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Time reversal symmetry and the difference between relaxations and building-up periods
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Autocorrelations in stationary systems are time-symmetric, irrespective of the signal’s properties. Linear
dynamics is usually associated with signals which are statistically time inversion invariant. This is known to
be broken for non-Gaussian models. In this paper, we develop a theoretical framework of time reversibility of
linear models based on noncontinuous driving. We identify the inverse decay exponent of the autocorrelation
function as either a characteristic time for the building-up of extreme events in the time series or of relaxations
after these extreme events. If the characteristic time is known, the dynamics can be inverted in both directions in
time and the residuals can be compared, which gives a criterion for the type of time inversion asymmetry. The
method is applied to two time series from atmospheric science with different behavior.
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I. INTRODUCTION

For many systems of high complexity, accurate modeling
of the physical process is very challenging. In such cases, and
in particular, if the main interest does not lie in the understand-
ing of the physics behind it, there is a demand for data models
that reproduce the statistics of the system without requiring
physical insight into the dynamics. The most prominent prop-
erties to be reproduced accurately are the autocorrelations and
the probability distribution. However, these properties do not
completely describe the dynamics. They do not even uniquely
define a stochastic process. According to the Kolmogorov ex-
tension theorem [1], the set of all multivariate joint probability
distributions would be needed, not only the one-point (i.e.,
marginal) and two-point distributions.

One property that is neither captured by the autocorrela-
tions nor the distribution is the time-reversal symmetry. The
microscopic theories in physics are symmetric in time, how-
ever, macroscopic theories are not, in general, as the concept
of entropy very clearly shows. The difficulty is to define an
observable which indicates this property. Measures can be
based on the symmetry of the increment distribution [2], on
higher-order correlations [3], or from ordinal patterns [4].
The theoretical requirements for dynamical systems with this
property were previously discussed [5]. Time asymmetry has
the very important implication that all static transformations
of linear Gaussian random processes can be excluded as a
suitable model for the data [6], and it has been used as a test
for nonlinearity in the context of surrogate data [7,8].
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Exponential decay of autocorrelations is a very wide-
spread phenomenon. It originates from fundamental physical
equations and is related to chaos theory if the second-largest
eigenvalue of the Frobenius-Perron operator is inside a disk
of the complex plane with radius <1 [9]. Here the decay is
caused by the mixing of the trajectories in phase space. Also,
exponential decay is typical in much simpler dynamics, such
as linearly damped systems.

The autoregressive process of order one, AR(1) [10], is a
popular time series model, which describes the pure exponen-
tial decay of autocorrelations. It is defined by the iteration
relation

X (t ) = gX (t − 1) + η(t ). (1)

Here g ∈ [0, 1] is a damping parameter (we disregard here
negative values g ∈ [−1, 0]), which determines the relaxation
time τ . The driving noise η(t ) is white 〈η(t )η(t ′)〉 = δ(t − t ′)
with a Gaussian normal probability distribution (〈〉 is an en-
semble average). The mean of X and η is zero, so to apply the
model to the data the mean value is subtracted from the time
series. The autocorrelation function is given by

C(t ) = exp

(
−|t |

τ

)
with τ = − 1

log(g)
. (2)

The AR(1) model is used in statistical analysis of all kinds
of systems. Due to its simplicity and physical plausibility,
it is often applied as a zero-order model or null hypothesis.
Examples include global temperatures [11], wind speed [12],
finance [13], engineering [14], and many more.

This paper discusses the property of time-reversal asymme-
try from the perspective of autoregressive dynamics. In Sec. II
we introduce a model that generalizes the autoregressive pro-
cess of order one. In Sec. III we show how this model can be
used for a hypothesis test for time symmetry of a time series.
We also discuss how robust our method is for ill-fitted model
parameters, and how the property of time symmetry has to be
distinguished from the property of Gaussianity. In Sec. IV,
we finally illustrate that the proposed approach gives clear
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(a) (b) (c)

FIG. 1. Generalized AR(1) processes (g = 0.5) with length 1000 with p = 1 (1), 2/3 (2), and 1/3 (3). (a): Segments of time series
(continuous lines) and reconstructed noises ξ̃+ (orange ‘x’) and ξ̃− (green ‘+’); (b) Histograms of X (blue line), ξ̃+ (orange), and ξ̃− (green
dashed) of one trajectory. (c) Comparison of median(ξ̃ 2

±) for an ensemble of 1000 trajectories. The distributions coincide for p = 1. For smaller
values of p the values become distinguishable.

results for real measured time series. We use data of strato-
spheric aerosol optical depth, reflecting volcano eruptions,
and 18O isotope concentrations in Greenland ice cores, which
are proxies for surface temperatures and show the so-called
Dansgaard-Oeschger events. The results are discussed and
summarized in the Conclusion.

II. GENERALIZED AR(1) MODEL

The AR(1) model is a Gaussian process in discrete time.
The exponential decay of autocorrelations does not depend on
the distribution of the noise ξ (t ), but only on the iteration re-
lation (1). So we can generalize the AR(1) model by choosing
a different type of uncorrelated noise. It is not even required
that the noise ξ (t ) has zero mean, as we will see later. One
specific way to generate non-Gaussian noise is by not driving
the system with a Gaussian random variable at every point in
time, but only with a certain probability, and let the process
run without driving otherwise: X (t ) = gX (t − 1) + ξ (t ) with

ξ (t ) =
{ 1

pη(t ) with probability p,
0 with probability 1 − p.

(3)

This corresponds to introducing a waiting time for the noise
driving. The waiting durations are exponentially distributed
and the noise is a Gaussian-dressed Poisson process.

In Fig. 1 in the first column we show segments of time
series, where the driving noise is continuous with p = 1 (first
row), has waiting periods with p = 2/3 (second row), and
with p = 1/3 (third row).

Even for p < 1, the autocorrelation function is still time-
symmetric, however, the process is not. This is very clear
to see in the time series with p = 1/3. The spikes appear
abruptly due to large values in the driving noise. They disap-
pear only slowly with an exponential relaxation as described

by the defining Eq. (1) of the dynamics and the autocorrelation
function.

III. FINDING ASYMMETRIES BY INVERTING AR(1)
DYNAMICS

The noise ξ (t ) of the AR(1) process can be reconstructed
by inverting Eq. (1)

ξ̃ (t ) = X (t ) − gX (t − 1). (4)

We denote the estimated noise the ξ̃ (t ) in contrast to the the
true driving of the process ξ (t ). As pointed out in the previous
section, the AR(1) iteration relation describes spikes and con-
secutive relaxations. However, the autocorrelation function, as
well as the probability distribution of this process, is identical
to those of a process with an exponential building-up, with
statistical resetting to zero, i.e., the dynamics of the time-
reversed series X (−t ).

If we assume dynamics of the form (1), we obtain the esti-
mated driving noise ξ̃ (t ), Eq. (4). The probability distribution
of ξ̃ (t ) would have lots of entries at zero if the dynamics
was indeed following a jump-and-relax scheme and the orig-
inal noise was not continuous. If the dynamics followed a
building-up-and-reset scheme ξ̃ (t ) would be fundamentally
different. We can show this effect by looking at generalized
AR(1) processes with different values for p. We will show
this effect by looking at generalized AR(1) processes with
different values for p in Sec. III.B.

A. Inferring the AR parameter

The autoregressive parameter g can be estimated in dif-
ferent ways. Inference by minimizing the squared residuals
[Eq. (4)] yields a correct short time result but gives no val-
idation for whether or not the obtained model describes the
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data well. Real data usually deviate from ideal AR(1) dynam-
ics. Therefore, the timescale on which the exponent is fitted
matters.

Using the autocorrelation function

C(�) = 〈X (t )X (t + �)〉
σ 2

, (5)

still gives an estimation only for rather short times, but it
offers some validation if the initial slope of the autocorrelation
function indeed describes an exponential decay. It can then
be fitted with a straight line on a semilogarithmic scale. The
disadvantage of the autocorrelation function is that it can-
not robustly be calculated for long lag times � because the
function decays and fluctuates around zero without yielding
information about its true behavior.

Another robust method is using the fluctuation function
[15–17], which yields a model describing the dynamics on
a wide range of timescales, thus producing model time series
that “look” like the original recordings [18–20], although it
does not necessarily yield the ideal values for the increments
X (t ) − gX (t − 1). One algorithm that can be used to calculate
the fluctuation function F (s) is the detrended fluctuation anal-
ysis [15]. An advantage of the method is that slow dynamical
features like offsets or trends do not change the result due
to detrending, which is implemented with a chosen order de-
pending on a parameter q. For q � 1, offsets or asymmetries
of the distribution (e.g., strictly positive values) do not affect
the result. So the noise ξ is not required to have zero mean.
Traditionally the method was developed for inferring power
law scaling of autocorrelations, however, here we use it in a
different way.

The first step of the algorithm is to calculate the cumulative
sum y(t ) = ∑t

n=1 x(n). In the second step the time series y(t )
is divided into N nonoverlapping segments of length s. To
each of these segments a polynomial pq

n,s(t ) of order q is fitted
and subtracted. The fluctuations in the segment are quantified
by the variance of this difference time series. In the third step,
the fluctuation function is calculated as a function of segment
length s by averaging the N segments with the same length

F 2
q (s) =

〈
1

s

s∑
t=1

{y(t + (n − 1)s) − p(q)
n,s(t )}2

〉
n

. (6)

It describes the variability on a logarithmic scale (usually up
to s = 1/4th of the length of the time series), which means
that all timescales contribute equally. Therefore, the general
structure of the data is visible and matching to data models is
far simpler compared to other methods.

The empirical fluctuation function can be fitted to theo-
retical functions. They are given as transformations of the
autocorrelation function [21]. The fluctuation function, which
describes the exponential decay of autocorrelations [i.e., of
AR(1)] for q = 1 is given by

F 2
g (s) = σ 2 gsJg(s) + Kg(s)

15(g − 1)6(s2 − s4)
, (7)

with Jg(s), Kg(s) polynomials in s

Jg(s) = 60[s2(g2 − g)2 − 3s(g3 − g) + 2(g4 + g3 + g2)],
Kg(s) = s5(g − 1)5(g + 1) + 15s4g(g − 1)4 − 5s3

× (g − 1)3(1 − 7g − 7g2 + g3) − 15s2g(g − 1)2

× (1 − 10g + g2) + 2s(2 − 17g − 17g2 + 2g3)
× (g − 1)3 − 120g2(1 + g + g2).

(8)
The theoretical fluctuation function of AR(2) is known as well
[17].

As stated above, this method might not be most accurate for
minimizing ξ̃ (t ) = X (t ) − gX (t − 1). However, it produces
the best data model on a wide range of timescales. Therefore,
it can be used for producing time-symmetric autoregressive
models, against which the time asymmetry of the data can be
tested in a hypothesis test.

B. Dependence on the shape of the noise

In Fig. 1 in the first column we show segments of
time series, with different values for p, i.e., with differ-
ent waiting times between the driving events. In the second
column we show two estimations of ξ . One, ξ̃+ = X (t ) −
gX (t − 1), assuming an AR(1) jump-and-relax dynamics
and one, ξ̃− = X (t − 1) − gX (t ), assuming a building-up-
and-reset [time-reversed AR(1)] dynamics. We show the
respective distributions for both versions of ξ̃ (t ).

The two probability distributions of ξ̃+ and ξ̃− are indis-
tinguishable for the traditional AR(1) process (p = 1). If the
increment distribution is no longer Gaussian due to waiting
periods (p < 1), the distribution ξ̃+ correctly reproduces the
driving noise with many values equal to zero. The distribution
of ξ̃− is very different.

A straightforward calculation of the variance of ξ− using
the iteration relation of the forward AR(1) process shows
that it is identical to the one of ξ+. So the two distributions
have the same variance, but different higher moments. This
can be measured in different ways. We propose the measure
median (ξ̃ 2). This measure is shown for both ξ̃+ and ξ̃− in the
right column of Fig. 1. If the data are symmetric in time, both
values are equal. We can therefore use the quotient

γ = median(ξ̃ 2
+)

median(ξ̃ 2−)
. (9)

The value indicates the type of dynamics

γ < 1 jump-and-relax,

γ = 1 time-symmetric,
γ > 1 build-up-and-reset.

(10)

In Fig. 1 in the right column we show the calculated values of
γ for ensembles of all three processes with p = 1, 2/3, 1/3.

C. Dependence on the chosen AR parameter

When analyzing real data, the process cannot be expected
to perfectly follow the dynamics of the AR(1) model. Also, the
parameter g can only be estimated and is not known exactly
as in the model. We, therefore, have to ask what a wrong
choice of g means for our method of identifying time-reversal
asymmetry.
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(e)

FIG. 2. (a) Ensemble averages (10 000 realizations) of γ for generalized AR(1) processes with g = 0.5. Reconstruction of ξ̃± with different
(wrong) choices for parameter g and the subsequent calculation of γ . Values close to the correct value g = 0.5 give the largest deviation of
γ from 1. (b) Transformed Gaussian time series Y = exp(X ), and reconstructed noise time series ξ̃+ (orange ‘x’) and ξ̃− (green ‘+’). (c) The
quotient γ calculated from ξ̃+ and ξ̃− of 10 000 realizations of transformed Gaussian data yields values around 1, which shows that transformed
Gaussian processes are time-reversal symmetric. (d) Superimposed timeseries with p = 1/3 in both directions (original series Xp=1/3 and
time-reversed series X −

p=1/3), and reconstructed noise time series ξ̃+ (orange ‘x’) and ξ̃− (green ‘+’). (e) The quotient γ (distribution of 10 000
realizations) shows that the superimposed process is time-reversal symmetric.

In Fig. 2(a) we show a numerical analysis of this issue.
We generate ensembles of time series of generalized AR(1)
processes with g = 0.5 and calculate ξ̃+ and ξ̃− for a range
of values g ∈ [0, 1]. The value g = 0 trivially yields no dif-
ference between ξ̃+ and ξ̃− because both time series are
identical. For inserting g = 1, the series just have opposite
signs ξ̃+(t ) = −ξ̃−(t ). In both cases, we get γ = 1. For values
of g close to the correct value g = 0.5, the deviations of γ

from 1 are maximal. The question is what happens for other
values of 0 < g < 1. In the figure, we see the behavior for
p = 1, 2/3, and 1/3. The closer the value of g is to the ideal
value, the stronger the deviation of γ from 1 if the process
is not time-symmetric (p < 1). The closer g is to the trivial
values 0 and 1, the smaller the deviation of γ from 1 becomes.
So time asymmetry can be inferred even for wrong choices
of g, however, the significance level rises around the correct
value. One could also use the maximization of |1 − γ | to infer
g, but one should notice that for a single time series only, a
curve like in Fig. 2(a) has quite large fluctuations, so that this
method does not lead to very precise estimates of g.

D. Non-Gaussian yet time-symmetric data

Due to the central limit theorem, Gaussianity is the most
common assumption in time series analysis. When a mea-
surement yields a non-Gaussian probability distribution, there
might be different causes. The most common, but not the only,
is nonstationarity of the probability distribution [22]. For sta-
tionary time series, either the system is truly non-Gaussian or
the observable is a transformed version of a hidden Gaussian
variable. Since Gaussian processes are time-symmetric, the
time series would stay time-symmetric under a transforma-
tion. This is shown by our analysis of such a model system in
Figs. 2(b) and 2(c). The obtained values for γ in an ensemble
lie around γ = 1, which is the expected result.

Transformed Gaussian data are not the only example of
non-Gaussian yet time-symmetric data. This is very easy to
see by imagining the superposition of two time-asymmetric
series with opposing direction (one jump-and-relax and one

build-up-and-reset) and γ1 × γ2 = 1. We show such a super-
position of two generalized AR(1) trajectories with p = 1/3,
along with the reconstructed driving noises ξ̃+ and ξ̃− in
Fig. 2(d). In Fig. 2(e), we show the histogram of numerically
calculated values for γ for an ensemble of such trajectories.

Thus we see, that non-Gaussianity does not imply time-
asymmetry. The equivalence is only given for linear models
as described above.

IV. APPLICATION TO REAL DATA

We want to apply our framework to real systems and infer
new information from the data. The applicability of expo-
nential relaxations is very wide, as our selection of examples
shows. We investigate stratospheric aerosol optical depth with
long waiting periods between events and concentrations of the
oxygen isotope δ18O in ice cores.

A. Dansgaard-Oeschger events

During the last glacial period, there were several large and
rapid temperature fluctuations [23], i.e., short warm periods,
which are known as Dansgaard-Oeschger events [24]. They
are found from the concentrations of the oxygen isotope δ18O
in Greenland ice cores. The series constructed from these
concentrations can be regarded as a temperature proxy over
time. The origin of these events is still subject to discussion
and there is a lot of literature about the timing of the events
and suspected periodicities [25]. Here, we want to investigate
the time asymmetry of the series, which is evident from visual
inspection. We want to determine the result of our proposed
method for this dataset.

In Fig. 3(a), we show the time series of δ18O concentrations
(NGRIP [26]) from 22 090 bp to 77 840 bp with a resolution
of 50 years. Note, that the time order is reversed, as it is
the convention in paleoclimate science. The sharper edges of
the peaks are towards earlier times, while the younger side
of some peaks seems to decay slower. The distribution of
the series is clearly asymmetric. Therefore, the first task to
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(a) (b) (c) (d)

FIG. 3. (a) Temperature proxy from four ice cores X (blue line), and reconstructed noise time series X̃+ (orange ‘x’) and X̃− (green ‘+’).
(b) Histogram of X . (c) DFA fluctuation function of X (t ) and fitted theoretical fluctuation function. The fitted parameter is g = 0.91. (d) The
quotient γ calculated from X̃+ and X̃− compared to the same observable for an ensemble of AR(1) processes with the same parameter g = 0.91.

be done is to find the maximum of the distribution, i.e., the
“zero” of the autoregressive process, to which the system
decays if the driving is turned off. Note, that defining the
“zero” in this way allows the distribution of the noise ξ to have
nonzero mean. A simple algorithm that solves the problem is
to iteratively neglect the point with the largest distance to the
mean value. By doing so, in each step, the mean value changes
and gets shifted towards the maximum of the distribution.
This algorithm works since the distribution [Fig. 3(b)] has a
strong maximum. For a symmetric distribution, the obtained
value coincides with the mean and median. For asymmetric
distributions, median and mean clearly yield an offset, which
is undesired in our case. The obtained “zero” is highlighted in
Fig. 3(a).

The data are reasonably well described by a generalized
AR(1) model. The parameter is determined to be g = 0.91 by
fitting the fluctuation function [see Fig. 3(c)]. The suspected
periodicities [25] are not sufficiently pronounced to be visible
in the fluctuation function (as previously reported [27]).

Since the offset and the parameter g are now known, we can
calculate the reconstructed noise terms ξ̃+ and ξ̃−, the respec-
tive medians, and the quotient γ . The quotient is γ = 1.28,
which corresponds to build-up-and-reset dynamics in the se-
ries (which is reversed in time). To check the significance of
this result, we calculate γ for an ensemble of Gaussian AR(1)
processes with the same variance g and length as the δ18O
concentrations. The result in Fig. 3(d) shows that the result
is in fact significant and the method concludes that the time
series is asymmetric.

B. Volcanic eruptions

The time series of stratospheric aerosol optical depth [28]
shows the impact of volcanic eruptions. It is one of the major
climate forcings [29] for global temperature. The dynamics
is intermittent. Spikes are caused by volcanic eruptions and
decay slowly. The time series is presented in Fig. 4(a). Its dis-
tribution with a maximum close to zeros is shown in Fig. 4(b).

The decay has a very clear shape. We define a relax-
ation period as the interval between a local maximum and
all following consecutively decreasing numbers. We define
local maxima as values, which are larger than the previous
value and the three following values Xmax(t ) > max[X (t −
1), X (t + 1), X (t + 2), X (t + 3)]. The identified relaxation
periods are highlighted in gray in the figure. In Fig. 4(c), we
plot all relaxation periods on a semilogarithmic scale. This
shows very clearly the exponential decay with a unique expo-

nent β. This exponential decay corresponds to the dynamics
of a generalized AR(1) model. The parameter g is related to
the exponent β via g = exp(β ).

Therefore, we can interpret the dynamics as a generalized
AR(1) process and reconstruct the driving noise ξ̃+. The quo-
tient of the medians of squared noises is γ = 0.096, indicating
strongly asymmetric jump-and-relax dynamics [see Fig. 4(g)].
This is in line with the visual observation. Even though this
result is clearly significant, we would like to design a proper
hypothesis test against a symmetric model. Proper analysis
of the fluctuation function of these data suggests using an
AR(2). Fitting g of an AR(1) process to such model data and
calculating γ from an ensemble of this process, we can prove
the significance of the asymmetric jump-and-relax dynamics.

When looking at the fluctuation function [see Fig. 4(e)] of
stratospheric aerosol optical depth, we see strong deviations
from the AR(1) model. At first sight, this is surprising as
it contradicts the clear exponential-relaxation dynamics we
described. The deviation from the generalized AR(1) dynam-
ics manifests itself in the building-up, before the volcanic
eruption. We define them in the same way as we defined
the relaxation periods, just for the time-reversed series. In
Fig. 4(d) we show the building-up periods on a semilogarith-
mic scale. Unlike the relaxations, they do not have a universal
exponential shape, however, a mean exponent can be fitted.
We get β = −0.075. This exponent can also be found from the
fluctuation function [see Fig. 4(f)] of the reconstructed noise
ξ̃+ found above. So both the building-up and the relaxation
can each be described by a generalized AR(1) model in the
corresponding direction. An approximate model is given by
feeding the output of one generalized AR(1) model as noise
term into the other one.

V. CONCLUSION

We introduce a theory of time-reversal symmetry based
on autoregressive processes. We distinguish time-symmetric
dynamics from building-up-and-reset and jump-and-relax dy-
namics. We compare reconstructed increments of a linear
response model [AR(1)]. Theoretically, such a process is only
time-symmetric if the distribution is Gaussian. However, since
real data are not perfectly described by the model, Gaussianity
and time symmetry are not at all equivalent. Time symmetry
can also be explained by a transformed Gaussian variable or
by heterogeneous events, i.e., a mixture of building-up-and-
reset and jump-and-relax dynamics.
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(a)

(e) (f) (g)

(b) (d)(c)

FIG. 4. (a) SAOD time series X (blue line), and reconstructed noise time series ξ̃+ (orange ‘x’) and ξ̃− (green ‘+’). (b) Histogram of
X . (c) Trajectories of relaxations after volcanic eruptions; (dashed line) average exponential decay β. (c) Trajectories of building up before
volcanic eruptions; (dashed line) average exponential decay β. (e) DFA fluctuation function of SAOD fitted by an AR(2) fluctuation function
and an AR(1) fluctuation function, which strongly deviates. (f) DFA fluctuation function of ξ̃+ fitted by AR(1). (g) The quotient γ calculated
from ξ̃+ and ξ̃− of SAOD compared to the same observable for an ensemble of AR(1) processes with exponent β.

There are different ways of how to infer the correct AR(1)
model from data. For lag one a direct calculation from the
AR(1) model is possible, fitting the autocorrelation function
is more robust for short to intermediate timescales, for the
most robust extraction on a wide range of scales we propose
the fit the fluctuation function. This is especially useful for
generating corresponding symmetric autoregressive models
for hypothesis tests of asymmetry in the dataset. We test our
approach with model data and show the sensitivity of the
method depending on how well the AR(1) parameter is es-
timated. The method is robust if the time series is sufficiently
asymmetric. Then we apply it to two measured time series
from atmospheric science.

One example is North Greenland Ice Core Project (NGRIP)
δ18O data during ice ages. The concentration is a temperature

proxy over time. The series is characterized by short events
of warm temperature (Dansgaard-Oeschger events). These are
asymmetric spikes with nonuniform pacing. We show that
the data can be approximated by a generalized AR(1) model.
Our method yields asymmetric building-up-and-reset dynam-
ics for the time-reversed dataset.

The recordings of stratospheric aerosol optical depth ex-
hibit intermittent behavior. The waiting periods enable us
to see the exponential decay explicitly. The time-reversal
asymmetry is visible by the eye. Even though the system is
not completely described by an AR(1) model and includes a
second characteristic timescale, we apply our approach of re-
constructing the noise under the assumption of AR(1) in both
directions in time. The method yields strong time-reversal
asymmetry.
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