
the next pattern. For instance, after the period doubling to
chaos in the 51 MMOs, we observe a mixture of 51 and 61

MMOs before the 61 MMO region begins [similar to the
mixture of 61 and 71 MMOs in Fig. 4(b)]. We focus here
on the M1 MMOs, especially the 51 patterns observed in
Fig. 2(b). The small maximum corresponds to nearly har-
monic SAOs that occur near the minimum of the cubic null-
cline, while the large maxima correspond to relaxation-type
LAOs.
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FIG. 4. Time series of oscillator 2 obtained from numerical simulations. Parameters and initial conditions: same as Fig. 2. (a) 61 period-1
(Period-7) MMOs at ϕ = −0.6659. (b) Combination of 61 and 71 MMOs at ϕ = −0.66455. (c) 71 MMOs at ϕ = −0.6630. (d) 81 MMOs at
ϕ = −0.6590. (e) 91 MMOs at ϕ = −0.6540. (f) 10 oscillations at ϕ = −0.648264.

Figure 2(b) shows the orbit diagram for oscillator 2 for
−0.6688 � ϕ � −0.6500. For simplicity, we use Period (up-
percase P) for the period (number of maxima per cycle) of the
full MMOs and period (lowercase p) for the period (number
of distinct small amplitude maxima per cycle) of the small
amplitude excursions. In Figs. 2(c) and 2(d) the period dou-
bles through the sequence 1, 2, 4, 8, 16, . . ., finally leading
to chaos as ϕ increases, while the corresponding Periods are
6, 12, 24, 48, 96, ... and chaos for the MMOs. We explore
this behavior further by looking at the time series and phase
portraits during the period-doubling sequence.

In most MMOs studied to date, SAOs are more frequent
than LAOs, and parameter variation typically leads to a se-
quence of n-period-adding bifurcations such as 11, 12, 13, ...

Here, as we vary ϕ from −0.6688 to −0.6500, we find an
M-period-adding sequence from 51 to 91. On looking more
closely at the 51 oscillations, we observe PD in the amplitude
of the SAOs as ϕ increases, while the 51 structure and the
amplitude of the LAOs are maintained.

Figures 3(a)–3(f) show time series and phase portraits ob-
tained for increasing ϕ. At ϕ = −0.66830 [Figs. 3(a), 3(d)
and 3(g)], oscillator 2 displays 51 MMOs with five suc-
cessive LAOs followed by one small excursion, and this
sequence repeats periodically, resulting in Period-6/period-1

oscillations. Oscillators 1 and 3 display nearly period-1 re-
laxation oscillations, though careful observation reveals that
the phase difference between them shifts over the course
of an MMO, i.e., the interspike interval is not constant.
At slightly larger ϕ, the orbit diagram in Fig. 2(c) shows
a period-2 oscillation for the SAOs. Figures 3(b) and 3(e)
show the time series and phase portraits at ϕ = −0.66820.
The time series show period-2 SAOs and the corresponding
Period-12 MMOs. Although the number of LAOs remains
unchanged, the MMO Period doubles because of the al-
ternation in the amplitude of the SAOs. Figures 3(c) and
3(f) show period-4 (Period-24) behavior at ϕ = −0.66812.
Figures 3(g) and 3(h) show 3D plots of the Period-6 and
Period-12 MMOs (see videos 1 and 2 in the Supplemen-
tal Material [37]). On increasing ϕ further, we observe
additional period doublings, up to period-32, followed by
a region of chaos, which we investigate in more detail
below.

Beyond the 51 chaotic MMOs, at a slightly higher ϕ [see
Fig. 2(b)], the number of LAOs per cycle increases. We ob-
serve 61, 71, 81, and 91 MMOs, as shown in Figs. 4(a), 4(c),
4(d), and 4(e), respectively.

Above about ϕ = −0.648264, oscillator 2 returns to LAOs
in-phase with oscillators 1 and 3 [Fig. 4(f)], and this state
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FIG. 5. Next-amplitude maps for oscillator 2. Parameters and initial conditions: same as Fig. 2. (a) Chaos, wn+1 vs. wn with ϕ =
−0.668059. (b) wn+6 vs. wn showing period-1 (Period-6) with ϕ = −0.66830. (c) wn+6 vs. wn showing period-4 (Period-24) at ϕ = −0.66812.
(d) wn+6 vs. wn displaying chaos ϕ = −0.668059.

persists as ϕ is increased for the range of ϕ studied in this
work.

To characterize the chaotic nature of the SAOs, we calcu-
late next-amplitude (1D) maps and Lyapunov characteristic
exponents for the chaotic attractor. We use the parameters and
initial conditions in Fig. 2. The next-amplitude maps plot the
n + 1st maximum of w2 against the nth maximum. Figure 5(a)
shows a next-amplitude map corresponding to a chaotic time
series with ϕ = −0.668059. The single point at the top right-
hand corner corresponds to the five instances in each cycle
when an LAO is followed by another LAO. The line of points
at the upper left is generated by SAOs followed by an LAO,
and that at the lower right by LAOs that are followed by an
SAO. For periodic MMOs of period-n (Period-6n), each of
the two lines would be replaced by n points. It is somewhat
more instructive to focus on the SAOs alone, since this is
where the PD and chaos are clearly seen. The remaining
plots in Fig. 5 show maximum w2, n+6 vs. maximum w2, n,
where n is chosen so that the nth peak is an SAO. With this
view, the period-1 (Period-6) simple MMO seen in Figs. 3(a)
and 3(d), appears as a single point in Fig. 5(b). Similarly,
the period-4 (Period-24) MMO gives four points [Fig. 5(c)]
in the next-amplitude map. At ϕ = −0.668059, where the
amplitude of the SAOs is chaotic, the next-amplitude map in
Fig. 5(d) gives well-defined curves with four peaks that occur
around the same value of Max w2, n. Most chaotic oscillators
display quadratic maps with only a single maximum. We do
not have a full understanding of the multipeak structure seen
in Fig. 5(d), but note that (i) the qualitative appearance of
the next-amplitude maps of the chaotic MMOs repeatedly
shifts between segmented single-peak maps and multipeak
maps like that in Fig. 5(d) over narrow ranges of ϕ; (ii) the
multipeak structure may be a shadow of the banded chaos seen
for some values of ϕ; and (iii) these maps show the behavior of

TABLE I. Feigenbaum constants for Case 1 (Table III).

Period, n ϕ FN

1 −0.668264000
2 −0.668132000
4 −0.668104900 4.870848708
8 −0.668099400 4.927272727
16 −0.668098220 4.661016949

a single variable in a six-dimensional space and thus constitute
a projection of a more complex object.

The spectrum of Lyapunov characteristic exponents
measures the degree of convergence or divergence of
nearby trajectories. For a chaotic attractor, we expect one
zero (or near-zero) exponent, corresponding to motion
along the attractor, and one (or more) positive exponent(s)
corresponding to the divergence of neighboring trajectories
characteristic of chaotic behavior. We calculated the spectrum
of Lyapunov exponents, λi, for the six-dimensional phase
space of Eq. (1) using parameters from Fig. 5(d) with the
method of Ref. [38] and obtained, λ1 = 8.120 × 10−4, λ2 =
−2.400 × 10−5(≈ 0), λ3 = −4.106 × 10−3, λ4 =
−1.972, λ5 = −4.233, and λ6 = −6.147. The spectrum of
Lyapunov exponents with ϕ = −0.69 [Region III of Fig. 2(a)]
is λ1 = −5.000 × 10−6(≈ 0), λ2 = −1.722 × 10−3, λ3 =
−5.058 × 10−3, λ4 = −4.241, λ5 = −4.246 and λ6 =
−4.249. The lack of a positive Lyapunov exponent and the
presence of a Lyapunov exponent that is close to zero suggests
that the system evolves periodically in this regime.

A characteristic feature of chaotic systems is the presence
of periodic windows separating chaotic bands in the orbit
diagram. For a class of maps including the logistic map,
these periodic windows occur in a universal sequence (the U
sequence) in the order 6, 5, 3, 2 × 3, 5, 6 [39]. The periodic
windows 6, 5, 3 correspond to large windows after the initial
chaotic oscillations, with the 2 × 3 window representing the
first PD in the period-3 window [40]. The orbit diagrams
shown in Figs. 2(c)–2(d), are similar but more complex. Fig-
ures 2(e)–2(f) illustrate the fractal-like structure that appears
as the branches split further and then recombine at large ϕ,
interrupted by regions of simple periodic LAOs.

Another feature common to systems with a PD route to
chaos is a universal constant known as the Feigenbaum con-
stant (FN ). For a class of systems that display PD, the ratio of
distances between successive bifurcation points converges to
the transcendental number 4.669 . . . [41]. We calculated the
Feigenbaum constant for the 51 PD-MMOs using Eq. (2) and
obtained the results shown in Table I. We limit the results
to period-16 because the exact location of the bifurcation
becomes difficult to determine for higher values of n.

FN = lim
n→∞

ϕn+1 − ϕn

ϕn+2 − ϕn+1
. (2)
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FIG. 6. Orbit diagrams showing maximum amplitude of oscillations with varying ϕ. Parameters and initial conditions as with Fig. 2. (a) All
three oscillators. (b) Oscillator 2. (c) 73 MMOs with increasing ϕ. (d) 7383 MMOs with increasing ϕ. (e) 83 MMOs with increasing ϕ. (f) 83

MMOs with decreasing ϕ. (g) 151 MMOs with increasing ϕ. Figures 6(c)–6(g) show only the small amplitude oscillations. Blue: oscillator 1,
red: oscillator 2, green: oscillator 3. Where the blue, red and green trajectories overlap, only green is seen. Similarly, only green is seen where
blue and green trajectories intersect.

We also examined the effect of varying ε, keeping all
other parameters and initial conditions in Fig. 2 constant with
ϕ = −0.668059. We found that by increasing ε in the range
0.10645 � ε � 0.2169, we generated the same sequence of
period doubling leading to chaos in the 51–91 MMOs that we
found by varying ϕ at fixed ε (Fig. 14). We also obtained 101

MMOs by varying ε, a pattern that we did not observe when
varying ϕ at fixed ε.

TABLE II. Notable observations for MS system.

Case Range of ϕ MMOs in Region IV PD

1 −0.67226 to −0.67160 73 Increasing
2 −0.67094 to −0.67065 73, 83 Increasing
3 −0.66976 to −0.66805 83 Increasing
4 −0.66580 to −0.66545 83 Decreasing
5 −0.66477 to −0.66440 151 Increasing
6 −0.66300 to −0.66240 161 Increasing
7 −0.66200 to −0.66180 161171 Increasing
8 −0.66120 to −0.66020 171 Increasing
9 −0.65983 to −0.65960 171181 Increasing
10 −0.65892 to −0.65800 181 Increasing
11 −0.65750 to −0.65720 181191 Increasing
12 −0.65640 to −0.65560 191 Increasing
13 −0.65479 to −0.65460 191201 Increasing
13 −0.65380 to −0.65280 201 Increasing
14 −0.65180 to −0.65160 201211 Increasing
15 −0.65060 to −0.64980 211 Increasing
16 −0.64930 � 10 −

We studied the influence of the other parameters on the
dynamics as well. As shown in Table IV (Fig. 14), all the pa-
rameters show the signature MMOs. Varying h and Dw gives
PD-MMOs and period-adding bifurcations as the parameter
decreases. The Dw sequence shows 101 and 111 in addition to
the 51–91 MMOs.

The results described thus far were obtained with a single
set of initial conditions. In an effort to assess the robustness of
the observed behavior, we explored a number of other initial
conditions. The results are described in detail in the Appendix.
As shown in Table III and Fig. 12, the PD-MMO route to
chaos occurs for a variety of initial conditions. In particular, it
appears to be necessary, though not sufficient, for oscillators 1
and 3 to have a significant initial phase difference in order for
this behavior to occur. If the two outer oscillators are too close
to one another initially, no MMOs arise. Similarly, even for a
wide separation of oscillators 1 and 3, certain initial positions
of oscillator 2 lead to simple in-phase LAOs (cf. Cases 14 and
15 of Table III and Fig. 12).

B. Master-slave system

The above observations suggest that the forcing of the
central oscillator by the biphasic signal of the nearly antiphase
outer oscillators may play a crucial role. We therefore studied
a master-slave-like forced system, in which the outer two
oscillators 1 and 3 force the middle oscillator, 2 by setting
Dw = 0 in the second and sixth equations of Eq. (1) as shown
in Fig. 1(b). With this configuration, the outer oscillators are
decoupled from one another. This modified system showed a
richer set of MMOs with PD than those found in the fully
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FIG. 7. Time series and phase portraits of oscillator 2 from numerical simulations of the master-slave system. Parameters and initial
conditions are the same as Fig. 2. Top: time series; middle panel: phase portraits; bottom panel: 3D plot of v2, w2 vs. time. (a), (d), (g) 73

MMOs at ϕ = −0.67226. (b), (e), (h) 7383 MMOs with period-3 at ϕ = −0.67092. (c), (f), (i) 83 MMOs with period-3 at ϕ = −0.66976.
For the phase portraits, blue: oscillator 1, red: oscillator 2, green: oscillator 3. Only green is seen where the blue, red, and green trajectories
overlap. Similarly, only green is seen where blue and green trajectories intersect.

coupled system. For example, we observed 73, 7383, and 83

MMOs with PD sequences to chaos, as shown in Table II and
Fig. 7. Thus, we observed a single period-adding bifurcation
from 73 to 83 MMOs. The orbit diagrams [see Figs. 6(c)–6(f)]
show these MMOs. The orbit diagram in Fig. 6(c) begins
with three small and one large maximum. The latter, which
corresponds to the seven large amplitude peaks, is outside the
range of the figure. Each of the three small maxima undergoes
a PD sequence to chaos, while the large maxima stay the same.
We did not observe this behavior with the full system. We

decided to explore this region further. Case 1 of Table II shows
73 MMOs that correspond to the orbit diagram in Fig. 6(c).
The time series [Fig. 7(a)], phase portraits [Fig. 7(d)], and
3D plots [Fig. 7(g)] display three small excursions followed
by seven large excursions, corresponding to period-3 SAOs.
As ϕ increases, we observe a 7383 pattern, characterized by
alternation of 73 and 83 MMOs, as shown in the time series
in Fig. 7(b). Because each period consists of two MMOs
with different amplitudes for the small maxima (and different
numbers of LAOs), these MMOs contain six SAOs initially,
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(a) (b) (c)

FIG. 8. Next-amplitude (1D) maps of 83 MMOs for oscillator 2 from numerical simulations for the master-slave system. Parameters and
initial conditions are the same as Fig. 2. (a) Map with period-3 at ϕ = −0.668589. (b) Map with period-6 at ϕ = −0.668305. (c) Chaos at
ϕ = −0.66805.

followed by 12, 24,. . . during the PD sequence, eventually
becoming chaotic as ϕ increases. The orbit diagram for the
SAOs in Fig. 6(d) illustrates this behavior. Figure 6(f) exhibits
an 83 PD route to chaos with decreasing ϕ. Also, the number
of LAOs before a single SAO increased in the master-slave
scenario. Instead of the 51–91 MMOs with PD seen in the

full system, the master-slave system displays 151–211 MMOs
with PD (see Table II). We conclude that the forcing of the
central oscillator by the outer ones plays a key role in inducing
the MMO/PD behavior.

An 83 MMO [see Figs. 7(c), 7(f), and 7(i)] with PD as ϕ

increases was observed after the 7383 pattern as shown in Case

(a) (b) (c)

(d) (e) (f)

FIG. 9. Time series of oscillator 2 from numerical simulations. Parameters and initial conditions are the same as Fig. 2. (a) 151 MMOs
at ϕ = −0.6647. (b) 161 MMOs at ϕ = −0.6627. (c) 161171 MMOs at ϕ = −0.6619. (d) 171 MMOs at ϕ = −0.6608. (e) 171181 MMOs at
ϕ = −0.6597. (f) 181 MMOs at ϕ = −0.6585.
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(a) (b) (c)

(d) (e)

FIG. 10. Orbit diagrams showing maximum amplitude of oscillations of the uncoupled forced system with varying ϕ. Parameters: A =
3.378, B = 0.112, ε = 0.1335, h = 2.0, a = 3.0, ω = 2π/T , T = 378, Dw = 1.865 × 10−3 with θ = π/2 and initial conditions (v, w) =
(0.97553, 1.14483). (a) Full orbit diagram. (b) Blowup from Fig. 10(a) for the 51 MMOs. (c) Blowup from Fig. 10(b). (d) Blowup from
Fig. 10(c). (e) Expanded from Fig. 10(d).

3 of Table II. The orbit diagram 6(e) for this MMO is similar
to the one observed with the 73 MMOs. The 73 and 83 MMOs
constitute another period-adding bifurcation not seen with the
full reciprocally coupled system.

At higher ϕ, we observe a second PD sequence to chaos
involving the 83 MMOs. This PD, however, occurs with de-
creasing ϕ, as shown in the orbit diagram in Fig. 6(f).

We also calculated the next-amplitude (1D) maps of the 73

and 83 MMOs, as well as that of 7383 MMOs, where the cycle
contains both MMOs. Figure 8(a) shows the map for period-
3 83 MMOs, followed by doubling to period-6, as shown in
Fig. 8(b). As the 83 MMOs become chaotic, we observe a 1D
map consisting of three disjoint segments, shown in Fig. 8(c).

On increasing ϕ, we observe MMOs similar to those seen
in the full system, but with a higher number of large-amplitude
excursions before a single small excursion. For example,
the first pattern we observe after the 83 MMOs consists of
151 MMOs [Figs. 6(g) and 9(a)]. Various MMOs (151–211

MMOs) with PD are seen, as shown in Table II. During
the transition from one type of MMO to another, we ob-
serve MMOs consisting of a combination of the previous
and next MMOs. For example, in Table II, we find 161171

MMOs (Case 7) between 161 MMOs (Case 6) and 171 MMOs
(Case 8). The same pattern is seen with all the transitions.

Figures 9(a)–9(f) show some of the time series for the 151–181

MMOs.

C. Uncoupled forced system

To gain further insight into the occurrence of MMOs and
its relation to the initial phase separation between the outer
oscillators, we simplified the master-slave system further, to a
single van der Pol oscillator forced by two sine functions with
a phase difference θ , as shown in the scheme in Fig. 1(c) and
Eq. (3)

dv

dt
= −hv3 + av − w,

dw

dt
= ε(v − ϕ) + Dw

(
−2w+A

2
[sin(z) + sin(z + θ )] + B

)
,

dz

dt
= ω.

(3)
where A is the amplitude of the forcing, θ is the phase dif-
ference, ω = 2π/T is the forcing frequency with period T ,
and B is an offset. A, B, θ and ω are chosen to make the
perturbation resemble the effect of the outer oscillators in the
coupled system.
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(a) (b)

(c) (d) (e)

(f) (g) (h)

FIG. 11. Numerical simulations of 51 MMOs in the uncoupled forced system. Parameters and initial conditions same as in Fig. 10. Top:
time series, middle: phase portraits, bottom: next-amplitude (1D) maps. (a), (c), (f) Period-6 MMOs at ϕ = −0.631800. (b), (d), (g) Period-12
at ϕ = −0.631750. (e), (h) Chaos at ϕ = −0.631735. Purple: v nullcline.

We numerically integrated Eq. (3), keeping h, a, ε and Dw

at the same values used for both the fully coupled and the
master-slave systems, and with A = 3.378 and B = 0.112. We
first studied the behavior of the system with θ = π/2.

We observe several scenarios similar to those seen in the
master-slave system. The orbit diagram in Fig. 10 contains
three different regions as ϕ increases. In Region I, we obtain
SAOs, followed by Region IV, where we observe several
MMOs as ϕ increases. At high values of ϕ, the system dis-
plays only LAOs. We focus on the MMOs.

As ϕ increases, before the system transitions to simple
LAOs, the oscillator goes through 51 MMOs that exhibit PD
to chaos, as shown in the orbit diagrams in Figs. 10(b)–
10(c). We explore the time series, phase portraits and
next-amplitude (1D) maps of the forced system and com-
pare them to the fully coupled system and the master-slave
system.

For θ < π , as ϕ increases, various MMOs appear, some
with simple periodicity in the SAOs similar to those ob-
served in the fully coupled system (e.g., 51 MMOs, as
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TABLE III. Observations made with different initial conditions.

Case Initial conditions MMOs in Region IV Oscillator 2 Comments

1
(v1, w1) = (−0.624209340312539 −1.31378200470845)
(v2, w2) = (0.1563555683989080 1.791056306867020)
(v3, w3) = (0.9755267396515510 1.144833731651560)

51, 61, 71, 81, 91 Right branch
Osc. 1 close to minimum

and Osc. 3 on
rightmost branch

2
(v1, w1) = (0.1563555683989080 1.791056306867020)

(v2, w2) = (−0.624209340312539 −1.31378200470845)
(v3, w3) = (0.9755267396515510 1.144833731651560)

81, 91
Close to

the minimum
of cubic nullcline

Oscsa.
1 and 3 on

the rightmost branch
of cubic nullcline

3
(v1, w1) = (−0.624209340312539 −1.31378200470845)
(v2, w2) = (0.9755267396515510 1.144833731651560)
(v3, w3) = (0.1563555683989080 1.791056306867020)

51, 61, 71, 81, 91 Right branch
Osc. 1 close to minimum

and Osc. 3 on
rightmost branch

4
(v1,w1) = (−1.26150618922426 0.227037058153444)

(v2, w2) = (−0.712563911545149 −1.41430735700971)
(v3, w3) = (−0.00948127333826656 −1.39291991672867)

51, 61, 71, 81, 91
Close to

the minimum
of cubic nullcline

Osc. 1 on leftmost branch
and Osc. 3 jumping to
the rightmost branch

5
(v1,w1) = (−0.735283410089882 −1.29726550687495)

(v2,w2) = (0.949247645832642 1.14855231424957)
(v3, w3) = (0.188699586139167 1.78261121012471)

51, 61, 71, 81, 91 Right branch
Oscs. 1 and 3 at
opposites ends

of the cubic nullcline

6
(v1,w1) = (−0.735283410089882 −1.29726550687495)

(v2,w2) = (0.949247645832642 1.14855231424957)
(v3, w3) = (−0.735283410089882 − 1.29726550687495)

10 Right branch
Oscs. 1 and 3 together
and at or close to the

minimum of cubic nullcline

7
(v1, w1) = (0.188699586139167 1.78261121012471)
(v2,w2) = (0.949247645832642 1.14855231424957)
(v3, w3) = (0.188699586139167 1.78261121012471)

10 Right branch
Oscs. 1 and 3 together

and close to the
maximum of cubic nullcline

8
(v1,w1) = (−0.735283410089882 −1.29726550687495)
(v2,w2) = (−0.735283410089882 −1.29726550687495)

(v3, w3) = (0.188699586139167 1.78261121012471)
51, 61, 71, 81, 91

Close to
the minimum

of cubic nullcline

Oscs. 1 and 2 together
and at or close to the

minimum of cubic nullcline

9
(v1,w1) = (−0.735283410089882 −1.29726550687495)

(v2, w2) = (0.188699586139167 1.78261121012471)
(v3, w3) = (0.188699586139167 1.78261121012471)

51, 61, 71, 81, 91 Right branch
Oscs. 2 and 3 together

and close to the
maximum of cubic nullcline

10
(v1,w1) = (−1.43816005927240 1.62755439706495)
(v2, w2) = (0.946935061495364 1.17197142977014)

(v3, w3) = (−0.853464256410909 −1.31926341380611)
51, 61, 71, 81, 91 Right branch

Oscs. 1 and 3 on extremes
of the leftmost branch

of cubic nullcline

11
(v1,w1) = (−1.438160059272400 1.627554397064950)
(v2, w2) = (−0.637628110091284 −1.39329060779399)
(v3, w3) = (−0.853464256410909 −1.31926341380611)

51, 61, 71, 81, 91
Close to

the minimum
of cubic nullcline

Oscs. 1 and 3 on extremes
of the leftmost branch

of cubic nullcline

12
(v1,w1) = (−1.43816005927240 1.62755439706495)
(v2, w2) = (0.946935061495364 1.17197142977014)

(v3, w3) = (−1.22523528881125 −0.00298801650949941)
51, 61, 71, 81, 91 Right branch

Osc. 1 on top of extreme
and osc. 3 midway of the

of the leftmost branch

13
(v1,w1) = (−1.43816005927240 1.62755439706495)
(v2, w2) = (0.946935061495364 1.17197142977014)
(v3,w3) = (−1.39018633830603 1.19604888440157)

10 Right branch
Osc. 1 and 3 close to

each other and close to
top of extreme left branch

14
(v1, w1) = (0.839121121928404 1.45232550993826)
(v2,w2) = (−1.39018633830603 1.19604888440157)
(v3,w3) = (1.38707481920313 −1.16194692466634)

51, 61, 71, 81, 91 Left branch
Osc. 1 and 3 on extreme
ends of rightmost branch

of cubic nullcline

15
(v1, w1) = (0.839121121928404 1.45232550993826)

(v2, w2) = (−0.637628110091284 −1.39329060779399)
(v3,w3) = (1.38707481920313 −1.16194692466634)

61, 71, 81, 91
Close to

the minimum
of cubic nullcline

Oscs. 1 and 3 on extreme
ends of rightmost branch

of cubic nullcline

16
(v1,w1) = (1.38707481920313 −1.16194692466634)

(v2, w2) = (−0.637628110091284 −1.39329060779399)
(v3,w3) = (−1.43816005927240 1.62755439706495)

51, 61, 71, 81, 91
Close to

the minimum
of cubic nullcline

Oscs. 1 and 3 on
opposite ends of the

of cubic nullcline

aOscillators.

shown in Fig. 11), as well as others with complex periodic-
ity in the SAOs as shown in the time series, phase portrait
and next-amplitude (1D) map in Fig. 16. Figures 11(a)–
11(b) and Figs. 11(c)–11(d) show the time series and the
corresponding phase portraits with Period-6 (period-1) and
Period-12 (period-2), respectively. At ϕ = −0.631735, the
oscillator displays chaotic 51 MMOs [Fig. 11(e)]. The next-

amplitude (1D) maps show the period-doubling from one to
two and finally chaos, as shown in Figs. 11(f)–11(h). The
Lyapunov characteristic exponents with parameters and initial
conditions from Fig. 11(h) are λ1 = 1.1580 × 10−3, λ2 =
−3.9199, λ3 = 0.0000. The system exhibits a U sequence
similar to those observed with the fully coupled and master-
slave systems.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

FIG. 12. Phase portraits of all three oscillators showing their initial positions (large dots). Oscillator 1, blue; oscillator 2, red; oscillator 3,
green. Parameters: a = 3.0, ε = 0.1335, h = 2.0 and Dw = 1.865 × 10−3 with ϕ = −0.6683. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.
(e) Case 5. (f) Case 6. (g) Case 7. (h) Case 8. (i) Case 9. (j) Case 10. (k) Case 11. (l) Case 12. (m) Case 13. (n) Case 14. (o) Case 15. (p) Case
16. Purple: v nullcline and black: w nullcline. Where blue and green trajectories intersect, only green is seen. Only red is visible when red and
blue trajectories overlap. Where red and green intersect, only green is seen.

Unlike the other systems we studied, where we found
multiple M1 MMOs with PD as well as period-adding bifur-
cations, here only the 51 MMOs show PD. Instead, we found
other MMOs with period-adding bifurcations with SAOs ex-
hibiting multiperiodic or complex oscillations.

A surprising result, which differs from the behavior of the
autonomous coupled system, is that at θ = 0, i.e., with forcing
by a single sine wave, the system exhibits 51(52)2 PD-MMOs
(see Table VII in Appendix C).
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(a) (b) (c) (d)

(e) (f) (g) (h)

FIG. 13. Orbit diagrams showing maximum amplitude of oscillations with varying ϕ. (a) Case 2. (b) Case 2, Oscillator 2 only. (c) Expanded
from Fig. 13(b). (d) Expanded from Fig. 13(b). (e) Case 6. (f) Case 13. (g) Case 15. (h) Oscillator 2 from Fig. 13(g).

III. CONCLUSIONS

We have observed and characterized a PD route to chaos, in
which an MMO structure is preserved while period doubling
leading to chaotic behavior occurs in the SAOs. Features such
as the 1D map and the sequence of periodic windows in the
orbit diagram of the SAOs resemble those found in previously
studied chaotic systems. We attribute this phenomenon to the
forcing of the central oscillator by the two outer oscillators
with a sufficient phase difference between them, modulated by
the indirect linkage of the outer oscillators via their coupling
to the central one. In Appendix D, we examine the effect of the
initial phase difference in more detail. We find that if the initial
phase difference between the central oscillator and either of
the outer oscillators is close to zero, PD-MMOs occur only
if the initial phase difference between the outer oscillators is
large (between about 0.2 and 0.8). On the other hand, if the

initial phase difference between the central oscillator and one
of the outer oscillators is large, PD-MMOs arise even for tiny
initial phase differences between the outer oscillators, as small
as ≈10−4. In the future we plan to explore the parameter space
more widely in search of other Mn patterns that give rise to
similar, or perhaps even more complex phenomena, as well
as to search for similar behavior in other model oscillators.
The existence of PD-MMO behavior in a single simply forced
van der Pol oscillator suggests that the phenomenon is likely
to be quite general. Studies of nonautonomous Bonhoeffer-
van der Pol systems show that a forced system can produce
period-adding bifurcations with complex nested mixed mode
oscillations, including chaotic ones [42] as well as other
MMOs [43]. In those investigations, which employed signif-
icantly lower amplitudes and longer frequencies of forcing
relative to the autonomous LAOs than in our work, no period
doubling was reported.

TABLE IV. Results for parameter variation with initial conditions from Case 1, Table III.

MMOs in Constant Period-adding
Parameter Range Region IV parameters bifurcations

ε 0.10645 � ε � 0.21690
51, 61, 71,

81, 91, 101
h = 2.0, a = 3.0,

ϕ = −0.668059, Dw = 1.865 × 10−3 Increasing ε

h 1.8840 � h � 2.019
91, 81, 71,

61, 51
a = 3.0, ε = 0.1335,

ϕ = −0.668059, Dw = 1.865 × 10−3 Decreasing h

a 2.9697 � a � 3.2031
51, 61, 71,

81, 91
h = 2.0, ε = 0.1335,

ϕ = −0.668059, Dw = 1.865 × 10−3 Increasing a

Dw (1.232 � Dw � 2.300) × 10−3 111, 101, 91, 81,

71, 61, 51
h = 2.0, a = 3.0,

ε = 0.1335, ϕ = −0.668059
Decreasing Dw
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

FIG. 14. Orbit diagrams showing maximum amplitude of oscillations with varying ε, h, a, and Dw with initial conditions of Case 1. Top
panel: ε; middle top panel: h; middle bottom panel: a; bottom panel: Dw . (a) All three oscillators varying ε. (b) Oscillator 2. (c) Blowup from
Fig. 14(b) for 51 MMOs. (d) All three oscillators varying h. (e) Oscillator 2 from Fig. 14(d). (f) MMOs from Fig. 14(e). (g) All three oscillators
varying a. (h) Oscillator 2 from Fig. 14(g). (i) MMOs from Fig. 14(h). (j) All three oscillators varying Dw . (k) Oscillator 2 from Fig. 14(j). (l)
MMOs from Fig. 14(k).
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(b) (c)

(d) (e) (f)

(a)

FIG. 15. Time series showing other observations made with Case 1, Table III. Parameters: a = 3.0, ε = 0.1335, h = 2.0, and Dw =
1.865 × 10−3. Initial conditions: (v1, w1) = (−0.6242, −1.31378), (v2, w2) = (0.15636, 1.79106), and (v3, w3) = (0.97553, 1.14483).
(a) In-phase LAOs at ϕ = −0.6900. (b) Out-of-phase singly periodic oscillations for oscillators 1 and 3 at ϕ = −0.66830. (c) Intermittent
spiking observed at ϕ = −0.668050. (d) Intermittent spiking observed at ϕ = −0.66770. (e) Intermittent spiking at ϕ = −0.66750. (f) Out-
of-phase oscillations for all three oscillators at ϕ = −0.648264. Blue: oscillator 1, red: oscillator 2, green: oscillator 3. Where the blue, red,
and green trajectories overlap, only green is seen. Similarly, only green is seen where blue and green trajectories intersect.

IV. NUMERICAL METHODS

Numerical simulations were carried out using MATLAB
ODE solver 113 for ODEs with absolute and relative toler-
ances of 1 × 10−9 and 1 × 10−12, respectively. Simulations
were performed with a time span of 1 × 105. All analyses of
results were done after eliminating initial transients.
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APPENDIX A: FULLY COUPLED SYSTEM

We varied the initial conditions of the oscillators to inves-
tigate their effect on the MMOs observed. Case 1 shown in
Fig. 12(a) is the focus of this paper and has been described in
detail in the main text.

In Case 2 of Table III and as shown in the phase portrait
in Fig. 12(a), oscillator 2 begins close to the minimum with

oscillators 1 and 3 on or close to the maximum of the cubic
v nullcline. We note that the only difference between Cases
1 and 2 is that the initial positions of oscillators 1 and 2 are
switched. This switch between the oscillators results in the
elimination of three of the MMOs with PD route to chaos
found in Case 1 (51–71), as shown in Figs. 13(a) and 13(b).
The 81–91 MMOs with PD route to chaos are the only ones
left, as shown in Figs. 13(c) and 13(d), respectively. Thus,

TABLE V. Feigenbaum constants for MS Case 3 (Table II).

Period, n ϕ FN

3 −0.6685896865
6 −0.6683050794
12 −0.6682499967 5.166905399
24 −0.6682387189 4.884170672
48 −0.6682364855 5.049610460
96 −0.6682360284 4.886020564
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TABLE VI. Feigenbaum constants for MS Case 5 (Table II main
text).

Period, n ϕ FN

1 −0.6645505120
2 −0.6644937240
4 −0.6644845470 6.188078893
8 −0.6644825570 4.611557789
16 −0.6644821380 4.749403341
32 −0.6644820470 4.604395606

only two period-adding bifurcations remain with the switch
in the initial conditions.

For Case 3, we keep oscillator 1 near the minimum (same
location as Case 1) and switch the initial locations of oscilla-
tors 2 and 3. We obtain the same MMOs seen with Case 1.

Cases 1–3 involve permuting the oscillators’ initial condi-
tions. In Case 4, Fig. 12(d), we examine a new set of initial
conditions. We place oscillators 2 and 3 close to the mini-
mum and oscillator 1 midway on the leftmost branch. This
arrangement results in all the MMOs seen with Case 1. For
Case 5 [Fig. 12(e)], oscillator 1 is close to the minimum while
oscillators 2 and 3 are placed on/or close to the maximum of
the cubic nullcline. Again, we observe all MMOs with PD.

(a) (b)

(c) (d) (e)

(f) (g) (h)

FIG. 16. Numerical simulations of the uncoupled forced system. Parameters and initial conditions as in Fig. 10. Top: time series; middle:
phase portraits; bottom: next-amplitude (1D) maps. (a), (c), (f) period-1 of 45 MMOs at ϕ = −0.64440. (b), (d), (g) period-2 of 45 MMOs at
ϕ = −0.64397. (e), (h) Chaos at ϕ = −0.64385. Purple: v nullcline.
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(a) (b)

(c) (d)

FIG. 17. Orbit diagrams showing maximum of w for the pa-
rameter θ in the uncoupled forced system. Parameters and initial
conditions as in Fig. 10 (main text) with ϕ = −0.631735. (a) LAOs
and MMOs as θ is varied. (b) Blowup from Fig. 17(a). (c) 51 MMOs
with increasing PD expanded from Fig. 17(a). (d) Magnified view of
Fig. 17(b).

For Cases 6 and 7 [Figs. 12(f) and 12(g)], we place os-
cillators 1 and 3 together at the same initial location at or
near an extremum of the cubic nullcline. In both instances,
the MMOs vanish, which suggests that sufficient separation
between the outer oscillators is required to generate MMOs.
The orbit diagram in Fig. 13(e) shows that, as ϕ is increased,
oscillator 3 undergoes a symmetry breaking and starts to os-
cillate with small amplitude while the other two oscillators
maintain their large amplitude nearly in-phase oscillations.
During this stage, oscillator 3 displays triperiodic SAOs, fol-
lowed by in-phase LAOs for all three oscillators and a second
symmetry breaking with oscillator 2. Depending on the initial
conditions, the triperiodic oscillation is followed by multi-
periodic oscillations and finally chaos, as observed in our
earlier work [32,33]. As shown in Fig. 13(e), there is only a
single maximum in Region IV. Thus, there are no MMOs in
Cases 6 and 7. At larger ϕ, all three oscillators resume LAOs.
In Case 8 [Fig. 12(h)], oscillators 1 and 2 start off together
near the minimum of the cubic nullcline with oscillator 3 at
the opposite end. In Case 9 [Fig. 12(i)], we have oscillators
2 and 3 initially together close to the nullcline maximum.
In both cases, we observe MMOs. Thus, initial separation
between the central and outer oscillators does not appear to
be necessary for the appearance of MMOs.

In Cases 10–13 [Figs. 12(j)–12(m)], we place the two outer
oscillators at various locations on the left-hand branch of the
cubic nullcline. Only Case 13 [Fig. 12(m)], where the outer

TABLE VII. MMOs with PD from phase difference (θ ).

Case θ PD MMOs

1 π/2
3comp, 4comp,

(51)352,

51, 211

2 0
3comp, 4comp,

51(52)2, 51(52)3, 51(52)4

3 3π/4
3comp, 4comp,

151, 101151

4 π −

oscillators are the closest together initially, fails to produce
MMOs [see orbit diagram in Fig. 13(f)].

Next we examine Cases 14–15 with oscillators 1 and 3 well
separated on the rightmost branch of the v nullcline. In Case
14 [Fig. 12(n)], oscillator 2 is placed on the right-hand branch,
resulting in both PD MMOs and period-adding MMOs. Case
15 [Fig. 12(o)], with oscillator 2 at the minimum of the null-
cline, shows 61–91 MMOs with PD [Figs. 13(g) and 13(h)].

Lastly, we place oscillators 1 and 3 at the upper left and
lower right of the cubic nullcline, respectively, with oscillator
2 near the minimum as shown in Fig. 12(p) (Case 16). We
observe all MMOs with PD sequence to chaos.

We conclude that initial separation of the outer oscillators
is necessary but not sufficient to produce MMOs and PD. The
appearance of these phenomena also requires an appropriate
initial phase relationship between the outer oscillators and the
central oscillator.

We studied the effects of varying all the parameters in
Eq. (1). Table IV shows some of our observations. First, we
vary ε, keeping all other parameters constant, as shown in the
Table and with initial conditions of Case 1. Figures 14(a)–
14(b) show LAOs for oscillators 1 and 3, with oscillator 2
displaying PD MMOs as well as period-adding bifurcations
(51–101). Figure 14(c) shows the PD seen with the 51 MMOs.
The other MMO patterns exhibit similar behavior.

Next we examined the effect of varying h between 0 and
5. We obtain MMOs with PD and period-adding bifurca-

(a) (b)

FIG. 18. Illustration of the period of uncoupled oscillator used
to calculate the initial phases of the oscillators. Parameters: a =
3.0, h = 2.0, ε = 0.1335, and ϕ = −0.668059. Initial conditions:
(v, w) = (−0.735433, 1.808762). (a) Phase portrait. (b) Time se-
ries. Purple: v nullcline, brown: w nullcline.
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TABLE VIII. Oscillators 1 and 2 kept constant, φ2,α − φ1,0 = 0.76081722, and varied oscillator 3.

Case Initial conditions
Initial phase,

φi,α = t
T

MMOs in
Region IV

1
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−0.73543367, 1.8087622)

0
0.76081722

0
10

2
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−0.73567117, 1.8087615)

0
0.76081722

1.0309375 × 10−6
10

3
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−0.73600866, 1.8087606)

0
0.76081722

2.4959578 × 10−6

71, 81 no
PD to chaos

4
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−0.74095742, 1.8087461)

0
0.76081722

2.3982862 × 10−5

71 showedp-1,

81 showed p-1, 2.

5
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−0.77327807, 1.8086264)

0
0.76081722

1.6462444 × 10−4

71, 81

displayedp-1, 2.

6
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−0.83020026, 1.8083070)

0
0.76081722

4.1465391 × 10−4

71 showed p-1, 2,

81 had PD
sequence to chaos.

7
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.0530435, 1.8054960)

0
0.76081722

1.4772792 × 10−3

71, 81 with PD
sequence to chaos.

8
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.2996932, 1.7967280)

0
0.76081722

3.2341209 × 10−3

71, 81 with PD
sequence to chaos.

9
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.4104253, 1.7836032)

0
0.76081722

5.2038557 × 10−3

71, 81 with PD
sequence to chaos.

10
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.4439419, 1.7666513)

0
0.76081722

7.5281428 × 10−3

71, 81 with PD
sequence to chaos,

91 showed p-1.

11
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.4495929, 1.7402246)

0
0.76081722

1.1073665 × 10−2

71, 81 with PD
sequence to chaos,

91 showed p-1.

12
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.4473132, 1.7111448)

0
0.76081722

1.4973740 × 10−2

71, 81 with PD
sequence to chaos,
91 showed p-1, 2, 4.

13
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.4426890, 1.6665351)

0
0.76081722

2.0984244 × 10−2

71 − 91 with PD
sequence to chaos.

14
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.4367779, 1.6107090)

0
0.76081722

2.8557478 × 10−2

71 − 91 with PD
sequence to chaos.

15
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.4223418, 1.4769175)

0
0.76081722

4.6949618 × 10−2

71 − 91 with PD
sequence to chaos.

tions [see Table IV and Figs. 14(d)–14(f)] for h in the range
1.884 � h � 2.019. The PD and period-adding bifurcations
occur as h decreases, as shown in Fig. 14(f).

The orbit diagrams in Figs. 14(g)–14(i) (see Table IV)
show the results of varying a. The system shows MMOs in
the range 2.9697 � a � 3.2031 with PD MMOs (51–91) as a
increases.

We studied the influence of the coupling strength on
the dynamics of the system [Figs. 14(j)–14(l)]. MMOs
with PD and period-adding bifurcations occur for de-
creasing Dw. In addition to the 91 − 51 MMOs found
on varying the other parameters, varying Dw gives extra
MMOs with PD (111 and 101), as shown in Table IV
and Fig. 14(l).
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TABLE IX. Continuation of Table VIII.

Case Initial conditions
Initial phase,

φi,α = t
T

MMOs in
Region IV

16
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.4078884, 1.3465270)

0
0.76081722

6.5220803 × 10−2

71, 81 with PD
sequence to chaos,
91 showed p-1, 2.

17
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.3921840, 1.2088489)

0
0.76081722

8.4910542 × 10−2

71, 81 with PD
sequence to chaos,

No91.

18
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.3761427, 1.0724684)

0
0.76081722
0.10484701

71, 81 with PD
sequence to chaos,

No91.

19
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.3608116, 0.94609604)

0
0.76081722
0.12373419

71 with PD
sequence to chaos,

81 had p-1, 2, 4.No91.

20
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.3486649, 0.84869818)

0
0.76081722
0.13858228

71, 91 with PD
sequence to chaos,

81 had p-1.

21
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3α, w3,α ) = (−1.3311480, 0.71243563)

0
0.76081722
0.15981353

51 − 71, 91with
PD sequence to

chaos, 81 had p-1.

22
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.3109718, 0.56155319)

0
0.76081722
0.18400104

61, 71, 91with
PD sequence to

chaos, 81 had p-1.

23
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.2954752, 0.45001601)

0
0.76081722
0.20238354

51 − 91 with PD
sequence to chaos.

24
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.2899349, 0.41104780)

0
0.76081722
0.20891417

51 − 91 with PD
sequence to chaos.

25
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.2825189, 0.35962892)

0
0.76081722
0.21762167

51 − 91 with PD
sequence to chaos.

26
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.2787984, 0.33415114)

0
0.76081722
0.22197542

51 − 91 with PD
sequence to chaos.

27
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.2713317, 0.28366069)

0
0.76081722
0.23068292

51 − 91 with PD
sequence to chaos.

28
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.2638306, 0.23379274)

0
0.76081722
0.23939042

51 − 91 with PD
sequence to chaos.

29
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.2449229, 0.11186542)

0
0.76081722
0.26115918

51 − 91 with PD
sequence to chaos.

30
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−1.0972651, −0.66313301)

0
0.76081722
0.42203680

51 − 91 with PD
sequence to chaos.

Figure 15 shows observations made for Case 1. At ϕ =
−0.69 (Region III) all three oscillators exhibit in-phase LAOs
as shown in Fig. 15(a). As ϕ increases in Region IV, oscil-
lator 2 displays 51 MMOs [see Fig. 2(a)] while oscillators
1 and 3 exhibit out-of-phase LAOs as shown in Fig. 15(b).
After the PD sequence to chaos and period-adding bifurca-
tions, all three oscillators begin out-of-phase singly periodic
oscillations as shown in Fig. 15(f). These out-of-phase singly
periodic oscillations continue for a significant range of ϕ

(−0.648264 � ϕ � −0.582085), after which all three oscil-

lators transition to in-phase LAOs. Before transitioning to
61 MMOs, oscillator 2 shows intermittent spiking, as shown
in Figs. 15(c)–15(e).

APPENDIX B: MASTER-SLAVE-LIKE FORCED SYSTEM

We calculated the Feigenbaum constant for some of the
Cases in Table II (main text). The results for Cases 3 and 5
are shown in Tables V and VI, respectively.
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TABLE X. Continuation of Table VIII.

Case Initial conditions
Initial phase,

φi,α = t
T

MMOs in
Region IV

31
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−0.83268550, −1.3617089)

0
0.76081722
0.66312506

51 − 91 with PD
sequence to chaos.

32
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−0.66521082, −1.4463757)

0
0.76081722
0.76081722

51 − 91 with PD
sequence to chaos.

33
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (0.15026501, −1.3754568)

0
0.76081722
0.80544753

61 − 91 with PD
sequence to chaos

No 51.

34
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (0.73704220, −1.3398600)

0
0.76081722
0.80886316

61 − 91 with PD
sequence to chaos,

no 51.

35
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (1.2102131, −1.2934938)

0
0.76081722
0.81178353

51, 61 with PD
sequence to chaos,

no 71 − 91.

36
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (1.3839416, −1.1278747)

0
0.76081722
0.82036018

61 − 91 with PD
sequence to chaos

No 51.

37
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (1.2563883, −0.15799757)

0
0.76081722
0.87135531

61 − 91 with PD
sequence to chaos

No 51.

38
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (0.70889380, 1.6188803)

0
0.76081722
0.97957075

71 − 91 with PD
sequence to chaos
No 51.61 had p-2.

39
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−0.50940690, 1.8157851)

0
0.76081722
0.99930355

81, 91 with PD
sequence to chaos.

71 had p-1, 2.

40
(v1,0, w1,0) = (−0.73543367, 1.8087622)

(v2,α, w2,α ) = (−0.66521082, −1.4463757)
(v3,α, w3,α ) = (−0.73543367, 1.8087622)

0
0.76081722

1
10

APPENDIX C: UNCOUPLED FORCED SYSTEM

In addition to the 51 MMOs with PD to chaos seen at higher
ϕ, we obtain several MMOs where the SAOs display complex
periodicity with PD to chaos. We use the term 4comp for the
complex SAOs after four LAOs.

The time series [see insets of Figs. 16(a)–16(b)] and phase
portraits in Figs. 16(c)–16(d) show period-1 and period-2 of
45 MMOs with PD. At high values of ϕ, the oscillator displays
chaos as shown in the phase portrait and next-amplitude maps
in Fig. 16(e) and Fig. 16(h), respectively.

We carried out numerical simulations to study the effect of
the initial location of the oscillator on the MMOs. We place
the oscillator at different positions along the cubic nullcline.
At all initial locations, as long as the parameters are not
changed, only 51 MMOs with PD are seen in addition to
the other complex MMOs that show PD. We did not observe
period-adding bifurcations.

Because the system is invariant to interchange of oscil-
lators 1 and 3, we need only consider the range 0 � θ �
π . As θ increases beginning with θ = 0, with ϕ used to
produce Fig. 11(h), the system shows MMOs before re-
turning to LAOs at θ ≈ 257π/512 [Fig. 17(a)]. The system
exhibits four LAOs in the MMOs with PD in the SAOs

as shown in Figs. 17(b) and 17(d). The complexity in the
SAOs in the PD increases with increasing θ . The PD/MMOs
of particular interest is the 51 MMO with PD. This oc-
curs varying θ before the system transitions to LAOs as
shown in Fig. 17(c). In Fig. 17(c), there are two PD/MMOs.
The first corresponds to the 51 and the second to 151

PD MMOs. Between 257π/512 � θ � π , only LAOs are
seen.

We studied the behavior of the system varying ϕ at four
different values of θ . Table VII shows the various observations
made. Case 1, represents the sine forcing presented in the
main paper.

Case 2 is noteworthy, because there is no phase difference
between the forcing terms, i.e., the oscillator is forced by
a single sine wave. This is similar to having the outer two
oscillators start with the same initial conditions for the fully
coupled system as shown in Cases 6–7, Table III. Here, how-
ever, we obtained two sets of MMOs with PD, one (3comp and
4comp) with complex SAOs, and the others containing combi-
nations of 51 and 52 MMOs (Table VII). It thus appears that
simple sinusoidal forcing of a single autonomous oscillator
with the appropriate amplitude and frequency is sufficient to
generate PD-MMOs.
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(a) (b)

(c) (d)

FIG. 19. 1D plot of effect of initial phase difference of oscillators with φ3 varied. Parameters same as Fig. 2 initial conditions varied.
(a) φ2 − φ1 held constant at φ2 − φ1 ≈ 0.7608 (see Tables 19(a)–19(c)). (b) Expanded from Fig. 19(a). (c) Blowup from Fig. 19(b). (d) φ2 − φ1

held constant at φ2 − φ = 0 (see Tables 19(a)–19(c)).

For Cases 3 and 4, we examined the system for changes
in the observations made choosing θ > π/2. In Case 3, we
investigated the system with θ = 3π/4. We obtained 151 as
well as hybrid 101151 PD MMOs. For θ = π (antiphase sine
forcing), the system shows only SAOs and LAOs. There are
no MMOs or PD-MMOs, as shown in Case 4, Table VII.

APPENDIX D: EFFECTS OF INITIAL PHASE OF
OSCILLATORS

For each set of parameters, in order to calculate the initial
phase of each oscillator, we pick the point on the limit cycle
of the uncoupled oscillator with the maximum value of w and
call it (v0, w0), defined to have phase φ = 0, as shown in
Fig. 18(a). All the oscillators start at a point that lies on the
limit cycle of the uncoupled oscillator, Eq. (D1).

dv

dt
= −hv3 + av − w,

dw

dt
= ε(v − ϕ).

(D1)

Starting at time t = 0 at (v0, w0), the oscillator follows the
limit cycle, with its position at time t given by [v(t ), w(t )].
If the period of the uncoupled limit cycle is T , then [v(t +
T ), w(t + T )] = [v(t ), w(t )]. Any point (vα, wα ) picked on

the limit cycle corresponds to a unique point [v(t ), w(t )] for
0 < t < T and its phase is calculated using Eq. (D2).

φα = t

T

(
or

2πt

T

)
. (D2)

To assess the effects of varying the initial phases, we ran
simulations with the parameters in Fig. 18. The period of the
uncoupled limit cycle was determined to be T ≈ 71.55489
as shown in Fig. 18(b). We started oscillator 1 at φ1,0 = 0
throughout the study and varied the initial positions of oscilla-
tors 2 and 3 as (v2,α, w2,α ) and (v3,α, w3,α ), respectively. The
initial phase of each oscillator, φi,α (i = oscillators 1, 2 or 3)
was determined from Eq. (D2).

Tables VIII–X and Figs. 19(a)–19(c) show the results ob-
tained keeping the initial positions of oscillators 1 and 2
constant at a phase difference greater than 0.5 (φ2,α − φ1,0 ≈
0.7608). This phase difference resulted in both PD-MMOs
and period-adding bifurcations (51–91). The phase difference
between the outer oscillators 1 and 3 before the onset of
MMOs was relatively small as shown in Case 3 (φ3,α − φ1,0 ≈
2.496 × 10−6). We observed both 71 and 81 MMOs without
period-doubling sequence to chaos. As the separation between
the outer oscillators increased, additional periods were added
until the 81 MMOs showed a doubling sequence to chaos as
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seen in Case 6 with φ3,α − φ1,0 ≈ 4.417 × 10−4. Cases 7–22
showed MMOs both with and without PD sequence to chaos.
The first appearance of all MMOs with PD is found in Case
23 with φ3,α − φ1,0 ≈ 0.2024. This behavior continues for a
significant range of the phase difference, until φ3,α − φ1,0 ≈
0.8054 in Case 33, where the 51 MMOs disappear. As the
phase difference approaches 1 (Cases 33–39), the PD-MMOs
slowly disappear until they vanish at φ3,α − φ1,0 = 1, Case 40.

Cases 8 and 9 of Table III demonstrate that PD-MMOs
and period-adding bifurcations can occur when the initial
phases of the central oscillator and one of the outer oscilla-
tors are the same. In Tables XI–XII, we set φ2,0 − φ1,0 = 0
and varied φ3,α . Unlike Tables VIII–X where the oscillators
display PD-MMOs with almost zero initial phase difference
between the outer oscillators, with φ3,α − φ1,0 ≈ 2.496 ×
10−6, now the PD-MMOs only appear at much larger initial

TABLE XI. Oscillators 1 and 2 kept constant, φ2,al pha − φ1,0 = 0, and varied oscillator 3.

Case Initial conditions
Initial phase,

φi,α = t
T

MMOs in
Region IV

1
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,0, w3,0 ) = (−0.73543367, 1.8087622)

0
0
0

10

2
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−0.73567117, 1.8087615)

0
0

1.0309375 × 10−6
10

3
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−0.73600866, 1.8087606)

0
0

2.4959578 × 10−6
10

4
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−0.74095742, 1.8087461)

0
0

2.3982862 × 10−5
10

5
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−0.77327807, 1.8086264)

0
0

1.6462444 × 10−4
10

6
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−0.83020026, 1.8083070)

0
0

4.1465391 × 10−4
10

7
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.0530435, 1.8054960)

0
0

1.4772792 × 10−3
10

8
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.2996932, 1.7967280)

0
0

3.2341209 × 10−3
10

9
((v1,0, w1,0 ) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.4104253, 1.7836032)

0
0

5.2038557 × 10−3
10

10
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.4439419, 1.7666513)

0
0

7.5281428 × 10−3
10

11
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.4495929, 1.7402246)

0
0

1.1073665 × 10−2
10

12
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.4473132, 1.7111448)

0
0

1.4973740 × 10−2
10

13
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.4426890, 1.6665351)

0
0

2.0984244 × 10−2
10

14
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.4367779, 1.6107090)

0
0

2.8557478 × 10−2
10

15
(v1,0, w1,0 ) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.4223418, 1.4769175)

0
0

4.6949618 × 10−2
10
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TABLE XII. Continuation of Table XI.

Case Initial conditions
Initial phase,

φi,α = t
T

MMOs in
Region IV

16
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.4078884, 1.3465270)

0
0

6.5220803 × 10−2
10

17
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.3921840, 1.2088489)

0
0

8.4910542 × 10−2
10

18
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.3761427, 1.0724684)

0
0

0.10484701
10

19
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.3608116, 0.94609604)

0
0

0.12373419
10

20
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.3486649, 0.84869818)

0
0

0.13858228
10

21
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.3311480, 0.71243563)

0
0

0.15981353
10

22
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.3109718, 0.56155319)

0
0

0.18400104
10

23
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.2954752, 0.45001601)

0
0

0.20238354
10

24
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.2899349, 0.41104780)

0
0

0.20891417

61 with PD
sequence to chaos,

71 p-1.

25
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.2825189, 0.35962892)

0
0

0.21762167

61, 71 with PD
sequence to chaos,

81 p-1.

26
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.2787984, 0.33415114)

0
0

0.22197542

61 − 81 with PD
sequence to chaos,

no 51 and 91.

27
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.2713317, 0.28366069)

0
0

0.23068292

61 − 81 with PD
sequence to chaos,

no 51, 91 p-1, 2.

28
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.2638306, 0.23379274)

0
0

0.23939042

51 − 91 with PD
sequence to chaos.

29
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−1.2449229, 0.11186542)

0
0

0.26115918

51 − 91 with PD
sequence to chaos.

30
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)

(v3,α, w3,α ) = (−1.0972651, −0.66313301)

0
0

0.42203680

51 − 91 with PD
sequence to chaos.

phase differences, as shown in Table XII and Fig. 19(d),
Case 24 with φ3,α − φ1,0 = φ3,α − φ2,0 ≈ 0.2089. The phase
differences between oscillators 1 and 3 are the same for
Tables VIII–X and Tables XI–XIII, with the only difference
being the phase difference between the outer oscillators and
the central oscillator.

We carried out a third study where we kept the initial phase
difference between the two outer oscillators constant and var-
ied φ2,0. With φ3,α − φ1,α ≈ 0.7608 all PD-MMOs (51–91)
and period-adding bifurcations appear at φ2,α − φ1,α ≈ 0 for
all cases considered. The large initial phase difference be-
tween the outer oscillators ensures that changing the initial
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TABLE XIII. Continuation of Table XI.

Case Initial conditions
Initial phase,

φi,α = t
T

MMOs in
Region IV

31
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)

(v3,α, w3,α ) = (−0.83268550, −1.3617089)

0
0

0.66312506

51 − 91 with PD
sequence to chaos.

32
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)

(v3,α, w3,α ) = (−0.66521082, −1.4463757)

0
0

0.76081722

51 − 91 with PD
sequence to chaos.

33
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (0.15026501, −1.3754568)

0
0

0.80544753

51 − 71 with PD
sequence to chaos,

81 p-1, no 91.

34
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (0.73704220, −1.3398600)

0
0

0.80886316

61 − 91 with PD
sequence to chaos,

no 51.

35
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (1.2102131, −1.2934938)

0
0

0.81178353

51, 61 with PD
sequence to chaos,

no 71 − 91.

36
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (1.3839416, −1.1278747)

0
0

0.82036018
10

37
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (1.2563883, −0.15799757)

0
0

0.87135531
10

38
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (0.70889380, 1.6188803)

0
0

0.97957075
10

39
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−0.50940690, 1.8157851)

0
0

0.99930355
10

40
(v1,0, w1,0) = (−0.73543367, 1.8087622)
(v2,0, w2,0 ) = (−0.73543367, 1.8087622)
(v3,α, w3,α ) = (−0.73543367, 1.8087622)

0
0
1

10

phase of oscillator 2 does not significantly influence the be-
havior of the system.

The above studies conducted varying the initial phase of
oscillator 3 (φ3,α) and keeping the initial phases of oscillators
1 and 2 (φ1,0, φ2,α) constant suggest that if the phase differ-
ence between oscillator 1 and 2 is sufficiently large, MMOs

with and without PD occur over a broad range of φ3,α , as
shown in Tables VIII–X, Figs. 19(a)–19(c). However, if the
initial phase difference between oscillators 1 and 2 (any of
the outer and the central oscillator) is close to zero, the PD-
MMOs occur over a much narrower range of φ3,α , as shown
in Tables XI–XIII, Fig. 19(d).
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