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Learning Hamiltonian dynamics with reservoir computing
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Reconstructing the Kolmogorov-Arnold-Moser (KAM) dynamics diagram of Hamiltonian system from the
time series of a limited number of parameters is an outstanding question in nonlinear science, especially when
the Hamiltonian governing the system dynamics is unknown. Here we demonstrate that this question can be
addressed by the machine learning approach knowing as reservoir computing (RC). Specifically, we show that
without prior knowledge about the Hamilton equations of motion, the trained RC is able to not only predict
the short-term evolution of the system state, but also replicate the long-term ergodic properties of the system
dynamics. Furthermore, using the architecture of parameter-aware RC, we show that the RC trained by the
time series acquired at a handful parameters is able to reconstruct the entire KAM dynamics diagram with a
high precision by tuning a control parameter externally. The feasibility and efficiency of the learning techniques
are demonstrated in two classical nonlinear Hamiltonian systems, namely, the double-pendulum oscillator and
the standard map. Our study indicates that, as a complex dynamical system, RC is able to learn from data the
Hamiltonian.
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I. INTRODUCTION

Model-free prediction of chaotic dynamical systems using
machine learning approaches has received broad research in-
terest in recent years [1–5]. In particular, a technique knowing
as reservoir computing (RC) has been widely adopted in the
literature for predicting the state evolution of chaotic systems
[6–16]. From the perspective of dynamical systems, RC can
be regarded as a complex network of coupled dynamical el-
ements, which, driven by the input data, generates the output
data through a readout function. Except the parameters of the
readout function, which are to be determined by the training
process, all other parameters and the dynamics of RC are
fixed at the construction. After training, the system is closed
by using the output as the input, and then is evolving as
an autonomous system for predictions. Evidence has shown
that compared with the conventional prediction techniques
in nonlinear science, RC has a clear advantage in both ac-
curacy and efficiency. For instance, it is demonstrated that a
well-trained RC can accurately predict the state evolution of
chaotic systems for about a half-dozen Lyapunov times, which
is much longer than the prediction horizon of the conventional
techniques [6].

Besides predicting chaos evolutions, RC has also been
exploited to address other long-standing questions in non-
linear science, such as reconstructing chaotic attractors and
calculating Lyapunov exponents [17], synchronizing chaotic
oscillators [8,18], predicting system collapses [19], recon-
structing synchronization transition paths [20], and transfer-
ring knowledge between different systems [21,22], to name
just a few. These studies, while demonstrating the power of
RC in solving different nonlinear questions, also give insights
into the working mechanisms of RC. For instance, although
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RC fails to predict the long-term evolution of chaotic systems,
it can replicate the ergodic properties of the chaotic systems
faithfully, e.g., the Lyapunov exponents and returned maps
[17]. This ability, known as climate replication, suggests that
it is the intrinsic dynamics of the chaotic system that RC
essentially learns from the data, instead of the mathematical
expressions describing the time series. Exploiting this ability,
model-free techniques have been proposed in recent years
to predict the bifurcation behaviors of nonlinear dynamical
systems, e.g., reproducing the bifurcation diagram of classi-
cal chaotic systems [13,14], anticipating the critical points
of system collapse [19], predicting the critical coupling for
synchronization [20], etc. Another property revealed recently
in exploiting RC is that knowledge can be transferred between
different dynamical systems, namely, the ability of transfer
learning [21,22]. Specifically, it is shown that the RC trained
by the time series of system A can be used to infer the prop-
erties of system B, with the motions of A and B significantly
different from each other. It is worth mentioning that the sys-
tems employed in these studies are dominantly dissipative, in
the sense that the final dynamics of the system is independent
on the initial conditions. The adoption of dissipative systems
is natural, as the reservoir network itself can be regarded as a
dissipative system. In particular, the memory-fading property
of RC requires that the dynamics of the reservoir network
should be converged onto a low-dimensional manifold inde-
pendent of the network initial conditions [2].

From the astronomical scales to the quantum scales, many
physical systems are described by the Hamiltonian formalism.
Different from dissipative systems, the symplectic structure
of the Hamiltonian requires that during the time course of
system evolution, the phase-space volume of a closed surface
should be preserved and, for a time-independent Hamilto-
nian, the total energy of the system should be conserved
[23]. The concerns about volume preservation and energy
conservation have led to the development of physics-enhanced
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machine learning techniques in recent years, for instance,
Hamiltonian neural networks (HNNs) [24–33]. The idea of
HNNs was articulated about three decades ago [34], when
methods for designing neural networks of Hamiltonian dy-
namics were proposed. Recent studies generalize this idea by
incorporating the Hamiltonian mechanisms into the conven-
tional approaches in machine learning, e.g., deep learning,
resulting in improved learning performance [24–28]. The idea
of HNNs has been also extended to systems described by
Lagrangian formalism and generalized coordinates recently
[30–32]. In particular, a parameter-aware architecture has
been proposed for reconstructing the Kolmogorov-Arnold-
Moser (KAM) dynamics diagram of Hamiltonian systems, in
which the adaptability of HNNs has been explored [33]. It is
worth mentioning that while HNNs have been proved to be
efficient for learning Hamiltonian dynamics, the training of
HNNs is time-consuming as compared with RC. For instance,
due to the multiple-layered network structure, the number
of parameters to be trained in HNNs is orders of magnitude
larger to that of RC. In addition, in designing HNNs, physics
constraints (e.g., the Hamilton equations of motion) are en-
forced to the machine, yet it remains unclear whether such
an enforcement is necessary, and nor do we understand com-
pletely the mechanism underlying the improved performance.

From the standpoint of state evolution prediction, the mis-
sion of RC and HNNs is very similar, i.e., mimicking the
function relating the input and output. Whereas the output of
RC does not satisfy the symplectic properties of the Hamil-
tonian, a high-dimensional reservoir does have the ability to
fit any form of function with a proper training of the output
matrix [1]. Once the statistical properties of the time series are
captured by the output of RC, the climate of the Hamiltonian
dynamics will be replicated. Furthermore, using the property
of transfer learning, we might also be able to reconstruct the
KAM dynamics diagram with the RC trained at a limited num-
ber of parameters. If it is indeed the case, the computational
cost as required by HNNs will be significantly reduced. Our
main objective in the present work is just to verify this specu-
lation. To be specific, using a recently proposed architecture of
parameter-aware RC [19,20], we train RC with the time series
of Hamiltonian systems acquired at a handful of parameters,
and then use the trained RC to replicate the dynamics climates
of different parameters. We are able to show that the trained
RC not only is able to replicate the climates associated with
the training parameters, but also is able to generate the entire
KAM dynamics diagram with a high precision by tuning a
control parameter externally.

In the following section, we will present the architecture
of parameter-aware RC used for predicting Hamiltonian dy-
namics, together with the training method. The application
of RC to the prediction of Hamiltonian dynamics and the
reconstruction of the KAM diagram for two classical Hamilto-
nian systems, the double-pendulum oscillator and the standard
map, will be reported in Sec. III. Discussion and a conclusion
will be given in Sec. IV.

II. PARAMETER-AWARE RESERVOIR COMPUTING

We adopt the architecture of parameter-aware RC to learn
the dynamics of Hamiltonian systems [19,20]. In this archi-

tecture, the RC is constituted by four modules: the I/R layer
(input-to-reservoir), the parameter-control module, the reser-
voir network, and the R/O layer (reservoir-to-output). The
I/R layer is characterized by the matrix Win ∈ RDr×Din , which
couples the input vector uβ (t ) ∈ RDin to the reservoir network.
Here uβ (t ) denotes the input vector that is acquired from the
target system at time t and under the specific system parameter
β. The elements of Win are randomly drawn from a uniform
distribution within the range [−σ, σ ]. The parameter-control
module is characterized by the vector s = βb, with β the
control parameter and b ∈ RDr the bias vector. In applications,
the control parameter β can be regarded as an additional
input channel marking the input vector u(t ). In our studies,
we choose β to be the initial conditions of the Hamiltonian
system, as the variation of which can lead to different dynam-
ical motions. The elements of b are drawn randomly from a
uniform distribution within the range [−σ, σ ]. The reservoir
network contains Dr dynamical nodes, with the initial states
of the nodes being randomly chosen from the interval [−1, 1].
The states of the nodes in the reservoir network, r(t ) ∈ RDr ,
are updated according to the equation

r(t + �t ) = (1 − α)r(t ) + α tanh[Ar(t ) + Winuβ (t ) + βb].
(1)

Here �t is the time step for updating the reservoir, α is
the leaking coefficient, and A ∈ RDr×Dr is the weighted
adjacency matrix representing the coupling relationship
between nodes in the reservoir. The adjacency matrix A is
constructed as a sparse random Erdös-Rényi matrix: with
the probability d , each element of the matrix is assigned a
nonzero value drawn randomly from the interval [−1, 1].
The matrix A is rescaled to make its spectral radius equal
to ρ. Before training, the reservoir is evolved for a transient
period of T0, so as to avoid the influence induced by the initial
states of the nodes. The output layer is characterized by the
matrix Wout ∈ RDout×Dr , which generates the output vector,
v(t ) ∈ RDout , by the operation

v(t + �t ) = Woutr(t + �t ), (2)

with Wout the output matrix to be estimated through the train-
ing process. Except Wout, all other parameters of the RC, e.g.,
Win and A, are fixed at the construction. Briefly, the purpose
of the training process is to find a suitable output matrix
Wout so that the output vector v(t + �t ) as calculated by
Eq. (2) is as close as possible to the input vector u(t + �t ) for
t = (τ + 1)�t, . . . , (τ + L)�t , with T0 = τ�t the transient
period to avoid the impact of the initial states of the reservoir
and L the length of the training time series. This can be done
by minimizing the cost function with respect to Wout [8,9,17]:

Wout = UVT (VVT + λI)−1. (3)

Here V ∈ RDr×L is the state matrix whose kth column is
r[(τ + k)�t], U ∈ RDin×L is a matrix whose kth column is
u[(τ + k)�t], I is the identity matrix, and λ is the ridge
regression parameter for avoiding the overfitting. After
training, the output matrix Wout will be fixed, and the RC
is ready for prediction. In the predicting phase, first we set
the control parameter β to a specific value of interest (not
necessarily the parameters used in the training phase), and
then we evolve the RC as an autonomous dynamical system
by taking the output vector v(t ) as the next input vector uβ (t ).
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Finally, with a fine tuning of the control parameter β, we
attempt to reconstruct the KAM diagram of the system.

We note that the input data in the training phase consist
of two time series: (1) the input vector uβ (t ) that represents
the state of the target system and (2) the control parameter
β(t ) that labels the condition under which the input vector
uβ (t ) is acquired. More specifically, the input vector uβ (t ) is
composed of m segments of length T , while each segment is
a time series obtained from the target system under a specific
control parameter β. As such, β(t ) is a step function of time.
In the predicting phase, besides replacing uβ (t ) with v(t ), we
still need to input the control parameter β(t ), so as to guide
the reservoir evolution. For convenience, we set in the present
work Din = Dout for the input and output vectors.

While there are many choices for the control parameter in
Hamiltonian systems, we choose the initial conditions. To be
specific, we generate different motions by varying one of the
initial conditions, while keeping the other initial conditions
of the system unchanged. We are going to show that the
parameter-aware RC is able to not only replicate the dynamics
climates associated with the training parameters (initial con-
ditions), but also reproduce the dynamics climates associated
with other parameters (initial conditions), thereby reconstruct-
ing the entire KAM diagram of the Hamiltonian system.

III. RESULTS

A. The double-pendulum oscillator: Results for standard RC

We start by showing the capability of the standard RC
in predicting and replicating the dynamics of Hamiltonian

systems. As discussed above, a common sense in the exist-
ing studies of machine learning is that RC is applicable to
only dissipative dynamical systems, and, to predict the state
evolution and replicate the dynamics of Hamiltonian systems,
physics constraints from the Hamiltonian mechanisms should
be incorporated into the learning algorithm, e.g., the devel-
opment of HNNs [24–28]. Therefore, before reconstructing
the KAM diagram with the method of parameter-aware RC,
we need to check first whether the dynamics of Hamiltonian
systems can be learned with the standard RC, which is realized
by setting b = 0 in Eq. (1) and m = 1 in preparing the training
data.

The first model of Hamiltonian system employed in
our study is the double-pendulum oscillator, which is a
classical textbook model for demonstrating the nonlinear
dynamics of Hamiltonian systems [34,35]. The Hamiltonian
of double-pendulum oscillator is H = Ek + Ep =
[(m1/6 + m2/2)l2

1 ω2
1 + m2l2

2 ω2
2/6 + m2l2l1ω1ω2 cos(θ1 −

θ2)/2] − g[(m1/2 + m2)l1 cos θ1 + l2m2 cos θ2/2], with
ω1,2 = dθ1,2/dt the angular frequencies and g = 9.8 m/s2

the acceleration of gravity on Earth. The variables
θ1,2, m1,2, and l1,2 denote the angular displacements,
masses, and lengths of the two pendulums, respectively.
By changing the initial values of the two pendulums,
u(0) = [θ1(0), ω1(0), θ2(0), ω2(0)]T , the system can present
rich dynamical behaviors, including quasiperiodic and chaotic
motions. According to Lagrange’s equation of the second
kind, the dynamics of the double-pendulum oscillator is
governed by equations

(
m1

3
+ m2

)
l2
1 ω̇1 + m2l1l2

2
cos(θ1 − θ2)ω̇2 + m2l1l2

2
sin(θ1 − θ2)ω2

2 + (m1 + 2m2)gl1
2

sin θ1 = 0,

m2l1l2
2

cos(θ1 − θ2)ω̇1 + m2l2
2

3
ω̇2 − m2l1l2

2
sin(θ1 − θ2)ω2

1 + m2gl2
2

sin θ2 = 0. (4)

Without the loss of generality, we set the two pendulums to be identical in mass and length, i.e., m1 = m2 = m and l1 = l2 = l .
By introducing the new time variable t = √

g/l1t ′ [t ′ is the time value for Eq. (4)], the equations can be rewritten as

ω̇1 = [
9 cos(θ1 − θ2) sin(θ1 − θ2)ω2

1 + 6 sin(θ1 − θ2)ω2
2 + 18 sin θ1 − 9 cos(θ1 − θ2) sin θ2

]
/[9 cos2(θ1 − θ2) − 16],

ω̇2 = [
24 sin(θ1 − θ2)ω2

1 + 9 cos(θ1 − θ2) sin(θ1 − θ2)ω2
2 + 27 cos(θ1 − θ2) sin θ1 − 24 sin θ2

]
/[16 − 9 cos2(θ1 − θ2)]. (5)

The total energy of the system now reads E = 2ω2
1/3 +

ω2
2/6 + [ω1ω2 cos(θ1 − θ2) − cos(θ2) − 3 cos(θ1)]/2. In sim-

ulations, Eq. (5) is evolved numerically by the symplectic
algorithm, with the time step being set as �t = 0.2. In model
simulations, we fix the initial conditions θ1(0) = 0.6, ω1(0) =
0, ω2(0) = 0, while changing the initial condition θ2(0) within
the range [−π, π ) to generate different motions.

We demonstrate first the learning of an integrable Hamil-
tonian system. Setting θ2(0) = 1.35, the oscillator presents
the quasiperiodic motion, as depicted in Fig. 1(a) (the black
curves). By solving Eq. (5) numerically, we collect the sys-
tem state u(t ) = [θ1(t ), ω1(t ), θ2(t ), ω2(t )]T for a sequence of
T̂ = 3.1 × 103 time steps (about 100 oscillation cycles). The
sequence is divided into three segments. The first segment
of length T0 = 100 is used to drive the reservoir out of the
transient period, the second segment of length T = 2 × 103 is

used as the training data to calculate the output matrix Wout,
and the third segment of length T ′ = 1 × 103 is used as the
test data. In this case, the parameters of the reservoir are cho-
sen as (Dr, d, ρ, α, σ, λ) = (500, 0.48, 1.48, 0.25, 1.52, 1 ×
10−9), which are obtained by the optimizer “optimoptions”
in MATLAB. In the predicting phase, the final state of the
reservoir network in the training phase is used as the ini-
tial state, and the reservoir is evolving according to Eqs. (1)
and (2) by replacing u(t ) with v(t ). (This setting of the
initial states of the reservoir nodes is for the purpose of
predicting the state evolution, while for the purpose of cli-
mate replication the initial states can be randomly chosen.)
The time evolution of the system state predicted with the
trained RC is plotted in Fig. 1(a1) (the red curves). We see
that the predictions are in good agreement with the results
obtained from direct simulations of the model system for a
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FIG. 1. Predicting the dynamics of double-pendulum oscillator by the standard RC. (a) Predicting the quasiperiodic motion generated by
the initial condition θ2(0) = 1.35. (a1) The time evolution of the system state. (a2) The system trajectory detected by the Poincaré surface of
section defined by ω1 = 0 and θ1 > 0. The similarity parameter between the true and predicated trajectories is about 0.97. (a3) The long-time
evolution of the system energy. The true energy of the system is E0 = −1.3475. (b) Predicting the chaotic motion generated by the initial
condition θ2(0) = 2.04. (b1) The time evolution of the system state. (b2) The chaotic trajectories detected by the Poincaré surface of section.
The similarity parameter between the true and predicated trajectories is about 0.52. (b3) The long-time evolution of the system energy. The
true energy of the system is E0 = −1.01. Results obtained by the direct simulations of the model system are colored in black. Results predicted
by RC are colored in red.

long period. To check whether the statistical properties of the
quasiperiodic motion is properly replicated by RC, we plot in
Fig. 1(a2) the system trajectory for a period of T = 1 × 104

time steps on the Poincaré surface of section defined by
ω1 = 0 and θ1 > 0. We see that the trajectory predicted by the
RC is well overlapped with the one obtained from the model
system, manifesting the proper replication of the dynamics
climate.

We generalize the similarity parameter introduced in
Ref. [36] and use the generalized parameter to evaluate
qualitatively the “degree of overlap” between the true and
replicated trajectories. In doing this, we first divide the phase
plane (θ2, ω2) into a grid of N × N cells, and then calculate
for each trajectory the number of points within each cell. De-
noting nt

i j and nr
i j as the number of points inside cell (i, j) for

the true and replicated trajectories, respectively, the similarity
parameter is calculated as

M = 1 − 1

C

N∑
i, j

(
nt

i j − nr
i j

nt
i j + nr

i j

)2

, (6)

with C the number of nonempty cells occupied by the two
trajectories in the phase plane. Depending on the overlapping
degree of the two trajectories, the value of M is varying within
the range [0,1]. The similarity parameter has been proposed in
the literature for quantifying the degree of measure synchro-
nization between coupled Hamiltonian oscillators [36–38].
Here we employ it to quantify the overlapping degree of the
true and replicated trajectories in machine learning. In gen-
eral, the larger the value of M, the higher the overlap between
the trajectories. To make the results comparable between dif-
ferent dynamical motions (the chaotic motions occupy a larger
area in the phase plane than the quasiperiodic motions), in
the present work we fix the boundaries of the phase plane
as θ2 ∈ (−3.5, 3.5) and ω2 ∈ (−3.5, 3.5) and set the size of
the grid as N = 20. For the trajectories shown in Fig. 1(a2),
the similarity parameter is M ≈ 0.97, indicating that the true
and replicated trajectories are well overlapped. The results
in Figs. 1(a1) and 1(a2) thus validate the capability of the
standard RC in predicting and replicating the dynamics of an
integrable Hamiltonian system.
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We next demonstrate the learning of a nonintegrable
Hamiltonian system. Setting θ2(0) = 2.04, the oscillator
presents the chaotic motion, with the largest Lyapunov ex-
ponent being � ≈ 0.163. In a similar way, we generate the
training data by simulating Eq. (5), calculate the output matrix
Wout, and then use the trained RC to predict the state evolution
and replicate the system dynamics. For this case, the set of
parameters for the RC are chosen as (Dr, d, ρ, α, σ, λ) =
(500, 0.36, 2.66, 0.24, 2.08, 5.4 × 10−2). Figure 1(b1) shows
the time evolution of the system state predicted by RC (the
red curves), together with the results obtained from model
simulations (the black curves). We see that the RC can predict
accurately the system evolution for a period of T ≈ 35 (about
six Lyapunov times). Figure 1(b2) shows the system trajectory
on the Poincaré surface of section defined by ω1 = 0 and
θ1 > 0. We see that the predicted and true trajectories are
overlapped in the space reasonably well (M ≈ 0.52). (By in-
creasing the length of the replicated trajectory, the value of M
will be increased slightly, but the increment is small.) To con-
firm further the replication of the system climate, we calculate
the largest Lyapunov exponent of the predicted trajectory by
the numerical method proposed in Ref. [39]. The calculated
result is � ≈ 0.166, which agrees with the one obtained from
direct simulations well.

In machine learning of Hamiltonian systems, a major con-
cern is whether the system energy will be conserved in the
long-term evolution [24,30]. In particular, it has been shown
that if the physics constraints of the Hamiltonian and La-
grangian mechanisms are not imposed in the feedforward
neural network, the system energy calculated from the pre-
dicted results of the machine will be gradually decreased as
time increases. This concern has led to the development of
HNNs and Lagrangian neural networks (LNNs) [24,30], with
which the system energy is well conserved in the long-term
evolution. The problem of energy conservation, however, re-
mains as an open issue for RC, as the architecture of RC
is completely different from that of the feed-forward neural
networks. The dissipative nature of the reservoir suggests that
the system energy predicted by the machine could be decreas-
ing with time, whereas the results of evolution prediction and
climate replication plotted in Fig. 1 suggest that the system
energy is conserved. To check this, we plot in Figs. 1(a3) and
1(b3) the long-time evolution of the system energy for the
quasiperiodic and chaotic motions, respectively. We see that
the system energy is well conserved for both cases. For the
quasiperiodic motion [see Fig. 1(a3)], the system energy is
fluctuating around the true value E0 by small amplitudes of
the order of 10−5; for the chaotic motion [see Fig. 1(b3)], the
fluctuating amplitudes are of the order of 10−2. We note that,
by decreasing the time step �t , the fluctuating amplitudes can
be further decreased (not shown).

To check the generality of the standard RC in replicating
the climate of Hamiltonian dynamics, we keep the other initial
values of the double-pendulum oscillator unchanged, while
choosing the initial value of θ2(0) randomly within the range
[−π, π ). As above, for each value of θ2(0), we first train the
RC by the time series obtained from model simulations, and
then replicate the dynamics climate based on the RC outputs.
n = 34 initial values are chosen in total. The trajectories of
the replicated dynamics on the Poincaré surface of section

FIG. 2. The dynamics of n = 34 different double-pendulum os-
cillators on the Poincaré section surface. (a) The results predicted by
the standard RC. (b) The results from direction simulations of the
model system. In (a) and (b), trajectories with the same initial value
θ2(0) are represented by the same color. The similarity parameter
between (a) and (b) is M ≈ 0.83. (c) The relationship between the
true energy E0 and the energy of the replicated dynamics E for
n = 34 trajectories. Each result of E is averaged over a time period
of T = 1 × 104. Dotted line: the diagonal line denoting E = E0.

(ω1 = 0 and θ1 > 0) are plotted in Fig. 2(a). We see that the
reconstructed KAM diagram is mixed with chaotic and regular
dynamics. By the same set of initial values of θ2(0), we plot
in Fig. 2(b) the KAM diagram based on the results of model
simulations. The similarity parameter between Figs. 2(a) and
2(b) is M ≈ 0.83, suggesting that the true KAM diagram is
well replicated by RC. Figure 2(c) shows the relationship
between the energies of the true and replicated dynamics for
the n = 34 trajectories, we see that the two energies agree with
each other very well for all the trajectories.
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FIG. 3. For the double-pendulum oscillator, a schematic plot of
the training data used in training the parameter-aware RC. The train-
ing data consist of m = 4 segments of equal length T = 2.5 × 103.
The segments are generated by the control parameters β = −1.84, 1,
1.45, and 1.98. For β = −1.84, 1, and 1.45, the system dynamics is
quasiperiodic (QP); for β = 1.98, the system dynamics is chaotic.

B. The double-pendulum oscillator:
Results for parameter-aware RC

We move on to study the capability of parameter-aware
RC in replicating the KAM dynamics diagram, which now
employs the parameter-control module (i.e., the vector βb)
in Eq. (1) [19,20,33]. The adoption of the parameter-aware
RC is motivated by the fact that in many realistic situations
only the time series of a limited number of system motions
are available, while the mission is to predict the dynamics, or
replicate the system climate, of many unknown motions. As
the knowledge the machine learned from the training system
(e.g., the output matrix) is used to predict the dynamics of
other systems with different motions, parameter-aware RC
thus can be regarded as another approach of transfer learning
[40,41]. For the case of Hamiltonian dynamics, our mission
here is replicating the KAM dynamics diagram (as shown
in Fig. 2) based on the time series of a handful of system
motions.

Different from the standard RC, in parameter-aware RC the
training data are composed of m segments, with each segment
being a time series of length T generated under a specific
control parameter β by the target system. To generate the
training data in simulations, we fix again the initial values
[θ1(0), ω1(0), ω2(0)] = (0.6, 0, 0), while changing θ2(0) to
adjust the system dynamics. In this application, we set θ2(0)
as the control parameter, i.e., setting β = θ2(0) in Eq. (1).
The m segments are then combined to form the new time
series uβ (t ) = [θ1(t ), ω1(t ), θ2(t ), ω2(t )]T

β , which now has the
length L = mT . The new time series and the time series of the
control parameter β(t ) are fed into the reservoir for estimating
the output matrix Wout. As was done for the standard RC,
the initial states of the reservoir network are still randomly
chosen, and, before the training, the reservoir is evolved for a
period of T0 = 100 steps to discard the transient. As an illus-
tration, we choose m = 4 control parameters and acquire for
each parameter a time series of T = 2.5 × 103 states. The four
control parameters are β = −1.84, 1.0, 1.45, and 1.98, which
are randomly chosen within the range [−π, π ). The system
dynamics is quasiperiodic for β = −1.84, 1.0, and 1.45, and
is chaotic for β = 1.98 (the largest Lyapunov exponent is

� ≈ 0.16). The structure of the training data is schematically
shown in Fig. 3. In this application, the set of parameters for
the parameter-aware RC are chosen as (Dr, d, ρ, α, σ, λ) =
(1 × 103, 0.97, 1.13, 0.64, 0.94, 2 × 10−2).

We check first the feasibility of the trained RC in repli-
cating the dynamics climates associated with the training
parameters. This is implemented by changing the control pa-
rameter β to one of the training parameters, and then evolving
the reservoir according to Eqs. (1) and (2) as described in
Sec. II. We note that the major difference between the standard
RC and the parameter-aware RC lies in the variability of the
output matrix in the predicting phase. For the standard RC
employed in Sec. III A, the output matrix is trained separately
for each time series, and each output matrix is able only
to replicate the dynamics climate associated with a specific
control parameter. For the parameter-aware RC, the output
matrix is trained only once, and in the predicting phase the
same output matrix is used to reproduce the dynamics cli-
mate of any desired parameter. Another difference between
the standard RC and parameter-aware RC is the setting of the
initial states of the reservoir network at the beginning of the
predicting phase. For the standard RC, the initial states are set
as the final states of training phase. For the parameter-aware
RC, the initial states are generated by one-step iteration of
the reservoir network driven by the initial values of the model
system, u(0) = [θ1(0), ω1(0), θ2(0), ω2(0)]T . (We note that
this setting is only necessary when the purpose is to predict the
system evolution. If the purpose is to replicate the dynamics
climate and reconstruct the KAM diagram, the initial states of
the reservoir can be randomly chosen.) Setting β = −1.84, we
plot in Fig. 4(a1) the state evolution of the system predicted
by the machine, together with the results obtained from model
simulations. We see that the state evolution is well predicted
by the machine for a long period. Figure 4(a2) shows the
dynamics on the Poincaré surface of section. The similarity
parameter of the true and replicated trajectories is M ≈ 0.68,
signifying that the dynamics climate of the true system is well
replicated by the RC. The results for β = 1.98 are shown in
Fig. 4(b). We see that the RC is able to predict the evolution
for about six Lyapunov times [see Fig. 4(b1)], and the dy-
namics climate replicated by the RC is overlapped with the
true one reasonably well [see Fig. 4(b2)]. The similar results
are also observed for the other two training parameters, β = 1
and 1.45 (not shown).

We check next the capability of the trained RC in repli-
cating the dynamics climate of a new parameter not included
in the training set. As the demonstration, we choose β = 2.0,
with which the model system shows chaotic motion and the
largest Lyapunov exponent is � ≈ 0.1. The results for this
new parameter are plotted in Fig. 4(c). We see that the ma-
chine not only predicts accurately the short-time evolution of
the system [see Fig. 4(c1)], but also replicates properly the
system climate [see Fig. 4(c2)].

Having justified the capability of parameter-aware RC in
replicating the climates of both the training and nontraining
parameters, we finally exploit it to reconstruct the entire KAM
dynamics diagram. In doing this, we keep the output matrix
Wout unchanged, while changing the control parameter β to a
number of values that are randomly chosen within the range
[−π, π ). In this case, the initial states of the reservoir network
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FIG. 4. Predicting the state evolution and replicating the climate of a double-pendulum oscillator with parameter-aware RC. (a) The results
for the control parameter β = −1.84, which is one of the training parameters. (b) The results for the control parameter β = 1.98, which is
also one of the training parameters. (c) The results for the control parameter β = 2.0, which is not included in the set of training parameters.
The vertical lines in (b1) and (c1) denote the prediction horizons. In all graphs, the results predicted by RC are shown as red, and the results
obtained from model simulations are shown as black. The similarity parameter between the true and replicated trajectories is M ≈ 0.68 in (a2),
M ≈ 0.50 in (b2), and M ≈ 0.52 in (c2).

are randomly chosen within the range [−1, 1]. For each value
of β, we collect the output of the machine for T = 1 × 104

steps, based on which we reconstruct the dynamics climate
for this specific control parameter. To demonstrate, we choose
n = 31 control parameters. The n = 31 trajectories on the
Poincaré surface of section are plotted in Fig. 5(a). We see that
the diagram is mixed with quasiperiodic and chaotic motions.
With the same set of control parameters, we plot in Fig. 5(b)
the KAM dynamics diagram based on the results of model
simulations. The similarity parameter between Figs. 5(a) and
5(b) is M ≈ 0.69, suggesting that the KAM diagram is well
reconstructed by the machine. To confirm the performance
of parameter-aware RC further, we plot in Fig. 5(c) the re-

lationship between E0 (the true energy) and E (the replicated
energy) for all n = 31 trajectories. It is seen that the data are
well fitted by the diagonal line, indicating a good replication
of the energy by the parameter-aware RC.

C. The standard map

We generalize the above findings by employing the
parameter-aware RC to reconstruct the KAM diagram of a
Hamiltonian mapping system. The model we adopt is the stan-
dard map (also known as the kicked rotor). The Hamiltonian
of standard map reads H = p2

θ /(2I ) + K cos θ
∑

n δ(t − nτ ),
with I the rotational inertia of the bar, K the kicking strength,
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FIG. 5. The KAM diagram of the double-pendulum oscillator for
n = 31 dynamics. (a) The results predicted by the parameter-aware
RC. (b) The results obtained from model simulations. The same set
of control parameters (initial conditions) are used in (a) and (b). The
similarity parameter between (a) and (b) is M ≈ 0.69. (c) The rela-
tionship between the true energy E0 and the energy of the replicated
dynamics E for n = 31 trajectories. Each result of E is averaged over
a time period of T = 1 × 104. Dotted line: the diagonal line denoting
E = E0.

nτ the moment of the nth kick, and δ(. . .) the Dirac delta
function. θ and pθ represent the angular displacement and
angular momentum of the bar, respectively. The Hamilton
equations of motion read

d pθ /dt = K sin θ
∑

n

δ(t − nτ ), (7)

dθ/dt = pθ /I. (8)

The integration of the above equations from t = nτ to t =
(n + 1)τ leads to the new equations

θn+1 = (θn + pn) modulo 2π, (9)

pn+1 = (pn + K sin θn+1) modulo 2π. (10)

For the sake of simplicity, here we set τ = I , and restrict θ

and p to be within the range [0, 2π ). The KAM dynamics
diagram of the standard map is dependent on the kicking
strength K [23]. When K is small, the diagram is dominated
by quasiperiodic dynamics. As K increases, more tori will
be broken and the diagram is mixed with quasiperiodic and
chaotic dynamics. When K is large, most of the tori will be
broken and the diagram is dominated by chaotic motions. Our
mission here is to reconstruct the KAM diagram for a fixed
value of K based on the information of a handful of motions.

We demonstrate first the reconstruction of the KAM
diagram for a small kicking strength. For demonstration pur-
poses, we choose K = 0.5, by which the KAM diagram
is dominated by quasiperiodic motions. In generating the
training data, we fix the initial value of the angular dis-
placement as θ0 = π , while changing the initial value of the
angular momentum p0 to m = 8 different values. The eight
initial values of p0 are randomly chosen within the range
[0, 2π ), which are 1.76, 2.38, 3.2, 3.35, 3.73, 4.74, 5.28, and
5.77 in this case. For each value of p0, we simulate the
system dynamics according to Eqs. (9) and (10) and record
the system state, u(n) = [sin(θn), sin(pn), cos(θn), cos(pn)]T

(which is generalized from the state [θn, pn]T ), for a time
series of T = 2 × 103 iterations. The training data there-
fore are of length L = mT = 1.6 × 104, which, together with
the corresponding time series of the control parameter (β =
p0/2π ), are fed into the parameter-aware RC for estimat-
ing the output matrix. In the predicting phase, we keep
the output matrix fixed, while tuning the control parameter
to different values, and, based on the predictions, recon-
struct the KAM diagram. In this application, the parameters
of the reservoir are (Dr, d, ρ, α, σ, λ) = (1.5 × 103, 3.6 ×
10−3, 1.62, 0.95, 1.59, 8.2 × 10−2). Figure 6(a) shows the
dynamics climates predicted by the machine for the eight
training parameters. The corresponding dynamics obtained
from direct simulations of the model system are plotted in
Fig. 6(b). The similarity parameter between the replicated
and true diagrams is M ≈ 0.88. [In calculating the similar-
ity parameter for the standard map, the boundaries of the
phase plane are set as θ ∈ (0, 2π ) and p ∈ (0, 2π ), and the
phase plane is also divided into a grid of 20 × 20 cells.] To
reconstruct the entire KAM diagram, we change the control
parameter β to n = 26 new values that are randomly chosen
within the range (0,1). The dynamics climates of the n = 26
new parameters, together with the ones of the eight training
parameters, are plotted in Fig. 6(c). The corresponding results
obtained from model simulations are plotted in Fig. 6(d).
The similarity parameter between the true and reconstructed
trajectories is M ≈ 0.69, signifying a good replication of the
KAM diagram by machine.

We next demonstrate the reconstruction of KAM dynamics
diagram for a relatively strong kicking strength, K = 1. For
this kicking strength, many tori are destroyed and the diagram

024205-8



LEARNING HAMILTONIAN DYNAMICS WITH RESERVOIR … PHYSICAL REVIEW E 104, 024205 (2021)

FIG. 6. Reconstructing the KAM diagram of the standard map under the kicking strength K = 0.5. The training data are generated by
m = 8 training parameters. (a) The dynamics predicted by the machine for the training parameters. (b) The dynamics of the training parameters
obtained from model simulations. The similarity parameter between (a) and (b) is M ≈ 0.88. (c) The diagram reconstructed by the machine,
which includes m = 8 dynamics from the training parameters and n = 26 dynamics from the additional control parameters. (d) For the same
set of control parameters used in (c), the diagram obtained from model simulations. The similarity parameter between (c) and (d) is M ≈ 0.69.

is mixed with quasiperiodic and chaotic motions. In this
case, the training data are generated by m = 6 training
parameters randomly chosen from the range [0, 2π ),
p0 = (0.58, 2.07, 2.19, 3.35, 3.49, 4.1) (three of them gener-
ate chaotic motions). The set of parameters for the reservoir
are (Dr, d, ρ, α, σ, λ) = (1 × 103, 0.66, 0.77, 0.55, 3, 1 ×
10−9). The dynamics of the six training parameters predicted
by the machine are plotted in Fig. 7(a). The corresponding
results obtained from model simulations are plotted in
Fig. 7(b). We see that the climates of the training parameters
are well replicated by the machine (M ≈ 0.75). By the
trained RC, we replicate the climates for n = 24 additional
control parameters randomly chosen from the range [0, 2π ).
The replicated climates, together with the climates of
the six training parameters, are plotted in Fig. 7(c). The
corresponding results obtained from model simulations are
plotted in Fig. 7(d). We see that the KAM diagram predicted
by the machine captures the main features of the diagram
obtained from model simulations (M ≈ 0.66).

IV. DISCUSSION AND CONCLUSION

A few remarks on the performance of RC in learning
Hamiltonian systems are in order. First, the purpose of the
present work is to reconstruct the KAM dynamics diagram
based on the time series acquired at a handful of training pa-
rameters, instead of a precise prediction of the state evolution

of Hamiltonian systems. As such, the performance of RC is
mainly evaluated by the replicability of the statistical proper-
ties of the system dynamics, namely, the climate, instead of
the prediction horizon. Second, different from conventional
RC in which the training and target systems are identical, in
parameter-recognizant RC the target systems can be different
from the training ones. From the standpoint of transfer learn-
ing [40], the fact that the KAM diagram can be reconstructed
by the time series of a few training parameters implies the
transferability of knowledge between different Hamiltonian
motions. Finally, we would like to note that the performance
of RC is dependent on the training data, including the number
of the training parameters and the motions associated with
these parameters. In general, the larger the number of the
training parameters, the more accurate the reconstructed di-
agram. And, for the fixed number of training parameters, the
more representative the motions of the training parameters,
the more accurate the reconstructed diagram. For instance, for
the example of standard map showing mixed dynamics (see
Fig. 7), if all the m = 6 training parameters are of quasiperi-
odic motions, the trained RC will not be able to replicate the
chaotic dynamics, and, as the consequence, the reconstructed
diagram will be distinctly different from the true one.

In machine learning of chaotic systems, a topic under ac-
tive debate in literature is what the machine really learns from
the data—the mathematical expressions describing the given
time series, the dynamics governing the system evolution,
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FIG. 7. Reconstructing the KAM diagram of the standard map under the kicking strength K = 1. The training data are generated by m = 6
training parameters. (a) The dynamics predicted by the machine for the training parameters. (b) The dynamics of the training parameters
obtained from model simulations. The similarity parameter between (a) and (b) is M ≈ 0.75. (c) The diagram reconstructed by the machine,
which includes the dynamics from the training parameters and n = 24 dynamics from the additional control parameters. (d) For the same set
of control parameters used in (c), the diagram obtained from model simulations. The similarity parameter between (a) and (b) is M ≈ 0.66.

or the physical laws underlying the data set and dynamics.
For the purpose of state evolution prediction, the goal can be
accomplished by fitting the time series with a mathematical
expression, which, given the reservoir is complex enough,
can be normally achieved [1]. If this is the case, then the
machine will be data-specific, e.g., the machine trained by
periodic motions cannot be used to replicate the dynamics
of chaotic motions. Yet recent studies on transfer learning of
chaotic systems show that in some circumstances knowledge
can be transferred between systems of different motions, e.g.,
using the RC trained by periodic logistic maps to replicate the
climates of chaotic logistic maps [19]. The results of trans-
fer learning suggest that it is the intrinsic dynamics that are
learned by the machine, but not the mathematical expressions
describing the motions. Our current study of Hamiltonian
systems indicates that the machine (specifically the parameter-
aware RC) might learn something “deeper” than mathematical
expressions and dynamics, i.e., the physical laws. Physical
laws in nature are characterized by symmetries and invariants,
which are the essential rules defining the system dynamics and
guiding the system evolutions. In learning physical systems,
it is commonly believed that by incorporating the physical
laws, the performance of the machines can be significantly
improved, e.g., the development of HNNs. Yet there are also
studies showing that, just like the human brain, a machine
might be able to extract the physical laws and concepts from
the data without any prior knowledge or assumptions about

physics, kinematics, or geometry [42–45], such as Hamiltoni-
ans, Lagrangians, and other laws of geometric and momentum
conservation. Our present work provides additional evidence
for the automated learning of physical laws from data by
showing that the RC, probably the simplest recurrent neural
network in machine learning, is able to learn from the data the
Hamiltonian mechanisms.

A brief discussion on the difference between HNNs and
RC is necessary. HNNs are modified from the feedforward
neural network by imposing the Hamiltonian mechanisms,
in which the information is flowing from the input layer to
the output layer in a one-way fashion. As such, HNNs can
be essentially treated as a mapping function connecting the
input and output vectors without intrinsic network dynamics.
In particular, a HNN has no memory about the previous input
data, and, at each time step of the reservoir evolution, the
output of HNNs is completely determined by the input data.
In contrast, RC is a type of recurrent neural network and is
running essentially as a complex dynamical system. For RC,
the output not only depends on the input, but also is affected
by the dynamical state of the reservoir. Previous studies on
machine learning of Hamiltonian systems are mainly based on
HNNs, in which the Hamiltonian mechanisms must be known
a priori and be imposed explicitly on the algorithm [24–33].
Yet in realistic situations the Hamiltonian is usually unknown,
making the direct application of HNNs infeasible. Our current
study shows that for RC, the Hamiltonian mechanisms could
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be encoded in the reservoir in the training phase and be used
to reconstruct the KAM diagram in the predicting phase. As
such, the requirement of prior knowledge of the Hamilto-
nian mechanisms is removed in RC. Another advantage that
RC enjoys in realistic applications is the reduced data size
and computational cost. Due to the multiple-layered network
structure, both the amount of data required for training HNNs
and the number of parameters to be trained are orders of
magnitude larger than that of RC. This raises the training cost
and computational burden in applying HNNs. These prob-
lems, as demonstrated in our studies, do not exist for RC. The
Hamiltonian-free, data-saving, and easy-training properties
make RC a powerful technique for predicting Hamiltonian
dynamics.

Summarizing up, we have studied the learning of Hamilto-
nian systems with the RC technique and found that, without
prior knowledge of the Hamiltonian mechanisms, the trained
RC is able to not only forecast accurately the short-term evo-
lution of the system state (i.e., the relative error between the
true and predicted states is less than 5% for several Lyapunov

times), but also replicate reasonably the long-term ergodic
properties of the system dynamics (i.e., for a period of T =
1 × 104, the system energy and the largest Lyapunov exponent
calculated from the replicated dynamics are close to those of
the true dynamics, and the similarity parameter of the true and
replicated trajectories is larger than 0.5). Furthermore, by the
architecture of parameter-aware RC, we have demonstrated
that based on the time series of a handful of training param-
eters, the trained RC is able to reconstruct the entire KAM
dynamics diagram with a high precision. Although our studies
are based on toy models, it is expected that the similar results
can be also found in other Hamiltonian systems. The current
study provides an alternative approach for learning Hamil-
tonian systems and gives insights into the intrinsic working
mechanism of RC.

ACKNOWLEDGMENT

This work was supported by the National Natural Science
Foundation of China under Grant No. 11875182.

[1] W. Maass, T. Natschlager, and H. Markram, Real-time com-
puting without stable states: A new framework for neural
computation based on perturbations, Neural Comput. 14, 2531
(2002).

[2] M. Lukosevicius and H. Jaeger, Reservoir computing ap-
proaches to recurrent neural network training, Comput. Sci.
Rev. 3, 127 (2009).

[3] G. Tanaka, T. Yamane, J. B. Heroux, R. Nakane, N. Kanazawa,
S. Takeda, H. Numata, D. Nakano, and A. Hirose, Recent ad-
vances in physical reservoir computing: A review, Neural Netw.
115, 100 (2019).

[4] Y. Tang, J. Kurths, W. Lin, E. Ott, and L. Kocarev, Introduction
to focus issue: When machine learning meets complex systems:
Networks, chaos, and nonlinear dynamics, Chaos 30, 063151
(2020).

[5] Z. C. Lipton, J. Berkowitz, and C. Elkan, A critical re-
view of recurrent neural networks for sequence learning,
arXiv:1506.00019.

[6] H. Jaeger and H. Haas, Harnessing nonlinearity: Predicting
chaotic systems and saving energy in wireless communication,
Science 304, 78 (2004).

[7] A. Griffith, A. Pomerance, and D. J. Gauthier, Forecasting
chaotic systems with very low connectivity reservoir computers,
Chaos 29, 123108 (2019).

[8] Z. Lu, J. Pathak, B. Hunt, M. Girvan, R. Brockett, and
E. Ott, Reservoir observers: Model-free inference of un-
measured variables in chaotic systems, Chaos 27, 041102
(2017).

[9] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Model-Free
Prediction of Large Spatiotemporally Chaotic Systems from
Data: A Reservoir Computing Approach, Phys. Rev. Lett. 120,
024102 (2018).

[10] R. S. Zimmermann and U. Parlitz, Observing spatio-temporal
dynamics of excitable media using reservoir computing, Chaos
28, 043118 (2018).

[11] T. L. Carroll, Using reservoir computers to distinguish chaotic
signals, Phys. Rev. E 98, 052209 (2018).

[12] J. Jiang and Y.-C. Lai, Model-free prediction of spatiotemporal
dynamical systems with recurrent neural networks: Role of
network spectral radius, Phys. Rev. Res. 1, 033056 (2019).

[13] R. Follmann and E. Rosa, Predicting slow and fast neuronal
dynamics with machine learning, Chaos 29, 113119 (2019).

[14] R. Cestnik and M. Abel, Inferring the dynamics of oscillatory
systems using recurrent neural networks, Chaos 29, 063128
(2019).

[15] H. Fan, J. Jiang, C. Zhang, X. G. Wang, and Y.-C. Lai, Long-
term prediction of chaotic systems with machine learning, Phys.
Rev. Res. 2, 012080(R) (2020).

[16] J. Z. Kim, Z. Lu, E. Nozari, G. J. Pappas, and D. S. Bassett,
Teaching recurrent neural networks to infer global tempo-
ral structure from local examples, Nat. Mach. Intell. 3, 316
(2021).

[17] J. Pathak, Z. Lu, B. Hunt, M. Girvan, and E. Ott, Using machine
learning to replicate chaotic attractors and calculate Lyapunov
exponents from data, Chaos 27, 121102 (2017).

[18] T. Weng, H. Yang, C. Gu, J. Zhang, and M. Small, Synchro-
nization of chaotic systems and their machine-learning models,
Phys. Rev. E 99, 042203 (2019).

[19] L.-W. Kong, H.-W. Fan, C. Grebogi, and Y.-C. Lai, Machine
learning prediction of critical transition and system collapse,
Phys. Rev. Res. 3, 013090 (2021).

[20] H.-W. Fan, L.-W. Kong, Y.-C. Lai, and X. G. Wang, Anticipat-
ing synchronization with machine learning, Phys. Rev. Res. 3,
023237 (2021).

[21] C. Klos, Y. F. Kalle Kossio, S. Goedeke, A. Gilra, and R.-M.
Memmesheimer, Dynamical Learning of Dynamics, Phys. Rev.
Lett. 125, 088103 (2020).

[22] Y. L. Guo, H. Zhang, L. Wang, H. W. Fan, J. H. Xiao, and X. G.
Wang, Transfer learning of chaotic systems, Chaos 31, 011104
(2021).

024205-11

https://doi.org/10.1162/089976602760407955
https://doi.org/10.1016/j.cosrev.2009.03.005
https://doi.org/10.1016/j.neunet.2019.03.005
https://doi.org/10.1063/5.0016505
http://arxiv.org/abs/arXiv:1506.00019
https://doi.org/10.1126/science.1091277
https://doi.org/10.1063/1.5120710
https://doi.org/10.1063/1.4979665
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1063/1.5022276
https://doi.org/10.1103/PhysRevE.98.052209
https://doi.org/10.1103/PhysRevResearch.1.033056
https://doi.org/10.1063/1.5119723
https://doi.org/10.1063/1.5096918
https://doi.org/10.1103/PhysRevResearch.2.012080
https://doi.org/10.1038/s42256-021-00321-2
https://doi.org/10.1063/1.5010300
https://doi.org/10.1103/PhysRevE.99.042203
https://doi.org/10.1103/PhysRevResearch.3.013090
https://doi.org/10.1103/PhysRevResearch.3.023237
https://doi.org/10.1103/PhysRevLett.125.088103
https://doi.org/10.1063/5.0033870


ZHANG, FAN, WANG, AND WANG PHYSICAL REVIEW E 104, 024205 (2021)

[23] E. Ott, Chaos in Dynamical Systems (Cambridge University
Press, Cambridge, 2002).

[24] S. Greydanus, M. Dzamba, and J. Yosinski, Hamiltonian neural
networks, Adv. Neural Inf. Proc. Systems 32, 15379 (2019).

[25] P. Toth, D. J. Rezende, A. Jaegle, S. Racanière, A. Botev, and I.
Higgins, Hamiltonian generative networks, arXiv:1909.13789.

[26] T. Bertalan, F. Dietrich, I. Mezić, and I. G. Kevrekidis, On
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