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Bistability in the synchronization of identical neurons

B. R. R. Boaretto®,""" R. C. Budzinski®,! K. L. Rossi®,! C. Manchein®,? T. L. Prado®,' U. Feudel,? and S. R. Lopes ®!
' Department of Physics, Universidade Federal do Parand, 81531-980, Curitiba, PR, Brazil
2Department of Physics, Universidade do Estado de Santa Catarina, 89219-710 Joinville, SC, Brazil
3Theoretical Physics/Complex Systems, ICBM, Carl von Ossietzky University Oldenburg, 26111 Oldenburg, Germany

® (Received 17 February 2021; accepted 19 July 2021; published 5 August 2021)

We investigate the role of bistability in the synchronization of a network of identical bursting neurons coupled
through an generic electrical mean-field scheme. These neurons can exhibit distinct multistable states and, in
particular, bistable behavior is observed when their sodium conductance is varied. With this, we consider three
different initialization compositions: (i) the whole network is in the same periodic state; (ii) half of the network
periodic, half chaotic; (iii) half periodic, and half in a different periodic state. We show that (i) and (ii) reach
phase synchronization (PS) for all coupling strengths, while for (iii) small coupling regimes do not induce PS,
and instead, there is a coexistence of different frequencies. For stronger coupling, case (iii) synchronizes, but after

(1) and (ii). Since PS requires all neurons being in the same state (same frequencies), these different behaviors
are governed by transitions between the states. We find that, during these transitions, (ii) and (iii) have transient
chimera states and that (iii) has breathing chimeras. By studying the stability of each state, we explain the
observed transitions. Therefore, bistability of neurons can play a major role in the synchronization of generic

networks, with the simple initialization of the system being capable of drastically changing its asymptotic space.

DOI: 10.1103/PhysRevE.104.024204

I. INTRODUCTION

Nonlinear dynamical systems are known to exhibit asymp-
totic complex dynamical behaviors such as stationary points,
limit cycles, quasiperiodicity, and chaoticity [1-3]. In partic-
ular, different stable states of a dynamical system can coexist
for a given set of parameters, which characterizes the phe-
nomenon of multistability [1,4]. This dynamical feature has
been studied for several years and it is observed in areas
such as physics [5], chemistry [6], climatology [7], and also
neuroscience [8,9].

In neuronal systems, the phenomenon of multistability acts
at different levels and can be observed both macroscopically
and microscopically. For instance, the coexistence of attrac-
tors can be associated with different states of the brain, which
was proposed as a possible mechanism for memory storage
and pattern recognition [8,9]. This coexistence can also mean
that a neuron may depict distinct states, with different firing
patterns, frequencies, regularity, and chaoticity [1,10-12].

Most of the complexity seen in the brain is directly related
to patterns of neuronal activation [13]. When the oscillatory
activities of neurons, or neural areas, are temporally corre-
lated, they can be phase synchronized. Phase synchronization
(PS) of neurons is of fundamental interest since abnormalities
in this process have been related to several brain disorders:
while high degrees of synchronization are seen in epileptic
seizures [14] and Parkinson’s disease [15,16], reduced levels
of synchronization between cortical areas are associated with
autism [17], and Alzheimer’s disease [18].
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Here, we study the synchronization dynamics of a net-
work of bursting neurons simulated through the model of
Braun et al. [19-21]. This model is a modification of the
original Hodgkin-Huxley model [22], with thermal effects
added to the neuronal activity [23]. It was shown that the
neurons’ individual dynamics are controlled by their tempera-
ture [21,24,25] and by the conductance of their ionic channels
[26,27]. When neurons with a periodic dynamics are coupled,
a chemical coupling induces chaoticity in the network and
a non-monotonic transition to synchronization is observed
as the synaptic strength is varied [28]. Besides this, several
dynamical features can be observed with this model: while a
neuron under a recurrent connection to itself can change the
spiking activity by inducing excitatory and inhibitory behav-
ior [11], networks can depict chimera states and chimeralike
behaviors when mean-field and distance-dependent couplings
are considered [29].

In this paper, we focus on the role of bistability and its
effects on the synchronization process. We first show the exis-
tence of a parameter region where the neuron exhibits bistable
behavior, that is, where a neuron initialized with different
initial conditions (ICs) can present two different stable states.
Using the Lyapunov spectrum, we show that the linear stabil-
ity of each state is different. Furthermore, we show that one
state is more sensitive to noise than the other, and the mean
time that the system spends before escape to the other state
follows a Kramers law. This can be used to understand the
analysis regarding the coupling effect in the network and the
transitions to synchronization. After that, we build a network
using a generic mean-field electrical coupling and evaluate
the role of the bistability observed in individual neurons in
the process of synchronization. To do so, we associate a
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geometric phase to the bursting activity of each neuron and
use the Kuramoto order parameter to investigate the phase
synchronization features that the network can depict.

We show that a network composed of identical neurons
in the same periodic state always reaches phase synchroniza-
tion, with more weakly coupled networks needing more time
to reach the phase-synchronized state. After that, to explore
the bistability, we construct two mixed networks: one with a
periodic and a chaotic state and another with two different
periodic states. In the first case, the presence of chaotic state
delays the attainment of phase-synchronized state. However,
when two periodic states are considered, smaller values of
coupling strength are not able to make the network reach the
phase synchronized state, and the system depicts two groups
with different synchronization features. If the coupling be-
comes stronger, then the network can reach PS, but always
taking longer than the case without bistability in the network.
The transition between the states observed when PS is reached
can be understood using the stability of each state. In both
cases, interesting dynamical phenomena are observed in the
transition to phase synchronization, such as chimera states
and antiphase synchronization. At last, we show that, if the
fraction of neurons in the first periodic state is increased, the
behavior of the network becomes closer to the case where all
neurons are in the same periodic state.

The paper is organized as follows: in Sec. II, we present
details of the model, as well as the properties of the bistable
regime; in Sec. III, we introduce the properties of the network
as well as the tools to evaluate PS; in Sec. IV, we show the
synchronization results considering different network compo-
sitions; in Sec. V, we present our conclusions.

II. NEURON MODEL

The neural behavior is simulated through the Hodgkin-
Huxley-type thermally sensitive model proposed by Braun
etal. [20,21,30,31], in which the neuron’s membrane potential
is given by

av
CME=_Id_1r_lsd_]sr_ll+1extv (1)

where Cy is the membrane capacitance; I3 and I, represent
simplified depolarizing and repolarizing Hodgkin-Huxley cur-
rents for action potentials with fast ionic kinetics according to
the classical sodium (Na't) and potassium (KT) currents, re-
spectively [22]. Iy and I; are subthreshold depolarization and
repolarization currents, respectively, which can be associated
with potential-dependent calcium (Ca®*) currents [32]. I, rep-
resents the leakage current which considers the contribution
of the nongated channels. The ionic currents are expressed by

I, =p(T)gua,(V—-E,), pn=d,r,sd, sr, 2)

L =gV —E), 3)

with p(T) a temperature-dependent scale factor given by
p(T) = 1.3T-1/% ¢ the maximum conductance, and E,,
the reversal potential of each current. The activation term a,,
is associated to the probability of a channel being open.

TABLE 1. Parameter values of the neural model.

Membrane Capacitance Cy = 1uF/cm?
g =2.0
=0.2
Maximum Conductances (mS/cm?) 8sa = 0.25
g+ =04
81 = 0.1
g = 0.05
. =2.0
Characteristic Times (ms) k
Ted = 10
Ty = 20
Eqs =50
E. =-90
Esd == 50
Eq =-90
R 1 Potential A% -
eversal Potentials (mV) E = —60
Voa = —25
Vor = =25
Vosa = —40
Ty =25°C
Temperature Parameters T=13°C
P 7= 10°C
s¢=0.25mV™!
s =025mV~!
Other Parameters ssq = 0.09 mV~!
n=0.012cm?/uA
y =0.17

The temporal evolution of each activation term follows the
differential equations

da, _ §(T)

7 = = (ay00 —ay,), pm=d,r, sd, 4)
das,  ¢(T)
ds = (—=nlyq — yag), (5)
t Tsr

where ¢(T') represents another temperature-dependent scale
factor given by ¢(T) = 37~T)/™; 7 is a characteristic time
corresponding to each activation function [20]. The term 7 is
a factor that relates the mixed Na/Ca current to the increment
of intracellular Ca®*, and y is a rate for Ca>* decrease [32].
The a,, , for p = d, 1, sd, is defined by

1
1 + eXP[—Su(V - VO/L)] '

where sq4, S;, Ssd» Vod, Vor» Vosa are constants as defined in
Ref. [20].

(6)

Ap,00

A. Importance of the individual dynamics

The dynamics of an isolated neuron is depicted in
Figs. 1(a) and 1(b), where the parameters of Table I and
g4 = 1.1350 are used. In this case, the membrane potential V
[Fig 1(a)] displays a set of three spikes followed by a rest-
ing period, characterizing a burst. The activation variable
as [Fig. 1(b)] depicts oscillatory behavior, with its mini-
mum values corresponding to the beginning of the bursts (red
dashed lines). With this, we define an Inter-Burst-Interval
(IBI) as the time between two consecutive bursts. These are
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FIG. 1. Membrane potential V (¢) (a) and the activation variable
ag (1) (b) as a function of time (with g4 = 1.1350). The red dashed
lines represent the times where ay, is minimum, and mark the begin-
ning of the bursts, as observed in (a). (c) Bifurcation diagram of the
Inter-Burst-Intervals (IBI) as a function of g4, where two different
ICs are shown—cyan and magenta points. The vertical dashed lines
delimit the region where bistability is found and state I (magenta) and
state II (cyan) are defined. The former is always periodic, while the
latter can depict periodic and chaotic behavior depending on the g4
value (see inner panel). The black and red lines in the inner panel
indicate the parameters used in this manuscript: g4 = 1.1350 and
ga = 1.1415.

depicted on panel (c) in a bifurcation diagram of IBI as a
function of g4 for two different ICs. Denoting the ICs as
{V(0), aq(0), a;(0), asa(0), a,(0)}, the magenta dots represent
{—10,0,0, 0, 0.45}, named IC-1, and the cyan dots represent
{-70, 0,0, 0,0.45}, named IC-2. We focus our attention to
the region 1.120 < g4 < 1.142 (between the dashed lines),
where the neuron is bistable: IC-1 leads to state I (magenta)
and IC-2 leads to state II (cyan). The inner panel exhibits a
magnification of the two branches: while state I is always
periodic, state II undergoes a sequence of period-doubling
bifurcations at g4 = 1.1385, and finally becomes chaotic. The
variation of the sodium conductance in the model can be
understood as the increase or decrease of the contribution of
the ionic current, which means that a fraction of the voltage-
dependent channels (sodium channels, for example) can be
blocked or activated by an abnormality that can come from
either a disease or a medication drug [33,34].

To study the bistable behavior of the neuron we select
two conductances values gq = 1.1350 (before the period-
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FIG. 2. Two-dimensional projection V (t) x ay(t) of the sys-
tem’s phase portrait, (a) where two periodic states are observed with
ga = 1.1350, (b) a periodic (magenta) and chaotic (cyan) states are
noticed with g4 = 1.1415. Each color corresponds to a distinct IC:
magenta (cyan) line with IC-1 (IC-2). (¢) Maximum values of ay as
a function of V(t = 0) and a,(t = 0) for ay(0) = a,(0) = ax(0) =0
using gq = 1.1350. The black and orange rectangles delimit the
values of ICs that we use to obtain neurons initialized in each state.

doubling, black line) and gq = 1.1415 (after the period-
doubling, red line). Figures 2(a) and 2(b) depict the evolution
of a two-dimensional projection of the phase portrait of the
system into the space spanned by V (¢) and ag(#) where the
different colors refers to each IC. In Fig. 2(a) (gq = 1.1350)
there is a clear difference between the two states that is explicit
in the amplitude of ay since the state I max(ay) ~ 0.47 and
the state II max(ay) ~ 0.43. In Fig. 2(b) (gq = 1.1415), one
can observe that state II depicts a greater thickness, indicating
chaotic motion. The inner panel exhibits a magnification of
the chaotic orbit, showing a projection of the chaotic attractor
[2]. To numerically find which ICs lead to each state, we
set different ICs {V (0), 0, 0, 0, a.(0)} and calculate the max-
imum values of the neurons’ ay, variable, using gq = 1.1350.
Figure 2(c) depicts this maximum in color tones from cyan
to magenta as a function of V(0) and a(0). It therefore cor-
responds to a two-dimensional cross section of the neuron’s
basin of attraction since each state can be characterized by the
value max(ay ), with state I having max(ay) ~ 0.47 and state
IT having max(as ) =~ 0.43. In this sense, the ICs leading to
state I (state II) are represented in magenta (cyan). The black
and orange rectangles delimit the ICs that we use in this work
to obtain each state: (V (0), as(0)) € ([—20, 0], [0.40, 0.48]),
for state I and (V (0), as(0)) € ([—80, —60], [0.40, 0.48]) for
II. For g4 = 1.1415, where state II is chaotic, the basin
changes subtly, but the ICs in the rectangles still lead to their
respective states.

The dynamical properties of each state can be stud-
ied using their Lyapunov exponents [35]. Table II depicts
the Lyapunov spectra of the states shown in Figs. 2(a)
and 2(b). The results demonstrate that for g4 = 1.1350 the
max(A;) & max(Aj;) =~ 0, indicating two periodic states. For
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TABLE II. Lyapunov spectra for IC-1 and IC-2 computed for two values of gq.

ga = 1.1350 (periodic-periodic)

Ag —0.000007 —0.001657 —0.102236 —0.197086 —5.466736
Ap —0.000002 —0.001059 —0.122687 —0.213510 —5.420790
ga = 1.1415 (periodic-chaotic)

A —0.000006 —0.001818 —0.099646 —0.195736 —5.471647
Ap 0.000173 —0.000017 —0.122036 —0.217536 —5.418144

gq = 1.1415 the results indicate the existence of a peri-
odic state and a chaotic one, since max(A;) ~ (0 while
max (A7) > 0. Besides this, the most negative Lyapunov ex-
ponents indicate a difference in the linear stability of each
state, thereby showing that the state I has the strongest linear
stability, followed by the state II periodic, and after that by
state I chaotic. The Lyapunov spectrum was evaluated using
Benettin’s algorithm [35,36] and including a Gram-Schmidt
re-orthonormalization procedure [35]. The integration of the
system is performed using a fourth-order Runge-Kutta method
with fixed time-step equal to 2 x 107>ms to obtain the
asymptotic solutions of the dynamical system after a time
interval equal to 5 x 107 ms, after discarding 10° ms to avoid
transient effects.

Multistable systems are generally extremely sensitive to
perturbations [1,4,37,38]. To analyze the stability of each
state, we add a current in Eq. (1), characterized by a random
normal distribution with average 0 and standard deviation o.
Our results show that state II switches to state I only, and
never the other way around, for the considered noise strength.
Figure 3 shows the mean time that the system spends in state
11 before escaping to state I as a function of 1/02 considering
a 1000 simulations. Also, it is important to emphasize that
the transition from II to I is recorded when the value of ay,

y(z) ~ exp(0.002202z)

0.0 05 10 15 20 25 3.0 3.5
x1E3

‘ — y(2) ~cxp(0.000002x)‘

0.0 0.5 1.0 1.5 2.0 2.5 3.0
(1/o?) (m2/pA)? — *1E0

FIG. 3. Mean time that the system spends in state II before
escaping to the state I, as a function of the 1/02 (o is the noise
strength) considering 1000 simulations and the threshold time of 10%
ms. The slope U correspond to the height of the potential barrier of
a Kramers law (t(0)) ~ exp(U/ca?). (a) g = 1.1350 (periodic state
U = 2.2 x 107%). (b) gg = 1.1415 (chaotic state) U ~ 2.0 x 107°.
A transition is defined when the value of a crosses the threshold
0.45 (see Fig. 2). No transitions from the state I to state II are
observed.

crosses the threshold 0.45 (see Fig. 2) and the simulations
consider a maximum time of 10® ms. The results show that
the mean time to perform a transition follows a Kramers law
(t(0)) ~ exp(U/o?) where U corresponds to the height of
the potential barrier [37,39]. In panel (a) g4 = 1.1350 (peri-
odic state) U &~ 2.2 x 1073, In panel (b) g4 = 1.1415 (chaotic
state) U = 2.0 x 107°. Based on this test, the results indicate
that the chaotic state II switches more easily than the periodic
state II.

III. NETWORK PROPERTIES AND SYNCHRONIZATION
QUANTIFIERS

To analyze the role of bistability in synchronization, we
build a neural network composed of N = 100 identical burst-
ing neurons based upon the model of Braun et al. The evolu-
tion of the membrane potential for the ith neuron is given by

G Vi = I I I
M dt - id ir i,sd i,sr
where the ionic currents are given by the Egs. (2)—(6). The
coupling scheme is characterized by electrical synapses
(gap junctions), which are modeled by a generic mean-field
coupling. The synaptic current is given by

- Ii,l +Ii,synv (7)

N
&
lisn = ;WJ — Vi) =e((V) — V), ®)

where ¢ is the coupling (synaptic) strength measured in
mS/cm? which, for simplicity, is subsequently omitted.
(V) =+ SV Vi is the mean-field of the network. This
coupling scheme describes an all-to-all coupling, which
is known to exhibit sharp transitions when the parameters
are varied. This was observed in the investigation of the
equilibrium of nonlinear stochastic models [40], in stochastic
resonance of coupled nonlinear noisy oscillators [41], and in
noise-induced bistable systems [42]. Since ¢ and (V) are the
same for all neurons, the only difference between them is the
ICs. It is worth mentioning that the results of this manuscript
were reproduced for other N values (10, 1000). In these cases
it is observed that smaller networks tend to synchronize faster
than larger networks, but the asymptotic synchronization
behavior it is not affected.

The neurons analyzed in this paper are bursting for all
sets of parameters and coupling considered, such that we
evaluate the burst synchronization in the network. To do this,
we associate a phase 6 to the neural activity of each neuron:
we compute the times when the bursts start considering the
minima values of a; (¢). To obtain this phase as a function
of time, we linearly interpolate between the two bursting
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events [43]:
P — 1ty
0;(t) =2mk; + 27 ———,

i <t <tixri, (9
Tev1,i — Iki

where f; ; is the time of the beginning of the kth burst of the
ith neuron, the duration of this burst is #xy1,; — ;-

In this way, bursting synchronization can be understood as
PS (phase synchronization). To quantify PS of the network,
we use the Kuramoto order parameter [44]:

1 N
i0;(t)
N 2"
j=1

where i = +/—1 here. In this case, R = 1 represents a com-
pletely phase-synchronized state, in which all neurons start
their bursts at the same time. However, R = 0 means that
each neuron in the network has a corresponding pair that is
completely out-of-phase. This can correspond to a completely
incoherent state (completely unsynchronized) or a state with
clusters of in-phase neurons that are antiphase between them-
selves. If the N phases were to be randomly distributed, then
the result would be R ~ /1/N [45].

We can adapt Eq. (10) (applied to the whole network) to
analyze the PS level of subgroups of the network. To do this,
we evaluate the Kuramoto order parameter for each group ¢:

Ni Z 200

JES2

R(r) = ; (10)

R, = . (11)

In this paper, we consider two groups (£ = 1, 2), where each
one is composed of N, = N/2 neurons. €2, is the set of neu-
rons belonging to the £th group, so 2 = {1,...,N/2} and
Q ={N/2+1,...,N}. We also define the absolute differ-
ence between R; and R»:

AR = |Ry — Ry|, (12)

to measure whether there is a difference in the synchronization
states of the groups.

IV. SYNCHRONIZATION ANALYSIS AND DISCUSSIONS

To investigate the process of synchronization in a network
with bistable behavior, we consider a neural network as de-
scribed in Sec. III. As showed in Sec. II, the neurons depict
bistable behavior as a function of sodium conductance (gq),
where both states can be reached following a set of ICs (see
Fig. 2(c)). In this sense, we consider three different situations:

(i) all neurons are in the state I (periodic) with g4 = 1.1350
(absence of bistability);

(ii) mixture of neurons in two different states, where neu-
rons in €2; are in state I (periodic) and €2, are in the state II
(chaotic) with g4 = 1.1415;

(iii) mixture neurons in two different states, where neurons
@, are in the state I (periodic) and 2, are in the state II
(periodic) with g4 = 1.1350.

The ICs for the network simulations were selected to be
in a random position on the attractor of each state. To do so,
an uncoupled neuron is simulated for 10°ms with random
ICs according to the rectangles of Fig. 2(c) (for each state).
Considering the last 5 x 10° ms of the simulation, a random

1.0F — ‘ ‘ ‘ ()

<S06f — ==
E04f — ¢
0.2}

097 107 107 10 107 108
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0.8
= 0.6}
= 0.4
0.2

09 107 107 10° 107 108

1.0f
0.8
< 0.6
& 0.4
0.2}

0.%)03

100 10° 107
t(ms)

10% 0.999 1.000
t(10%ms)

10!

FIG. 4. Kuramoto order parameter R(¢) for three values of cou-
pling ¢ = 10~3 (black lines), € = 10™* (red lines), and & = 107>
(blue lines). Three network configurations are used: (a) a network
with all neurons in state I; (b) a mixed network with half of neurons
in state I (periodic) and half in state II (chaotic); (c) a mixed network
with half of neurons in state I (periodic) and half in state II (periodic).
(d) Magnification of the last 10° times of panel (c).

time instant is selected to generate the ICs for each neuron in
the network. This approach allows us to initialize the network
in each desired state (states I and II) avoiding any initial
synchronization bias (neurons that synchronize at ¢t = 0). All
simulations are performed using a final time of 10% ms.

The evolution of the degree of PS in time is depicted
in Fig. 4. We evaluate the Kuramoto order parameter as a
function of time [R(¢)] for three different values of coupling
g, 1073 (black line), 10~* (red line), and 10> (blue line).
Figure 4(a) shows the results for case (i), where the network
monotonically reaches the phase-synchronized state R = 1
with the time needed to reach PS decreasing as the coupling
strength increases. A similar scenario is observed in Fig. 4(b),
where case (ii) is used, but the transition is not monotonic
as in case (i). In Fig. 4(c), showing the results for case (iii),
the network only reaches PS for the higher value of cou-
pling (¢ = 1073). For the lower values of coupling (¢ = 10~
and & = 107°), the network does not reach a stable phase-
synchronized state, but instead R oscillates between x0 and
~1. This behavior is maintained for a long period of time as
observed in Fig. 4(d), which shows the last 10° of 10® (ms) of
simulation.

These results indicate that bistability in the network plays
an important role in its synchronization. In situation (i), PS is
always reached since neurons have the same period of oscilla-
tion, so the coupling acts to simply align their phases. In cases
(i1) and (iii), however, neurons have different frequencies due
to being in different states. To reach PS, the coupling first
needs to induce a transition in the neurons and lead them
to a unique state where they have the same frequencies and
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FIG. 5. Temporal evolution of the synchronization in the network
at the situation (ii) with ¢ = 10™*. (a) R, R,, R,, and AR (black,
magenta, cyan, and orange lines, respectively). (b)—(d) RPs of the
network where each dot corresponds to the beginning of a spike.
The colored arrows indicate the times when the RPs are obtained,
which match with the dots’ colors. (e)—(g) Power spectrum (based on
periods ¢) of neurons (same context of panels (b)—(d), respectively),
where the magenta (cyan) dashed line represents the isolated neuron
initialized with IC-1 (IC-2), while the magenta (cyan) solid lines
represent the neurons in the group 2 (£2;).

only then it can align their phases. The details behind these
processes are analyzed in the next sections.

A. Mixed states (periodic-chaotic)

In this section we consider a network composed of N/2
neurons in state I (periodic) and N/2 neurons in the state
II (chaotic), where gq = 1.1415. The transition to PS in this
case is similar for the three values of coupling strength, so
we use the representative situation for ¢ = 10™*. The results
are depicted in Fig. 5, where the black line in Fig. 5(a)
corresponds to R, the magenta and cyan lines represent the
local order parameters R; and R,, respectively, and the orange
line presents AR. In this case, the network as a whole starts
nonsynchronized. As the system evolves in time, R; increases
slowly while R, remains at R, &~ 0, leading to a local maxi-
mum of AR. The first group then reaches PS, R| = 1, closely
followed by the second one, whose R, quickly rises to 1
indicating that the second group reaches PS after the first one.
In this case, the global PS behavior is also reached (R = 1).

We then select three time instants denoted by the col-
ored arrows above Fig. 5(a) to analyze the spatiotemporal
patterns of the network. Figures 5(b)-5(d) depict the raster
plots (RPs) where each dot corresponds to the beginning of
a spike for each neuron, marked when V() > —20mV (with
a positive derivative). Figure 5(b) shows the RP for a non-
synchronized state of the network. An interesting behavior

is observed in Fig. 5(c), where the first group is synchro-
nized (R; ~ 1) while the second one does not (R, ~ 0). This
behavior is typical of chimera states, where the system can
display the coexistence of one coherent-phase-locked group
with an incoherent-nonynchronized one [46]. In this case, the
chimera is transient [47,48] and disappears when the second
group gains synchronization, shown in Fig. 5(d), where the
network as a whole is synchronized. Furthermore, Figs. 5(e)—
5(g) show the power spectrum of the neurons, given by the
fast Fourier transform of V(z) as function of the period ¢.
Here, the magenta (cyan) dashed line represents the isolated
neuron initialized with IC-1 (IC-2)—state I (state II), while
the magenta (cyan) solid lines represent the neurons of €2
(£22). It has to be noted that the cyan dashed line represents
a chaotic state, as seen in the inner panel of Fig. 2(b), but its
chaoticity it too weak to be detected in the Fourier transform.
In Figs. 5(e) and 5(f), the neurons remain close to the initial
states, and the network is not synchronized, while in Fig. 5(g),
the neurons initialized in state II already made the transition
to state I and the entire network is completely synchronized.

B. Mixed states (periodic-periodic)

In this section we consider a network composed of N/2
neurons in state I (periodic) and N/2 neurons in the state II
(periodic), where gq = 1.1350. In this case, if the coupling
strength is not strong enough, the network does not synchro-
nize as a whole. To analyze this situation, we set & = 1074
[red line of Figs. 4(c) and 4(d)]. Figure 6(a) depicts the syn-
chronization features of the network such that R, Ry, R,, and
AR are represented by the black, magenta, cyan, and orange
lines, respectively. The network starts in the nonsynchronized
state (R~ (0) and, as time evolves, the R oscillates with
increasing amplitude. At the group level, however, we observe
that R; increases more quickly than R,, leading to a local
maximum of AR. After that, R, also increases, leading both
Ry and R; close to 1, but R; > R;. Figure 6(b) depicts the last
10° ms of the simulation, suggesting a beating process of R.

To understand this behavior, we select four time instants
of the simulation, represented by the colored arrows above
Figs. 6(a) and 6(b). Figures 6(c)-6(f) represent the RPs cor-
responding to the color of the arrow. First, an incoherent
behavior is observed in the red dots [Fig. 6(c)]. As time
evolves, the network depicts a transient chimera state, as ob-
served by the blue dots [Fig. 6(d)]. Eventually, each group
depicts PS separately, since R; and R, show values close
to one. However, each group evolves following its own fre-
quency, which leads to momentary phase-synchronized and
phase-nonsynchronized states in the entire network (the os-
cillatory behavior of R). The green dots in Fig. 6(e) and gray
dots in Fig. 6(f) show clearly this behavior, where an antiphase
behavior of the groups and a PS for the entire network can be
observed, respectively. It has to be noted that the first group
depicts higher synchronization levels than the second group
R; > R,, this asymmetry in the network occurs due to the cou-
pling not being strong enough to completely synchronize the
second state. Figures 6(g) and 6(h) show the power spectrum
of the neurons considering the same context than Figs. 6(e)
and 6(f), respectively. We observe that in both cases there
is no transition and the neurons in each group (solid lines)
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FIG. 6. Detailed analysis in the synchronization of situation (iii)
with e = 107 (a) R, R|, R,, and AR (black, magenta, cyan, and
orange lines) as a function of time are depicted in. (b) Last 10° ms
of the simulation, where an oscillatory behavior of R is evidenced
while each group assumes PS separately. (c)—(f) RPs obtained for
the network in the times indicated by the colored arrows. (g), (h)
Power spectrum of the neurons—considering the situations of panels

(e), (B).

remain close to their initial states (dashed lines), which are
represented by in magenta (state I) and cyan (state II).

Figure 7(a) represents the detailed analysis of synchro-
nization for a stronger coupling value, ¢ = 1073, The color
scheme here follows the same one of the previous figure.
In this case, the network also starts in a nonsynchronized
case and R gains amplitude reaching the phase synchronized
asymptotic state (R = 1) as time evolves. Both groups now
depict the same phase synchronized state at the end of the
simulation. However, the transition to PS shows an interesting
dynamics: while group 1 approaches monotonically the state
of PS, the second one approaches in an oscillatory manner.
In addition, for 7 ~ 2 x 10° ms, the second group momen-
tarily loses synchronization and a peak can be observed in
AR~ 0.9.

We select three time instants represented by the colored
arrows to evaluate the RPs. Figure 7(b) depicts the nonsyn-
chronized case. Figure 7(c) depicts the RP for the network in
the time instant where the second group loses synchroniza-
tion and AR assumes a maximum characterizing a transient
chimera state [47]. This behavior occurs for a short period
of time. Figure 7(d) shows the RP for the network when PS

—_

(@)

=

o o L~

1000 1250 1500 1000 1250 1500 1000 1250 1500
¢ ¢ ¢

FIG. 7. Detailed analysis in the synchronization of situation (iii)
with ¢ = 1073, (a) R, R;, R», and AR (black, magenta, cyan, and
orange lines) as a function of time. (b)—(d) RPs for the network
where the dots’ colors match the arrows’ colors, which indicate
the analyzed times. (e)—(g) Power spectrum of the neurons (same
situation than panels (b)—(d), respectively).

is reached and maintained until the end of the simulation.
Figures 7(e)-7(g) show the power spectrum of the neurons
(considering the same situation than Figs. 7(b)-7(d), respec-
tively). Here, as used before, the magenta (cyan) dashed line
represents the isolated neuron initialized with IC-1 (IC-2),
while the magenta (cyan) solid lines represent the neurons
of Q; (2,). Concerning Fig. 7(e) we note that the coupling
is strong enough to initially disturb the states to a new state
with sightly different frequencies from the initial states. In
Fig. 7(f), after the evolution of some pseudo-periods, there
is a partial transition to the state I. At last, in Fig. 7(g), all
neurons transition to state I and a complete synchronization is
obtained.

As indicated previously, the characteristics of the transition
to PS vary with the coupling strength ¢. To study this further,
100 different simulations are performed with different ICs and
Fig. 8(a) shows the number of these simulations N in which
all neurons initialized in state II transition to state I and the en-
tire network reaches PS. For ¢ < 0.00014 this is zero, which
means that no transition is observed during the simulation of
108 ms. For 0.00014 < ¢ < 0.00030, only for a fraction of
the simulations (0 < A < 100) the network reaches PS and,
for ¢ > 0.00030 in all simulations the neurons’ transitions to
state I are observed. Figure 8(b) depicts the time when the last
neuron initialized in state II transitions to state I, named Tj,.
In this case, the higher the coupling the smaller the time at
which this happens.

The results so far considering a network composed of
neurons in two different periodic states indicate a very in-
teresting region of coupling strength in which the final state
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FIG. 8. (a) Number of simulations where the network depicts
PS, meaning all neurons transition to state I, as a function of e.
For ¢ < 0.00014, no transitions are observed. For 0.00014 < ¢ <
0.00030 (light-gray area), a fraction of simulations (ICs) induce the
network to present PS, and, at last, for ¢ > 0.00030 (dark-gray area),
the network depicts PS for all simulations (ICs). (b) Time when the
last neuron transitions to state I (7),5) as a function of . Here, 100
simulations with different ICs are performed.

of synchronization of the network depends on the ICs of the
system. In this way, setting ¢ = 0.00016 (light-gray area), we
analyze a special case whose results are depicted in Fig. 9.
Figure 9(a) depicts the time evolution of R, and Fig. 9(b)
depicts the number of neurons in each state n;(t) and n(t).
For this IC, there is a partial transition where a part of the
neurons transition to state I. In this case, R oscillates between
0.0 and 1.0 as ¢ evolves, but after a certain time the oscillation
becomes restricted between 0.5 and 1.0. We then set the time
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FIG. 9. (a) Time evolution of R(¢) using & = 1.6 x 10~*. (b) The
number of neurons in each state. We selected one IC where a partial
transition from state II to state I is observed. (c) Synchronization
features of the network considering the time region indicated by the
red arrow. (d) RP of the network (bursts only) for the same condition.
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FIG. 10. Mean characteristic time (r) needed for the network
to reach PS as a function of ¢ for 100 ICs, initializing the net-
work in different configurations of states [n;(0) : n2(0)]. The black
dots correspond to all neurons in state I [situation (i)], following a
power-law curve (solid black line) f(g) ~ &~!. The squares represent
configurations where state II is chaotic, in red [50:50] [situation (ii)],
purple [60:40], green [75:25], and cyan [90:10]. For the triangles,
state II is periodic, in blue [50:50] [situation (iii)], brown [60:40],
gray [75:25], and yellow [90:10]. The dashed line delimits the critical
value (¢*), where for ¢ < £* no transitions are observed.

region (red arrow) to analyze the PS and the spatiotemporal
of the network. Figure 9(c) shows R, Ry, R,, and AR, where
we observe that the first group is on a state of PS while
R, oscillates between 0.0 and 1.0. The RP of the network
(bursts only), depicted in Fig. 9(d), shows a coexistence of two
frequencies in the second group, explaining the oscillations in
R;. This behavior generates a beating process, making the R
oscillates. In this situation, chimera states occur: they appear
when the second group is nonsynchronized, then disappear
when it synchronizes and reappear later again.

For a better understanding about the role of bistability
in the synchronization process, we show the mean time to
reach a synchronized state (R > 0.99) (r) as a function of ¢
(Fig. 10) considering 100 ICs. Different network configura-
tions are considered, varying the number of neurons initialized
in each state [n;(0), np(0)]. The black dots correspond to
the situation (i) (all neurons in state I) where the mean time
decays with a power-law f(g) ~ ¢~!. The squares represent
configurations where state I is periodic and state II is chaotic,
in red [50:50] [situation (ii)], purple [60:40], green [75,25],
and cyan [90:10]. For triangles, both states are periodic, in
blue [50:50] [situation (iii)], brown [60:40], gray [75:25], and
yellow [90:10]. As shown before, for this case the coupling
must be sufficiently strong for the network to reach PS, so for
coupling values lower than a critical value (dashed line) no
transition is observed and no triangles are seen. At last, on
average the time to reach PS decays as the coupling increases
for all cases and the higher the number of neurons in state I
the closer to the situation (i).

V. CONCLUSIONS

Throughout this paper, we have analyzed the effects of
bistability on the synchronization process of neural net-
works. We have shown that a neuron simulated through
a Hodgkin-Huxley-type model depicts bistability. As the
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sodium conductance is varied, one of the states, named state
I always depicts a periodic behavior. The other state, named
state II, suffers a sequence of period-doubling bifurcations
from periodic to chaotic behavior. In this scenario, we have
analyzed the stability of these states by evaluating the Lya-
punov spectrum and also with noise application. We have
found that state I is more stable than state II and also that state
II periodic is more stable than state II chaotic.

We have simulated a network of identical neurons coupled
by electrical synapses modeled by mean-field coupling. We
have considered three network configurations: (i) all neurons
in state I; (ii) half of the network in state I and half in state
I (chaotic); (iii) half of the network in state I and half in
state II (periodic). We have shown that in case (i) and (ii) the
network always reaches PS (phase synchronization), but the
time to do that increases as the coupling strength decreases.
Also, on average, this time is always greater in case (ii),
denouncing a delay generated by the bistability. In case (iii),
small coupling does not lead the network to PS, and each
part of the network synchronizes in different frequencies. For
higher coupling values, the network reaches PS but always
taking longer times than the other cases. During the transition
to PS, configurations (ii) and (iii) depict chimera states, in
which part of the network is phase synchronized and the other
part is not.

The process of PS in cases (ii) and (iii) is only possible due
to the transitions that occur from state II (periodic or chaotic)
to state I (periodic). These transitions are essential for PS since
all neurons have to be in the same state (i.e., have the same
frequency). In addition, we have analyzed the synchronization
process in case (iii) and have shown that the ICs for the neu-
rons are very important to the synchronization features of the
network. We have found an intermediary region of coupling
strength where different ICs lead the network to different
behaviors: no neuron transitions; all neurons transition from

state II to state I; only part of the neurons transition. At last,
we have considered different fractions of neurons in each state
and have found that, on average, the time the network takes
to reach PS decreases as the coupling strength increases and
the behavior gets closer to configuration (i) as the fraction of
neuron in state I increases.

In summary, bistability plays an important role in the syn-
chronization of neural networks. The simple existence of two
distinct stable states can lead the network to different states of
synchronization, depending on the initialization of the system:
from completely phase synchronized to completely antiphase
synchronized. This dependence on the initialization is very
strong, so slightly different network states can eventually lead
to largely different states of synchronization. Furthermore,
extensive simulations (not shown) have revealed that these
phenomena still occur in the presence of weak noise or small
parameter heterogeneity. Otherwise, strong noise or large pa-
rameter heterogeneity destroy these behaviors. Bistability also
leads to the existence of a variety of chimera states. These
synchronization and chimera states occur due to the differ-
ence in the stability of the states of the uncoupled neurons,
thus highlighting the importance of the individual neuronal
dynamics [27].
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