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Multiscale physics of rotating detonation waves: Autosolitons and modulational instabilities
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Proposed is a phenomenological modeling framework that is capable of reproducing the diverse experimental
observations of the nonlinear, combustion wave propagation in a rotating detonation engine (RDE), specifically
the nucleation and formation of combustion pulses, the soliton-like interactions between these combustion fronts,
and the fundamental, underlying Hopf bifurcation to time-periodic modulation of the waves. In this framework,
the mode-locked structures are classified as autosolitons or stably propagating nonlinear waves where the local
physics of nonlinearity, gain, and dissipation exactly balance. We find that the global dominant balance physics
in the RDE combustion chamber are dissipative and multiscale in nature: The fast combustion physics provide
the energy input to form the fundamental mode-locked autosoliton state, while the slow physics of exhaust
and propellant recovery shape the waveform and dictate the number of autosolitons. In this manner, the global
multiscale balance physics give rise to the stable structures—not exclusively the frontal dynamics prescribed by
classical detonation theory. Experimental observations and numerical models of the RDE combustion chamber
are in strong qualitative agreement. Moreover, numerical continuation (computational bifurcation tracking) of
the RDE analog system indicates that a Hopf bifurcation of the steadily propagating pulse train leads to the
fundamental instability of the RDE, or time-periodic modulation of the waves. Along branches of Hopf orbits
in parameter space exist a continuum of wave-pair interactions that exhibit solitonic interactions of varying
strength.
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I. INTRODUCTION

Combustion instabilities are a universal phenomenon in
aerospace propulsion systems. In rockets, combustion cham-
bers can exhibit coupling between combustor geometry,
propellant injection, and local heat release [1–5] which can
lead to instabilities that are capable of inducing mechanical
failure [6], constituting a major risk to the propulsion system.
Historically, to abet this risk, significant resources have been
devoted to engineer systems that damp or limit the mech-
anisms responsible for the formation of these instabilities.
These engineering tasks are not trivial: The physical processes
responsible for the instabilities are highly nonlinear and intri-
cately coupled. Consequently, the physics exploration of these
behaviors is often constrained to hardware-specific studies. In
the rotating detonation engine (RDE), such instabilities are
amplified such that they saturate, potentially forming stable
traveling detonation waves. However, the RDE is not immune
to developing its own unique behaviors. These include mode
locking of waves, bifurcations of the number of waves, or
periodic modulation of the waves. Koch et al. [7] recently
proposed a mathematical model capable of reproducing the
diverse, experimentally observed mode-locking dynamics of
the RDE. Here we numerically investigate this model to
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characterize the fundamental dominant, multiscale balances
which drive the instabilities and bifurcation structure of rotat-
ing detonation waves, showing that the mode-locked states,
or autosolitons, are solitonic in how they interact and that
the Hopf bifurcation is the fundamental, canonical instability
driving bifurcations in the combustion chamber.

The RDE was first conceptualized as an alternative to
standard rocket engine designs in the late 1950s to early
1960s [8,9]. In the RDE, instead of the suppression of com-
bustion instabilities, the combustion chamber was designed
to leverage and promote a specific and ubiquitous instability
which generated rotating combustion fronts whose growth
produced a number of discrete co- and counterpropagating
traveling detonation waves that consumed injected propellant.
This instability is the promotion of the self-steepening of
pressure and density gradients caused by heat release in an
annular combustion chamber. The RDE is anomalous in that
its steady operation is the saturation of this instability.

However, the RDE is not free from its own set of insta-
bilities: The balance between the nonlinearity of the fluid
medium and the competing physical processes of combustion,
injection, and exhaust is delicate. Rotating detonation waves
have experimentally been found to be very sensitive to com-
bustor boundary conditions (such as inlet pressure and exit
plane pressure), propellant heat release, and the geometric
parameters of the engine, such as engine length and annu-
lus circumference. For certain conditions, rotating detonation
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waves have been observed to exhibit a number of remarkable
properties that differ significantly from the freely propagating
detonations of conventional theory. A prototypical detona-
tion wave is a front that connects the states of unburnt and
completely burnt mixture. Rotating detonation waves differ in
that they are pulses, where the beginning and end states of
the wave are the same. The tail of the detonation decays as
the burnt gas can expand perpendicularly to the propagation
direction of the pulses. Likewise, at a particular point in the
annulus, the reactant mixture is regenerated within the transit
time of a wave. This balance of heat release (gain), exhaust
processes (dissipation), propellant injection (gain recovery),
and nonlinearity of the medium governs the pulse shape,
number, and behavior [7]. Should these physical processes
be unbalanced, a wide array of spatiotemporal dynamics are
known to exist and persist, as observed in experiments and
detailed computational studies. Such dynamics include mode
locking of pulses [7], modulation of the pulse train [7,10],
and bifurcations to different numbers of pulses [7,10–12]. The
physical mechanisms and engineering implications of these
transients and instabilities are not well understood, especially
with regard to operational stability and performance.

In this article, we investigate the properties of rotating
detonation waves with respect to the interplay of the physical
unit processes that govern the pulse behavior. We use a low-
order mathematical description of the coupling of the physical
processes within the combustion chamber to characterize the
behavior of the pulses across a wide range of parameter
space. We find that the collection of detonation waves exhibit
solitonic properties in their interactions and balance physics.
However, unlike the solitons of integrable equations, such as
the Korteweg-de Vries equation, the solitonic properties of
the rotating detonation waves are consequences of the global
gain dynamics and domain periodicity. Within this context
we describe the fundamental instability of the rotating det-
onation wave, namely a Hopf bifurcation from the steadily
propagating wave to the time-periodic wave modulation as
seen in experiments. Numerical analysis of the bifurcation
structure of the mathematical model indicates the universality
of this instability: Along solution branches of traveling waves,
all transients away from the steady case travel through this
Hopf bifurcation point. We additionally present experimental
evidence corroborating these claims.

In Sec. II, we begin by presenting a description of the
rotating detonation engine and by reviewing general themes
in literature. In Sec. III we present recent observations of
nonlinear dynamics in experiments and in models. In Sec. IV,
we present a summary of the RDE analog system and ana-
lyze, numerically, the traveling waves admitted by the analog
system. In Sec. V, we identify and discuss regimes of wave
propagation and make the autosoliton analogy. Last, we dis-
cuss the relationship between the source terms of the model
and the Rankine-Hugoniot relationship for the shock jump
conditions in Sec. V.

II. BACKGROUND

The RDE is an internal combustion engine belonging to
a class of engines called pressure gain combustors, where
the primary mechanism by which heat is added to the

flow is through constant-volume combustion. Detonations, or
self-sustained supersonic reaction waves where combustion
products are sonic relative to the leading shock [13,14], are
the naturally occurring physical process that most constant-
volume combustors seek to employ, including the RDE. RDEs
typically are designed with periodic, annular combustion
chambers (Fig. 1) that provide geometric confinement to the
heat release process. The rapid heat release in the presence of
this confinement promotes the self-steepening of the gradients
of pressure and density within the fluid. Because chemical
reactions are accelerated with increasing pressure and temper-
ature, this creates a positive feedback mechanism that further
accelerates the reaction front. This front continues to acceler-
ate until the combustion products behind the wave front are
exactly sonic relative to the wave, where no “downstream”
influences can affect the state of the wave. These waves travel
in the circumferential direction ingesting axially moving pro-
pellant. After the propellant has been detonation-processed,
the hot and high-pressure exhaust gasses are ejected through
the aft end of the device at high velocity, providing usable
thrust. The path to maturation of RDE technology includes
a detailed investigation of the physics of rotating detonation
waves, especially the relationship between detonation behav-
ior, engineering performance, and component-level (injection
and exhaust hardware, for example) coupling.

A number of research groups and institutions have suc-
cessfully sustained rotating detonation waves in annular and
disk-type geometries. Although the parameters that uniquely
define these specific engines vary drastically across the litera-
ture, the behavior of the traveling detonation waves contained
within these engines are consistent. Wave speed and count are
metrics that are easily observed and readily available in liter-
ature. An overarching theme of the RDE community is that
the speed and number of waves are related to the energy flux
through the engine [10,15–18]. The wave speeds are decidedly
slower than those of Chapman-Jouguet detonations [13], or
the freely propagating detonation through a premixed fluid of
the same propellant chemistry. Likewise, the wave speeds take
on distinct ratcheting transitions when energy flux is taken
to be a bifurcation parameter [15]. In incrementing the num-
ber of detonation waves by changing energy (mass) flux, the
collection of waves assumes a slower speed than the original
state. The opposite scenario also holds, where a decrement in
waves results in the remaining waves traveling faster (on the
order of 10% velocity difference [7,11,15,18]). In addition to
transients leading to changes in number of waves, commonly
observed are “galloping” detonations, or periodic modulation
of detonation wave velocity [7,11,19]. Such modulation has
been identified as a precursor to mode changes [11]. Ampli-
tude, speed, and phase differences of the waves become time
periodic at the onset of this instability. Such modulation is ap-
parent in the spectral content of fast-response instrumentation,
such as in piezoelectric pressure sensors or high-speed camera
footage, where spectral sidebands are present and symmet-
ric about a dominant carrier frequency [20]. Last, extreme
events such as chaotic propagation, especially during times of
ramp-up or ramp-down of propellant feed, have been observed
experimentally [21].

Most laboratory-grade RDEs in literature use gaseous
propellants injected through sets of sonic orifices into the
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FIG. 1. A sketch depicting the canonical flow field of the rotating detonation engine is shown with the major features annotated. Gaseous
fuel and oxidizer is injected through a number of discrete orifices that rapidly mix inside an annular combustion chamber. A supersonic,
circumferentially traveling, reaction wave consumes the newly mixed propellant, sustaining the motion of the reaction wave. Emanating from
this front is an oblique shock wave that sweeps the downstream flow field. A contact surface marks the location separating the combustion
products of this particular reaction front from those of other waves or, in this case, previous round trips of the same wave. As the reaction front
passes over the propellant injectors, the injectors become blocked, as the reaction wave pressure is typically higher than that of injection. A
time lag therefore exists before propellant can be reintroduced to the combustion chamber. This time lag is depicted as distance behind the
reaction front before the blue reactant zone reappears. Thrust is produced from expelling the hot exhaust products rearward at high velocity
and by producing a time- and spatially averaged high chamber pressure acting on a thrusting wall (in this cartoon, this is the injector face). In
the experimental set-up of this study, direct optical access of the annulus allows for the complete space-time history of the detonation waves to
be recorded with a high-speed camera. A single frame from an experiment is shown in (b) with the annulus integrated pixel intensity overlaid
the annulus location. Stacking each high-speed camera frame gives (c), where line slopes correspond to wave speed. The integrated luminosity
trace in (b) corresponds to the trace shown in (c).

combustion chamber. If injection pressure is significantly
higher (about a factor of 2) than the combustion chamber
pressure, then the propellant Mach number becomes one at
or near the exit of the injector, meaning the injector is acous-
tically isolated from the combustion process. No information
can be exchanged between the combustion and injection pro-
cesses: They are decoupled. However, as noted by many
(see Ref. [21], for example), the detonation waves possess
a peak pressure typically an order of magnitude greater than
that of the injector feed. The implication is that the acoustic
isolation is lost and the injection and combustion processes
become coupled. The high-pressure detonation waves can in-
duce blockages or backflow into the propellant feed systems.
To alter the energy flux through RDEs (fed with gaseous
propellant through nominally choked injectors), one can ei-
ther change the injector feed pressure or the total injection
area. However, these strategies affect the injection-detonation
coupling differently [22,23]. Consider two sets of injectors
delivering equivalent mass fluxes to a combustion chamber:
one set with a larger total injection area and lower feed pres-
sure and one set with smaller total injection area and higher
feed pressure. The set with a larger total injection area has

a greater potential for coupling with the detonation waves
as the detonation peak pressure is much greater than that of
injection. Significant coupling of this type generally leads
to unstable detonation behavior and/or weakly propagating
waves [22,23]. Increasing feed pressure such that it becomes
comparable to that of the detonation waves decreases the
degree of coupling, though using large pressure ratio injectors
typically lead to large, unrecoverable pressure loss [20,22].
The timescales associated with injection and mixing are di-
rectly related to these metrics, along with specific injector
geometries (the aspect ratio of length to diameter), orienta-
tions (axial injection versus radial injection, for example),
and mixing schemes (impinging jets or vortical mixing, for
example).

Computational fluid dynamic (CFD) models of the RDE
have been particularly useful in identifying and exploring
the physical processes responsible for the wave behavior
and instabilities seen in experiments, including injector cou-
pling. With CFD, one has access to the full state of the
system. Therefore, these various wave phenomena can be ex-
plicitly linked to performance (combustion efficiency, thrust,
etc.) “Unwrapped” two-dimensional (2D) domains of the
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annular-type RDE have been simulated with great suc-
cess [24–29]. These models have established the flow field of
the RDE with respect to different geometric and operational
parameters, and have been instrumental in characterizing the
modes and instabilities of rotating detonation waves. In 2D
domains, the inlet boundary condition is critical in deter-
mining the global behavior of the simulation. A common
approach (see Ref. [25] for a detailed presentation) is to treat
the inlet boundary as a solid wall (zero mass flux) if the
pressure in the domain is larger than the prescribed injection
pressure. If the pressure in the domain is less than the injection
pressure, then the velocity at the inlet takes on super- or sub-
sonic values corresponding to isentropic nozzle expansion of a
certain area ratio (injection area relative to combustor annulus
area). The prescribed area ratio and injection pressure dictate
the time lag behind the passing waves before propellant can
be reintroduced to the domain. Long-time history of the pro-
pellant regeneration of these simulations show explicitly the
“self-adjustment” mechanism [30] whereby the collection of
detonation waves mode-lock to symmetric and maximal phase
differences.

Studies have been extended to 3D domains [31–33] to
investigate the interaction of traveling detonations on propel-
lant injection, mixing, and exhaust processes. As computing
power increases, these full-3D simulations have naturally
been refined to match specific hardware and propellants
used [34–36]. Several studies have focused exclusively on
the stability and behavior of the traveling waves in 2D and
3D [37–41]. Computational expense becomes a significant
problem as one increases complexity in the modeling. Be-
cause the flow field of the RDE is inherently low-dimensional
(a number of waves traveling at a certain speed is all one
needs to recreate the major features of the flow), a number
of groups have shifted efforts to simplifying the modeling
and analysis to exploit this traveling wave structure [42–44]
with varying degrees of success. These studies use geo-
metric scaling and “black box” numerical techniques to tie
together the physical processes of injection, detonation, and
flow expansion and exhaust to determine representative flow
fields. With these studies, time-to-solution is prioritized over
accuracy. Data-driven methods, like dynamic mode decompo-
sition, have also been used to extract dominant features from
high-speed camera footage and investigate the interaction of
these features [45].

Despite the success of using computational models to de-
termine the RDE flow field and to predict performance with
some confidence, the investigation of the fundamental physics
governing the behavior of the collection of waves is diluted by
the arbitrarily high-dimensional nature of these formulations.
While these studies certainly have merit in the engineering
development of specific hardware, they are necessarily con-
strained to condition- or geometry-specific models and do not
generalize to other engines, propellants, boundary conditions,
or coupling schemes. These complications drive the state of
the art further into increasing fidelity and computational cost.

In Ref. [7], we introduced an alternative view of the
rotating detonation process. We extended the Majda deto-
nation analog [46] to model an autowave process; i.e., one
that produces solitarily propagating detonative pulses travel-
ing about a periodic domain. The Majda detonation analog,

like that of Fickett [47], is a simple two-component partial
differential equation system that is readily solved by con-
ventional numerical techniques. These models bring together
the physics of compressibility, shock formation, and reac-
tivity in a simple mathematical framework that qualitatively
reproduces many physical phenomena observed in real det-
onations. The tractability of these models have made them
a natural mathematical test bed for development of methods
to evaluate detonation wave stability [48–51], especially in
the Zeldovich-von Neumann-Doring limit [52]. These analog
models have been extended to investigate period doubling and
the transition to chaos in detonation fronts [53,54] and mode
locking in periodic media [55].

This autowave model marks a significant departure from
the modeling state of the art in that it stresses global energy
dynamics and qualitative behavior over accuracy and device-
and condition-specific computational studies. The approach
adequately captures the nonlocality (meaning the behavior at
a single spatial location is coupled to all other locations) of
the energy balance that leads to the diverse behavior seen
in experiments. The physics are simplified in this approach:
For the pulses to steadily propagate, global gain and loss
must exactly offset, subject to the nonlinearity (possessing
a Burgers-type flux) and periodicity of the medium. This
perspective is adopted from the nonlinear waves community
(see Refs. [56–58]). Localized structures that self-organize
and propagate as a response to energy pumping from an exter-
nal source are called dissipative solitons or autosolitons. We
classify rotating detonation waves as such.

The precedent exists for the classification of reaction waves
into this mathematical physics framework. Reaction-diffusion
systems in active media have been known to exhibit soli-
tonic properties and have a rich mathematical framework with
which they can be analyzed [59]. More topical are flam-
ons [59] and the phenomenon of spinning reaction fronts [60].
In the engineering community, tangential rocket combustion
instabilities have been classified as solitonic [61]. The pulses
of the RDE differ from those in literature in that the pulse
fronts can be discontinuous. Our treatment of the reaction
front remains rooted in the detonation phenomenon as we
retain the nonlinearity that leads to shock formation, whereas
the formulations of reaction-diffusion systems neglect this
nonlinearity.

To adopt the view of solitonic propagation of rotating
detonation waves has high value in fundamental physics in-
vestigations. The physical processes responsible for pulse
shape and behavior are known. This view deemphasizes
hardware or condition-specific considerations. Instead, high-
lighted are the influence of the interaction of scales of
associated physical processes. Furthermore, this perspective
allows one to examine relationships between system stabil-
ity and readily observed wave properties, such as speed and
multiplicity. To that end, we envision the use of this phe-
nomenological model as a test bed for the development of
mathematical methods and techniques that can then be applied
to higher-fidelity simulations or experimentally obtained data.

Note that in this article we have restricted our discussion
to corotating waves exclusively, despite the prevalence of
counterrotating in literature. The inclusion of counterrotating
waves is the subject of future studies.
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FIG. 2. Raw integrated pixel intensity of RDE annulus through time is shown in (a) for an experiment with large-amplitude modulation.
The two waves present in the domain exchange strength and amplitude in a regular fashion. At each wave collision, the waves nonlinearly
interact, leaving an observable phase shift in the trajectories of the waves. The data shown in (a) is recast into the mean-velocity reference
frame in (b). Here, the oscillations in phase difference between the waves is explicit. The accompanying spectrum in (c) shows the frequency
content in terms of wave count (unit of abscissa). Sidebands exist symmetric about the wave count frequency of two, though dominating the
frequency content is the lower sideband as this experiment is near a bifurcation point to one wave.

III. EXPERIMENTS

For this article, we have collected a series of observations
from experiments that highlight the spatiotemporal dynamics
of rotating detonation waves. The rotating detonation engine
used is a gaseous oxygen- and methane-fed engine based on a
76-mm outer annulus diameter and 76-mm core length. Each
experiment consists of a minimum of 0.5 s of “hot” operation
where the feed lines and combustion chamber pressures have
settled to steady values. The engine is mounted to a large
dump volume that captures all engine exhaust. Because the
system is closed, both the inlet (feed pressure) and outlet
(dump volume pressure) boundary conditions can be con-
trolled and independently set. Likewise, routing the exhaust
into a dump volume has allowed for the safe installation of
an optical viewport roughly 2 m downstream of the engine.
Using a high speed camera, the complete spatiotemporal his-
tory of the detonation waves is recorded for each experiment.
These space-time histories are the primary metric by which
we compare our model to experiments. A single frame from an
example high-speed recording is shown in Fig. 1. The location
of the annulus is overlaid with black circles. By integrating
the pixel intensity around the annulus for each frame of the
video [62], a profile of the luminosity can be constructed
and stacked through time to yield a spatiotemporal history
(Fig. 1) of the detonation waves in an experiment. In this
view, slopes correspond to wave angular velocity. For the
experiment shown in Fig. 1, the wave motion is steady through
time.

We present here a subset of experiments that exhibit a
modulational instability with the goal of characterizing this
phenomenon with a low-order model in Sec. IV. Figures 2
and 3 show different numbers of waves in the annulus that
travel with a modulated speed, amplitude, and phase differ-
ence. For these figures, plotted are these histories against
time normalized by the average round-trip time of a wave.
The time units correspond to the number of round trips for
the mean velocity of the waves. Raw integrated pixel lumi-
nosity for a two-wave modulation case is given in Fig. 2(a).

In viewing this space-time history, it is apparent that in this
experiment the waves have two regimes of propagation. The
first regime is characterized by a stronger (greater luminosity),
faster moving pulse. The second regime is characterized by a
significantly weaker, slowly moving pulse. The two coexisting
waves in the RDE annulus regularly alternate between these
propagation regimes. The point at which the waves “switch”
regimes is at the local maxima of the modulation, i.e., when
the two waves are closest together.

At this close range, a fundamentally different balance
physics exists that changes the behavior of the waves. The
strengths and speeds of the waves are directly tied to the
amount and distribution of available reactant in the annulus.
Immediately after a wave-pair interaction, the faster of the
two waves has an excess of reactant through which it can
propagate stably (with a constant velocity and amplitude).
This imbalance of propellant distribution exists because (i) the
weaker wave has not blocked propellant injection to the de-
gree that the stronger wave has and (ii) a temporal imbalance
exists corresponding to the large-amplitude phase differences
of the waves. Because the stronger wave travels faster than
its counterpart, it approaches the tail of the slower wave,
where the amount of renewed reactant is significantly less
than required to sustain the speed and amplitude of the strong
wave. This strong wave therefore decelerates, as the dissipa-
tive processes (exhaust) now dominate the physics. At this
point of interaction, the phase difference between the strong
and weak waves is small—on the order of 45◦ or π/4 radians.
The accompanying phase difference—the one preceding the
weak wave—is therefore 2π − π/4. With these large phase
differences (and accompanying time lags), reactant regener-
ation asymptotically approaches a state of complete “refill,”
where no combustion products are present in the flow and
the reactant is fully mixed. The weaker wave now rapidly
gains strength: The input energy to the wave is greater than
that which is lost through the dissipative processes. Finally,
the transition to the stronger mode of propagation is com-
plete when the energy input to the wave exactly balances
the dissipative processes. This saturation of the growth of the
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FIG. 3. Shown in (a) is raw pixel luminosity for a three-wave modulation case in the laboratory reference frame. Recasting this to the
mean-velocity reference frame (b), the oscillations in phase difference become explicit. Although this instability is the same type as displayed
in the two-wave case of Fig. 2, the amplitude of the modulation is less severe. The spectrum of the experiment is shown in (c), with sidebands
near wave counts of two and four symmetric about the carrier frequency of three waves.

waves is explicitly seen in the spatiotemporal history of the
experiment: The paths of the waves are straight lines (paths
of constant velocity) connected by brief periods of nonlinear
wave-to-wave interaction. Displayed in Fig. 3(a) is similar
time-periodic modulation, though with three waves.

All experiments possessing this modulational instability
share a similar frequency spectrum. A carrier frequency cor-
responding to the average velocity (or, if normalized as in
Figs. 2(c) and 3(c), a count of the waves in the domain) is
accompanied by sidebands symmetric about the carrier fre-
quency. By recasting the wave trajectories into the reference
frame of the velocity corresponding to the carrier frequency,
one can visualize the same dynamics as deviations from the
average velocity. The sidebands in the spectra correspond to
frequencies near that which would appear for an increment or
decrement in the number of waves. For example, for the three-
wave case of Fig. 3, the spectrum shows a dominant (carrier)
frequency of three waves with sidebands at approximately two
and four waves. Figure 2(b) is the representation of the data
contained in Fig. 2(a) recast into the reference frame of the
mean velocity of the waves by the transformation ψ = θ − ct ,
where c corresponds to the speed associated with the carrier
frequency of the spectrum. In this reference frame, the os-
cillations of phase difference between the waves is explicit,
as is the modulation of wave amplitude. The lower-amplitude
modulations of Fig. 3 do exhibit the same propagation charac-
teristics of the two-wave case, though the range of interaction
for these cases is observably larger than that of the two-wave
case.

In the brief wave-to-wave interactions, the waves exhibit
solitonic behavior. The strong wave assumes the shape and
velocity of that of the weaker and is displaced by a small
phase shift. Likewise, the weak wave assumes the shape and
velocity of that of the stronger wave—again displaced by a
small phase shift. This interaction is most easily observed with
close-scale interactions. In Fig. 4, displayed is a single period
of oscillation extracted from the two-wave modulation case of
Fig. 2. The time shifts �t yielding phase shifts �θ give the
interaction the appearance of a solitonic collision.

IV. THE RDE ANALOG SYSTEM

Our goal is to use a low-order mathematical formulation
to (i) reproduce, qualitatively, the modulational instability
and solitonic interactions of collections of rotating detona-
tion waves and (ii) characterize the conditions under which
these instabilities develop. We first summarize the mathe-
matical model first presented in Koch et al. [7]. This model
builds on the Majda detonation analog to account for dissi-
pation, reactant regeneration, and periodic boundaries. The
model developed is a hybrid in nature: Leveraging known
first-principles physics with empirical additions that are based
on experimental observations. As such, the model preserves
critical features of the detonation physics while parametriz-
ing phenomenological aspects. As will be shown, this hybrid
approach produces a model that provides the closest match to
experiment achieved to date, including the instability structure
manifested in rotating detonations. Using this model, we run
a sweep of numerical simulations to survey wave behavior.
Last, we use numerical continuation to extract the traveling
wave solution branches and their linear stability as a function
of a bifurcation parameter.

A. Model formulation

The model quantifies the spatiotemporal evolution of a
property analogous to specific internal energy, u(x, t ), and a
coupled reaction progress variable, λ(x, t ), on a 1D periodic
domain:

∂u

∂t
+ u

∂u

∂x
= q(1 − λ)ω(u) − εu2, (1)

∂λ

∂t
= (1 − λ)ω(u) − λβ(u). (2)

The quantity q is analogous to propellant heat release, ε is a
dissipation coefficient, ω is the rate law for the combustion
kinetics, and β is the injection model. The model domain
is normalized such that x maps to θ ∈ [0, 2π ) with periodic
boundary conditions imposed due to the annular construction
of the engine (see Fig. 1).
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Δθ

Δt

Δθ Phase
difference

Δt

FIG. 4. A single period of modulation for the data in Fig. 2 in the laboratory reference frame is shown in (a). The two waves present in
the combustion chamber interact nonlinearly, producing observable time and phase shifts. Such kinematic traces are hallmarks of solitonic
interactions. The data in (a) is shown in the mean-velocity reference frame in (b).

In this study, we treat the chemical kinetics as a simple
exponential of u(x, t ), with the functional form of:

ω(u) = k exp
(u − uc

α

)
, (3)

where k is a preexponential factor, uc is prescribed “ignition
energy,” and α is analogous to the inverse of activation energy.
Note that as written, the kinetics are autocatalytic: ω(u) > 0
always. The evolution of the combustion progress variable
λ is governed by the competition of combustion [following
the rate law of ω(u)] and injection [following the injection
model β(u)]. For injection, we use an activation function that
sufficiently mimics injection from nominally choked orifices:

β(u) = sup

1 + exp [r(u − up)]
, (4)

where the product sup is the time constant for the regeneration
of λ. In real engines, the rate of propellant regeneration is
influenced by the injection scheme, mixing effectiveness, and
total injection area. The parameter up is an injection activation
threshold. The parameter s scales the overall time constant
independent of the activation threshold. This functional form
asymptotically assumes the value of the numerator if the value
of u is small compared to up. In the limit as u becomes much
larger than up, β(u) approaches zero. Similarly, if either s
or up is zero, then there is no regeneration of λ. Last, the
quadratic loss term, εu2, is the imposition of lateral relief on
the domain tunable with the parameter ε.

The model’s steady (or quasisteady) state exists when the
energy flux into and out of the domain balance. This condition
is met when the integrated losses are equal to the integrated
energy input over the domain:

Ėdomain =
∫ L

0
q(1 − λ)ω(u)dx −

∫ L

0
εu2dx. (5)

For spatially homogeneous states (steady planar defla-
gration fronts) and mode-locked traveling wave solutions,
the integrals exactly balance and Ėdomain = 0. For oscillatory
plane waves, Ėdomain �= 0: There is periodic accumulation and
ejection of energy in the domain that oscillates in-phase with

injection and heat release, similar to the autoignition model of
Frank-Kamenetskii [63,64].

Transient phenomena, such as the initial start-up of a sim-
ulation or immediately after ignition of an RDE, exhibit an
imbalance of the integrals in Eq. (5): Ėdomain > 0. From an
initial condition of zero combustion and low values of u
throughout the domain, the losses in the chamber are minimal.
An accumulation of u will occur until the domain satisfies the
relationship in Eq. (5). A direct consequence of this behavior
is the influence of the accumulation of u on the kinetic model.
As u increases with the onset of combustion, the chemical
reactions governed by the simplified kinetics are accelerated.
This feedback mechanism further accelerates the chemical
kinetic model in the entirety of the domain. This energy influx
can trigger the transition to an increased number of traveling
waves. This process is the physical mechanism for wave nu-
cleation in RDEs.

B. Modulation of the deflagration state

We first consider the plane-wave case. Modulational insta-
bilities play a critical role in driving the overall dynamics of a
similar damp-driven system of mode-locked lasers [7], where
the instability or stability of plane-wave solutions determine
the overall global dynamics [65,66]. Plane waves, or spatially
homogeneous states, are not influenced by spatial derivatives.
Thus, an equivalent system is the further-reduced coupled
ordinary differential equations:

du

dt
= qk(1 − λ) exp

(u − uc

α

)
− εu2, (6)

dλ

dt
= k(1 − λ) exp

(u − uc

α

)
− supλ

1 + exp [r(u − up)]
. (7)

Stationary solutions (a steady, planar deflagration front) ex-
ist for εu2 = q(1 − λ)ω(u) and (1 − λ)ω(u) = λβ(u). These
fixed points can be found numerically. Figure 5(a) displays
fixed points for the parameters listed in Table I. The eigen-
values of the linearized system evaluated at the fixed points
yields Fig. 5(b). For small dissipation and heat release, the
steady planar deflagration is linearly stable. For high-energy
flux conditions, an instability can form leading to the growth
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up = 0.55

FIG. 5. (a) Fixed points of the deflagration system of Eqs. (6) and (7) for the parameters listed in Table I. The spectrum of the linearized
system evaluated at the fixed points is shown in (b). A Hopf bifurcation to a stable limit cycle exists at up ≈ 0.55. The eigenvalues of the black
diamonds in (b) correspond to those of the system simulated in (c) and its associated phase plane in (d). The initial condition for the simulation
is the red circle in (c) and (d).

of oscillations and a stable limit cycle [as shown in Figs. 5(b)–
5(d)]. This is a Hopf bifurcation with the injection sensitivity
threshold (up) as the bifurcation parameter. Similar pulsations
are observed in real engines with axial injector-combustion-
exhaust resonance [7,21].

C. Bifurcation structure of traveling waves

The open-source finite-volume code PyClaw [67] is used to
perform the direct numerical simulations of the model and the
Matlab-based software pde2path [68,69] is used to perform
the linear stability analysis of the traveling wave solutions via
numerical continuation. However, the model system as written
in Eqs. (1) and (2) admits solutions with discontinuities. Al-
though PyClaw is well suited to handle shocks, pde2path was
originally intended for systems of elliptic partial differential
equations. To facilitate the bifurcation analysis, the model
system is necessarily regularized with diffusion such that
the solutions become continuous, albeit still possessing sharp
gradients characteristic of the reaction fronts. We therefore
perform our bifurcation study of the modified system:

∂u

∂t
= ν1

∂2u

∂x2
− u

∂u

∂x
+ kq(1 − λ) exp

(u − uc

α

)
− εu2, (8)

∂λ

∂t
=ν2

∂2λ

∂x2
+k(1 − λ) exp

(u−uc

α

)
− supλ

1+exp [r(u − up)]
,

(9)

where the constants ν1 and ν2 are diffusivities associated with
the combustion (diffusing u) and injection (diffusing λ) pro-
cesses, respectively. The model parameters used in this study
are listed in Table II.

A bifurcation diagram showing the peak amplitude in the
domain as a function of the parameter up is shown in Fig. 6, as

TABLE I. Plane-wave simulation parameters

α uc s k r

0.3 1.1 1.0 1 5

computed by numerical simulation on a converged grid with
PyClaw. Each simulation was initialized with a localized sech-
pulse u(x, 0) = (3/2)sech20(x − 1) with a “half-combustion”
condition of λ(x, 0) = 0.5. This initial condition was chosen
to avoid issues with numerical stiffness associated with simu-
lation start-up transients.

At up = 0, the injection term β is zero and the entire
domain dissipates to a zero value. As up increases, a planar
deflagration front forms: The dissipation term (−εu2) first
dominates the dynamics of the domain, prohibiting the for-
mation of stable pulses and then relaxing to exactly balance
the input energy given by a nonzero β. At a critical value of
up ≈ 0.56, the initial pulse can form a single stably propagat-
ing wave. At this condition, the input-output energy balance is
still satisfied, but the timescale corresponding to the round-trip
time of the wave (the speed of which is determined by the en-
ergy release associated with the detonation and the preshock
state) has become comparable to the timescales of gain re-
generation (sup) and dissipation. Continuing to increase up

increases the peak amplitude of the single wave until up ≈
0.65, where a transition to two waves occurs. This transition
marks the point at which the mean value of u in the domain has
accelerated the kinetics to the point where the effects of par-
asitic deflagration (combustion that is not associated with the
traveling waves) and detonative combustion on the domain are
of the same order. The single wave’s amplitude decreases as
the parasitic deflagration is consuming an increasing amount
of the available energy. Once the parasitic deflagration can
self-steepen to form a shock during the round-trip time of a
detonation wave, a deflagration-to-detonation transition oc-
curs and the number of waves increases by one. This transition
is seen in Fig. 6 when increasing up above 0.65 (a transition
from one to two waves) and again around 0.9, 1.07, and 1.1.

TABLE II. Traveling wave simulation parameters

L q0 α uc s k ε r ν1 ν2 DCJ

2π 1.0 0.3 1.1 3.5 1 0.15 5 0.0075 0.0075 2
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N = 1

N = 2 N = 3 N = 4

N = 5

Deflagration

Deflagration(a)

(b)

FIG. 6. A bifurcation diagram of the RDE model analog showing
peak amplitude of the simulated domain is shown in (a). Model pa-
rameters are listed in Table II. In increasing the bifurcation parameter
up from zero, the system initially exhibits planar deflagration fronts,
then traveling waves (from 1 to 5 waves), then back to a deflagration
front. The associated speeds of the traveling waves are given in (b).

As up becomes large (beyond up ≈ 1.1), the domain regresses
back to a planar deflagration front. The timescale of the kinet-
ics is now much faster than all others in the model, including
that of the traveling waves. All potential energy made avail-
able by β is quickly consumed and dissipated.

The interpulse regions of the bifurcation diagram show a
diverse set of behavior, including wave modulation. In Fig. 6,
the vertical lines correspond to the simulation histories of
Fig. 7 for two- and three-wave modulation cases. For this
region of operability space in up, the waves travel unsteadily

FIG. 7. Modulated wave trajectories in the laboratory reference
frame from numerical simulations corresponding to the vertical lines
in Fig. 6. The simulation shown in (a) corresponds to up = 0.745.
The accompanying spectrum (b) (with abscissa units corresponding
to wave count) shows a carrier frequency of two waves with side-
bands near one and three waves. In (c), the simulation corresponds
to a value of up = 0.995 and has a similar spectrum to that of (b),
shown in (d).

with modulation similar to that which is observed in exper-
iments (Figs. 2 and 3). In the bifurcation diagram of Fig. 6,
the wave modulation for the two-wave branch is bounded by
stable two-wave propagation on both sides of the instability.
The modulation region for the three-wave branch is bounded
by a jump to the two-wave branch and by stable three-wave
propagation. Note that the interpulse region between N = 2
and N = 3 is marked with scattered wave amplitudes. In this
region, the waves have undergone multiple period doublings
and exhibit chaotic behavior.

The bifurcation diagram of Fig. 6 shows structure. A pla-
nar delfagration branch exists and is predominantly linear
with up. Branches exist for each number of traveling waves
that interact in some manner, giving intervals of up where
the wave dynamics are not steady. Transitioning from steady
propagation (a number of waves moving at constant veloc-
ity) to unsteady propagation constitutes a bifurcation to an
instability.

Using the numerical simulations from Fig. 6 as initial-
ization seeds, we construct an estimate of the complete
bifurcation diagram using pde2path for the parameters listed
in Table II. The system of Eqs. (8) and (9) are modified to
produce steady profiles by including an imposed offsetting
advection velocity and performing the two-parameter contin-
uation with up and the imposed velocity. See Appendix for the
complete formulation of the continuation problem.

Figure 8 contains several distinct branches of solutions
for the model system: one “trivial” branch and five traveling
wave branches. Along these branches, solid lines indicate
regions of stability, whereas dotted lines indicate unstable
regions. The “trivial” branch is the locus of points satisfying
the input-output energy balance with no contributions from
traveling waves. This is the deflagration branch: The locus of
solutions where a planar front spanning the domain consumes
and quickly dissipates all input energy. Because of the vis-
cous regularization of the model system, there exists a small
region of stability around this branch where diffusion inhibits
wave growth. We note that in the system without viscous
regularization, this is not necessarily the case. Any change
in concavity with Burgers-type flux (without diffusion) leads
to wave growth and shock formation, and therefore a pertur-
bation off the deflagration branch may indeed lead to wave
formation if the local energy gain exceeds the local energy
dissipation.

The single traveling wave branch is a closed solution
branch—an isola—that exhibits stability for the top half of
the branch. The region of stability is bounded by fold bifur-
cations at the extremes of the isola. The solution branches
of higher number of waves are qualitatively similar to the
single-wave branch: Each possesses a region of stability (with
the exception of the five-wave branch, which is everywhere
unstable for these model parameters) bounded by bifurcations
to instability.

The wave speeds along the branches vary dramatically—by
a factor of two for some branches—though they saturate at
about the same value across branches. Relative to the CJ speed
of detonations for the Majda detonation analog (DCJ = 2q =
2), their speed is about 80–90% of the theoretical maximum.
As up increases, there is marked drop in wave speed and am-
plitude at each transition to a greater number of waves. This
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N = 1

N = 2

N = 3

N = 4

N = 5

Deflagration Branch

(a)

(b)

FIG. 8. Bifurcation diagram replicating that of Fig. 6 computed
from numerical continuation. Emanating from the trivial deflagra-
tion branch are 5 traveling wave branches. For each traveling wave
branch, solid lines correspond to stable propagation and bashed lines
correspond to unstable solutions. The single-wave traveling branch
is a closed ring of solutions–an isola. Corresponding wave speeds
along the traveling wave branches are shown in (b). Hopf bifurcations
exist at the transition from stability to instability for the traveling
wave branches, marked by diamonds. Along the Hopf branches
are time-periodic modulations of wave speed, amplitude, and phase
difference.

phenomenon is consistent with direct numerical simulations
and experiments with large wave counts [10].

D. Self-similarity and domain length

In Fig. 9, the single- and double-wave branches of Fig. 8
plotted alongside branches of the same system but different
domain lengths: L = 2π (the original system), L = 3π/2, and
L = π . The traveling wave branch for N = 1 on a L = π

domain is identical to that of the N = 2 wave branch on a
L = 2π domain. The system is self-similar, scaled by domain
length. Furthermore, the wave speeds along these branches
are also equivalent. Increasing the domain size from L = π ,
the N = 1 branch detaches from the deflagration branch and
forms an isola. With further increase in domain size, the isola
decreases in size. A point of criticality exists where the do-
main is too large to support a single wave: The transit time of
the wave becomes too long compared to the time required for
parasitic deflagration to self-steepen and form an additional
wave. At this point of criticality, the N = 1 isola ceases to
exist, though the N = 2 branch detaches from the deflagration
branch and forms a new isola. This process of isola formation
and destruction repeats indefinitely with each doubling of the

N = 1, L = 2π
N = 1, L = 3π/2

N = 1, L = π
and

N = 2, L = 2π

Deflagration Branch

(a)

(b)

FIG. 9. (a) A bifurcation diagram showing N = 1 and N = 2
branches of the original model system (domain length of L = 2π )
alongside two additional cases: N = 1 on L = 3π/2 and N = 1 on
L = π . Note that the traveling wave branches are self-similar: The
curves of N = 1 on L = π and N = 2 on L = 2π overlay identi-
cally, including the wave speeds, shown in (b). The maximum wave
speed and amplitudes for the model system with parameters listed in
Table II shows strong dependence on the domain length, in effect
changing the timescale for the round-trip time of the detonation
wave.

domain length. Note, however, that the regions of stability
of the self-similar branches (N = 1 on L = π and N = 2
on L = 2π ) are not consistent: For this set of parameters,
instability only exists for wave count greater than 1.

E. The Hopf Bifurcation to wave modulation

The traveling wave branches of Fig. 8 each possess a
region of stability: The detonations propagate stably with a
constant velocity through time. However, there exist Hopf
bifurcations that spawn branches of periodic orbits away from
the stably propagating pulse train. By adding an appropriate
Hopf constraint (see Appendix), the continuous branch of
orbits—the Hopf branches—can be extracted. In Fig. 8(a),
the black diamonds indicate the initial Hopf bifurcation away
from the traveling wave branches. The black lines connecting
these bifurcations are the Hopf branches. For the two- and
three-wave cases, these Hopf branches are shown in Fig. 10
with example solution plots. Note that for these branches we
have not evaluated stability—we have only traced the branch
location in parameter space.

The Hopf branches intersect the traveling wave branches
at two points. At each intersection is a Hopf bifurcation.
Along these Hopf branches, the period of oscillation and the
amplitudes of phase differences, wave amplitudes, and wave

024210-10



MULTISCALE PHYSICS OF ROTATING DETONATION … PHYSICAL REVIEW E 104, 024210 (2021)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

FIG. 10. The two- and three-wave branches of the bifurcation diagram of Fig. 8 each possess regions of stability and instability. Hopf
bifurcations from the steadily traveling wave branches exist at these transitions and are reproduced in (a). By continuing the Hopf branches,
one can extract a diverse set of potential modulational behavior. In (a), the period of the orbits along the two- and three-wave Hopf branches
are displayed by number of wave round trips (based on wave speed averaged over one period) as a function of the bifurcation parameter.
Example Hopf orbits for the two-wave branch are shown in (b)–(e) and in (f)–(i) for the three-wave branch. These orbits are displayed in the
mean-velocity reference frame. Along the Hopf branches, the amplitude of the phase differences and the waves vary dramatically. For the
three-wave branch, in the extreme limit of each wave-pair interaction, the stronger of the two interacting waves overruns the weaker wave
resulting in a reduction of number of waves by one. This phenomenon is shown in (i).

speeds are all modulated: The branches constitute the possible
states of modulation for the given parameters. These varia-
tions in propagation behavior are exhibited in Fig. 10. At each
intersection with the traveling wave branches [the end points
of the curves in Fig. 10(a)], the modulation is low in phase
difference amplitude, though the modulation onset frequency
is about a factor of two faster for the higher-energy (larger up)
cases.

At each local extreme of phase difference oscillations, the
waves interact solitonically as in the experiments of Figs. 2
and 3. From the collection of waves, the pair that interact
exchange strength and undergo a phase shift. This is clearest
in Figs. 10(d), 10(g), and 10(h). At the onset of modulation
(approached from a high up), the phase differences between
the interacting wave pairs is large, as are the apparent phase
shifts. As the oscillations in phase differences grow, the phase

shifts between interacting pairs decreases. In the extreme limit
of the three-wave Hopf branch, the phase shifts become such
that the weaker of the interacting waves is overrun and the
phase shifts are zero, resulting in the reduction of the num-
ber of traveling waves. Similar phenomena occur for Hopf
branches of higher wave count, as shown in Fig. 8 along the
four-wave Hopf branch.

Figure 11 compares a single period of oscillation for two
rotating detonation waves in an experiment and in simulation
of the analog system. Both are displayed in the average-speed
reference frame. The behavior of the waves in the experi-
ment and model share the same qualitative behavior, including
exchange of wave strength, and similar phase shifts through
the interaction. However, the period of oscillation (shown in
number of wave round-trips around the domain, based on
average wave speed) of the model does not match that of

T

ψ

T

ψ

FIG. 11. Extracted Hopf orbits after the onset of a modulational instability in an experiment and in the numerical continuation of the RDE
analog system. The two detonation waves interact through global gain dynamics, producing a distinct and repeatable kinematic trace. The
model is in good qualitative agreement with the experimentally obtained orbit.
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the experiment, though the model likely is not quantitatively
matching all timescales of interest (chemical, injection, mix-
ing, and wave transit time). Note that we have not performed
any parameter selection techniques nor have we fit the model
to data. Provided the aforementioned timescales are such that
the model can support traveling detonation waves, the bifurca-
tion structure and wave interactions are qualitatively similar.

V. DISCUSSION

Rotating detonation waves have been experimentally
observed to exhibit solitonic propagation, especially in wave-
pair interactions, where wave strengths are swapped and phase
shifts are imposed (Fig. 11). In performing numerical sim-
ulations and a numerical bifurcation analysis of the rotating
detonation analog system, we qualitatively reproduced the
behavior seen in experiments. The rotating detonation wave
analog is capable of reproducing real-wave behavior, includ-
ing the bifurcation structure, wave selection transients, and
modulation of rotating detonation waves.

In this section, we wish to emphasize the main findings
of this study and how they relate to the development of the
rotating detonation engine. First, we establish that the global
gain dynamics are the mechanisms responsible for the ob-
served physics. Next we discuss the scales of interaction in the
system and the solitonic behaviors they produce. Within this
context, we establish the modulational instability of rotating
detonation waves as the fundamental instability of the system.
Last, we discuss the interplay between the shock jump condi-
tions, wave speed, and dissipation and how these scale with
domain length.

A. Global gain dynamics

The process of modelocking of rotating detonation waves
implies a significant communication pathway between the
waves. This is a direct contradiction to classical detonation
theory. Steady detonations are supersonically moving fronts,
meaning they are “unaware” of the fluid properties ahead
of the wave. Similarly, the combustion products behind the
detonation wave travel away from the shock front at a velocity
sonic relative to the wave front. This implies that there are
no characteristics that can propagate from the burnt side of
the detonation upstream to the location of heat release. The
rotating detonation engine possesses two physical constraints
on the problem that lifts the restriction of wave (commu-
nicative) isolation. First, the domain is periodic, not infinite
or pseudoinfinite, in many classical studies, and, second, the
system state ahead of the detonation waves is a function of the
cumulative history of the detonation waves.

Periodicity means that the waves see the tail of the pre-
ceding wave (or, in the case of one wave, its own tail). The
behavior of the detonation waves is necessarily dependent
not only on the local combustion at the shock front (where
classical detonation theory stops), but also the timescales for
energy dissipation and propellant recovery. These three phys-
ical processes have four different timescales corresponding to
(i) combustion, (ii) round-trip time of the detonation wave,
(iii) dissipation (exhaust processes), and (iv) gain recovery
(injection and mixing). These timescales vary by several or-
ders of magnitude in real engines, with combustion being the

fastest (submicroseconds) and dissipation being the slowest
(millisecond).

These timescales are related. The timescale of combustion
is related to the amount of reactant ahead of the combustion
zone and the quality of the mixing processes. The transit time
of the wave is governed by the heat release associated with
the detonation wave (Chapman-Jouguet theory) but also by
the properties of the ingested gas, as they are not necessarily at
standard or injected conditions. Likewise, the properties of the
fluid in the interpulse space is governed by the slower-scale
dynamics of the exhaust processes. The rotating detonation
analog succeeds in capturing the dynamics seen in experi-
ments because the wide range of timescales representative of
the physics are included and properly coupled.

B. The fundamental instability

The modulation seen in RDE experiments and simula-
tions has been characterized as “galloping” rotating detona-
tion [11,17,70]. This term is adopted from the phenomenon
whereby one-dimensional detonations undergo a Hopf bi-
furcation to front modulation followed by period-doubling
to chaotic propagation [71,72]. In these studies, activation
energy is typically taken to be the bifurcation parameter.
Qualitatively, the behavior of “galloping” detonation is very
similar to the modulation seen in RDEs: The frontal motion
of the waves and peak pressures oscillate through time, as in
Figs. 2 and 3, though the studies of “galloping” detonation are
performed on pseudoinfinite, one-dimensional domains.

The physical mechanisms responsible for the modulation
in RDEs and 1D galloping detonations are fundamentally dif-
ferent: For rotating detonation waves, modulation is caused by
the interplay of the processes contributing to the global gain
dynamics. In “galloping” detonations, the physical mecha-
nism is encapsulated solely within the local frontal dynamics,
including those of induction, reaction, and expansion of gases.

C. Shocks, speeds, dissipation, and scaling

In Chapman-Jouguet theory, detonation wave speed is di-
rectly related to the heat release associated with the wave [13],
provided a constant upstream state. However, in the RDE,
wave speed is a misleading metric. Because the detonation
physics cannot be decoupled from the global gain dynamics,
the measured wave speed is a property of the system, not
only of the detonation wave front. To exemplify this, we refer
to experimental studies [22] where decidedly shallow-fronted
pulses exist in RDE chambers traveling at speeds comparable
to the acoustic velocity of combustion products. However,
if related to the Chapman-Jouguet speed of detonation for
standard conditions, then these speeds are of the same order.
The physical difference in these scenarios is the preshock
state. In the RDE, the properties of the fluid ingested by the
wave are significantly higher temperature and pressure than
a one-dimensional detonation propagating through standard
conditions. If the upstream state of a detonation wave in-
creases in temperature and pressure (or in the RDE analog
system, an increase in u), then less heat release is required to
attain the Chapman-Jouguet condition for detonation forma-
tion [14].
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FIG. 12. In (a), u2 is displayed for both the deflagration and single-wave solution branches for varying domain lengths as a function of the
dissipation coefficient. The percentage difference over the deflagration branch (taken as the magnitude of the red arrow in (a) normalized by
the value of the deflagration branch at that location) is shown in (b). In the limit of weakly dissipative rotating detonation mode, the traveling
wave branches merge with the deflagration branch.

In the RDE analog, this can be made explicit by examining
the interplay between the Rankine-Hugoniot relationship for
the shock jump conditions and the source terms of the model.
Because the Rankine-Hugoniot relationship is exclusively a
function of the pre- and postshock states and the flux of the
medium, the jump condition for the RDE analog remains
unchanged from that of Majda’s analog. This relationship [46]
is given by

D(uL − uR) − [ f (uL ) − f (uR)] = 0, (10)

where D is the speed of the shock, f (·) is the Burgers flux
function f (u) = u2/2, and the subscripts (·)L and (·)R refer to
the “left” and “right” (or burnt and unburnt for a right-running
wave) states, respectively. For a heat release q, the state anal-
ogous to the upper Chapman-Jouguet point for a perfect gas is
given by:

DCJ = f
(
uCJ

L

) − f (uR)

uCJ
L − (uR + q)

, (11)

where the superscript (·)CJ denotes the upper Chapman-
Jouguet point. If the unburnt state is set to uR = 0, then the
detonation velocity simply becomes DCJ = 2q. These rela-
tions hold at the locality of the discontinuity. However, outside
of this locality there exist dynamics as prescribed by the
source terms of Eqs. (1) and (2) and u(x, t ) is time varying.
In general, no variable on the right-hand side of Eq. (11) is
constant. In the RDE analog, a high wave speed could be
the effect of either a high heat release (q) or high preshock
state (uR), making the denominator of Eq. (11) small. In some
cases, it is possible to exceed the DCJ = 2q speed benchmark
by simply raising the preshock state, giving the illusion of an
overdriven detonation. Both the heat release and the preshock

state are subject to the dynamics of the right-hand sides of
Eqs. (1) and (2): The heat release preshock is given by (1 −
λ)q, where λ evolves according to injection and combustion
models, and u(x, t ) evolves according to global input-output
energy balances. Wave speed as a comparative metric is there-
fore misleading without detailed knowledge of the underlying
physical scales of a particular system.

Small changes in the slow dynamics have dramatic effects
on wave behavior. We demonstrate this behavior in Figs. 12
and 13 by changing the dissipation coefficient ε and the do-
main length. Changing ε changes the timescale associated
with returning u(x, t ) to its base state. Changing the domain
length changes the round-trip time of the detonation wave,
and therefore the overall balance of timescales. In these fig-
ures, the presented figure of merit is (twice) the mean value
of the Burgers flux in the domain; u2. This metric is cho-
sen as it gives an indication of total energy present in the
domain.

In Fig. 12, displayed are several modeled systems with
parameters as listed in Table II with up = 0.65. In Fig. 12(a),
these single-wave branches are displayed alongside the defla-
gration branch for the system. As the dissipation coefficient
is reduced, the traveling wave branches merge with the de-
flagration branch: There is no discernible difference in u2.
With increasing u2, the timescale associated with the kinetics
becomes increasingly fast, meaning kinetics are promoted
in the entirety of the domain. The percentage difference of
u2 between the traveling wave and deflagration branches is
displayed in Fig. 12(b). The domain lengths (L = 0.72π and
L = 2.16π ) were empirically determined to be the shortest
and longest (respectively) domain lengths to support a sin-
gle traveling wave for the chosen model parameters. For the
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FIG. 13. Two traveling wave profiles corresponding to the di-
amond markers in Fig. 12. In the limit of large dissipation, the
detonation wave beginning and end states are exactly equal to
the magnitude of the deflagration branch. Implied is a loss of
mode-locking properties, since the pulse is now isolated from its
environment. The displayed weak wave has a negligible difference
in u2 compared to that of the associated deflagration state.

shortest round-trip distance (domain length of L = 0.782π ),
u2 is the highest, but there is a negligible difference between
the attained value and that of a planar deflagration. For the
longest round-trip distance (domain length of L = 2.16π ), u2

can attain the lowest value of the displayed systems, but the
magnitude of u2 is nearly 70% higher than that of the planar
deflagration.

The curves associated with traveling waves in Fig. 12 ter-
minate for increasing ε. At the terminus marks the condition
where dissipation now is the dominant physical process in
the chamber; beyond this point, the wave is no longer in
communication with its tail and it loses its mode-locking prop-
erties. This is shown in Fig. 13. The traveling wave profile for
L = 2.16π and ε = 0.76 (corresponding to the blue diamond
marker in Fig. 12) is plotted along with the associated planar
deflagration front. This wave profile marks the point where
its period exactly equals the time required to dissipate its
tail to the rest state. To contrast the properties of this wave,
a weak wave (corresponding to the red diamond marker in
Fig. 12) is additionally plotted. The weaker wave travels at
50% of the Chapman-Jouguet speed of the system while the
stronger wave travels at 78% of this benchmark speed. Al-
though the base-to-peak amplitudes of the stronger wave is
approximately 14 times greater than that of the weaker wave,
their wave speeds are of the same order.

VI. CONCLUSION

Rotating detonation waves exhibit a remarkable set of
properties, including mode locking and modulation. In exam-
ining the kinematic traces of the detonation waves, they are
observed to undergo nonlinear interactions characteristic of
solitons, including phase shifting and the exchanging of am-
plitude. The canonical solitonic structure of nonlinear waves
is held together by the balance of nonlinearity and dispersion,
subject to either Hamiltonian dynamics (the Korteweg-de

Vries equation [73], for example) or local gain-loss dynam-
ics (passively mode-locked lasers [74], for example). Unlike
solitons of either Hamiltonian or canonical driven-dissipative
systems, rotating detonation waves are held together through
global gain dynamics, where multiscale physics associated
with the unit processes of injection and mixing, combustion,
exhaust, and wave propagation are all coupled and nonlinearly
interact.

The rotating detonation analog system has been shown
to adequately model these unit processes and their associ-
ated timescales. The model is successful in reproducing the
solitonic structures and behaviors seen in experiments. Fur-
thermore, we conclude that the behavior stemming from these
multiscale physics is fundamental to the rotating detonation
engine. With this study, we numerically evaluate linear sta-
bility of modeled rotating detonation waves. We find that the
steadily propagating pulse train undergoes a Hopf bifurcation
to time-periodic modulation—this bifurcation to modulation
we term the fundamental instability of rotating detonation
waves, as this is the bifurcation from which transient phenom-
ena originate.
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APPENDIX: CONTINUATION FORMULATION
AND HOPF CONSTRAINTS

The continuation software pde2path uses the finite-element
method to analyze partial differential equations of the
form [68]

∂u

∂t
= −G(u, μ), (A1)

G(u, μ) = −∇ · (c ⊗ ∇u) + au − b ⊗ ∇u − f , (A2)

where u is a function of space and time, μ is a vector of
parameters, and the variables a, b, c correspond to the linear,
advection, and diffusion tensors, and f is the nonlinearity. In
the finite-element formulation on a discretized domain, this
reads as:

Mu̇ = −G(u, μ), (A3)

G(u, μ) = Ku − M f (u, μ), (A4)

where M is the mass matrix, K is the stiffness matrix (dif-
fusion term), and M f is the nonlinearity. The model exists
on a periodic domain, meaning that a continuous symmetry
exists that must be eliminated before attempting continua-
tion. This is achieved by augmenting the system with an
additional bifurcation parameter, v, corresponding to velocity,
such that this imposed speed exactly offsets the motion of the
waves [69].
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Therefore, the model system of Eqs. (8) and (9) is recast
as:

G =
(

ν1K − vKx 0

0 ν2K − vKx

)(
u

λ

)
−

(− 1
2 Kxu2

0

)

−
(

M 0

0 M

)[
kq(1 − λ) exp

( u−uc
α

) − εu2

k(1 − λ) exp
( u−uc

α

) − supλ

1+exp [r(u−up)]

]

(A5)

The continuous symmetry associated with the periodic
boundaries has been removed by the addition of this phase
constraint. We use wave profiles from the direct numeri-

cal simulations from Fig. 6 to initialize the traveling wave
branches for continuation.

To compute time-periodic orbits along branches emanating
from a detected Hopf bifurcation, an additional constraint
must be imposed to fix the translational invariance in
time [69]. Here the imposed velocity of Eq. (A5) is rede-
fined to be the average velocity over the period of oscillation
of the Hopf orbit. By defining a reference profile (the steady
traveling wave profile, for example), the profile at each time
slice can be compared to this reference, producing a deviation
of traveling wave speed. Over one period of modulation, the
average of these deviations from the reference profile are
forced to be zero. Thus, time-periodicity is enforced and the
translational invariance (in time) is fixed with respect to a
reference profile.
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