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This work considers an extension of the Kuramoto model with run-and-tumble dynamics—a type of self-
propelled motion. The difference between the extended and the original model is that in the extended version
angular velocity of individual particles is no longer fixed but can change sporadically with a new velocity drawn
from a distribution g(ω). Because the Kuramoto model undergoes phase transition, it offers a simple case study
for investigating phase transition for a system with self-propelled particles.
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I. INTRODUCTION

This work considers an extension of the Kuramoto model
that incorporates self-propelled dynamics. Originally con-
ceived as a model of synchronization [1–6], the Kuramoto
model consists of particles moving on a circle with angu-
lar velocities distributed according to g(ω). Even if particles
move incoherently, due to coupling interactions, the system
transitions to a coherent state, in which a fraction of particles
locks onto the same angular velocity. The critical value of
a coupling constant where the transition transpires can be
calculated exactly using linear analysis [3].

Self-propelled dynamics is incorporated into the Kuramoto
model by introducing a linear “reaction” term into the Fokker-
Planck (FP) equation. Without the reaction term, an angular
velocity of a given particle does not change in time. The
source of disorder comes from the fact that different particles
have different velocities in accordance with some distribution
g(ω). This creates a dynamic quenched disorder [7]. With the
reaction term, angular velocity of individual particles changes
in the course of time by sampling the distribution g(ω). At the
microscopic level, this means that individual particles change
velocity at intervals drawn from a Poisson distribution. Then
a new velocity is drawn from the distribution g(ω).

The proposed extension of the Kuramoto model is closely
related to a model of self-propelled particles known as the run-
and-tumble particles (RTP) [8]. In this model, particles are
subject to a drift of constant velocity but changing orientation.
In one dimension, where only two orientations are possible,
the model can be solved exactly for particles confined between
two walls [8–18]. Particles in this model are ideal, that is,
noninteracting, and so there can be no phase transition yet,
despite its simplicity, the model accurately captures many
features of self-propelled motion. For example, it captures
the deposition of particles in a steady state near the confining
walls [19–23], a feature that is not accounted for by a Boltz-
mann distribution [7].

The Kuramoto model is also a one-dimensional (1D)
model. However, there are some important differences be-
tween such a model and the standard RTP in one dimension.

Unlike the RTP-1D model, spacial confinement in the Ku-
ramoto system is not imposed by rigid walls but is the result of
periodic boundary conditions. Also, unlike in the RTP model
in one dimension, particles in the Kuramoto model are not
ideal but interact with each other via a soft attractive pair
potential of the form ui j ∝ −K

N cos(θ j − θi ). Because strength
of interactions is rescaled by the number of particles N [24],
the system is prevented from thermodynamic collapse in the
limit N → ∞. Such collapse is common for particles with
attractive interactions but no hard-core or some other sort of
divergent repulsion [25–28]. Instead of collapsing, the system
undergoes phase transition from a uniform to heterogeneous
distribution (from a coherent to incoherent state). The phase
transition in the mean-field limit can be determined exactly.

This paper is organized as follows. In Sec. II we introduce
the Kuramoto model and the extension to run-and-tumble
particles. In Sec. III we consider a simple situation with both
coupling parameters, K and α, set to zero. Then in Sec. IV we
consider the situation α > 0 and K = 0. In Sec. V we consider
the complete model and analyze it using linear theory and then
present numerical results. Finally, in Sec. VI we conclude the
work.

II. THE KURAMOTO MODEL

The Kuramoto model is a model of synchronization
stripped to a mathematical minimum [1–6]. It consists of
a population of N coupled oscillators with phase θi and
frequency ωi distributed with a given probability g(ω). In
addition, particles interact with each other so that individual
frequencies are correlated. Dynamics of the model is governed
by the following equation:

dθi(t )

dt
= ωi + K

N

N∑
j=1

sin(θ j − θi ), (1)

where K is the coupling strength. In the limit N → ∞, the
system is described exactly by the mean-field approximation.
As different particles have different velocities ωi distributed
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according to g(ω), the system possesses a dynamic quenched
disorder, where ωi is the disorder variable.

A common extension of the model is to include Gaussian
white noise [29],

dθi(t )

dt
= ωi + ξi(t ) + K

N

N∑
j=1

sin(θ j − θi ), (2)

such that

〈ξi(t )〉 = 0, 〈ξi(t )ξ j (t
′)〉 = 2Dδi jδ(t − t ′), (3)

and where D is the diffusion constant.
One may construe Eq. (2) as a Langevin equation for

particles moving on a circle with angular velocity ωi and
interacting with each other via a pair potential βui j =
−K

D cos(θ j − θi ), where β = 1/kBT . An advantage of this
particular functional form of interactions is that it does not
change when a given particle interacts with one, two, or a
distribution of particles n(θ ), for example,

∫
dθ ′ n(θ ) cos(θ −

θi ) ∝ cos(ψ − θi ), where ψ is the center of mass of n(θ ). This
feature makes the model conducive to mean-field treatment.

Within the Fokker-Planck formulation, the system can be
represented as

∂ρ

∂t
= D

∂2ρ

∂θ2
− ∂

∂θ
[ρ(ω + Kr sin(ψ − θ ))], (4)

where ρ ≡ ρ(θ, ω, t ) is the normalized distribution and

r sin(ψ − θ ) =
∫ 2π

0
dθ ′ sin(θ ′ − θ )

∫ ∞

−∞
dω g(ω)ρ(θ ′, ω, t ).

(5)
The quantity r is considered as an amplitude of an order
parameter and ψ as its phase. Obviously, r is not known a
priori but depends on a density. Equations (4),(5) represent a
set of self-consistent relations.

The point where r first becomes nonzero corresponds to
a phase transition. The transition is from an incoherent state,
represented by a uniform distribution ρ = 1/2π and r = 0,
to a coherent state, represented by a heterogenous distribution
and r > 0. The critical value of K where this occurs is de-
termined from the following relation [assuming that g(ω) is
unimodal and with even symmetry] [3–6,29]:

Kc = 2

[ ∫ ∞

−∞
dω g(ω)

D

D2 + ω2

]−1

. (6)

The distribution of frequencies (or angular velocities) g(ω)
introduces dynamic quenched disorder, while the Gaussian
white noise introduces Brownian fluctuations. For the case
without quenched disorder, represented by the distribution
g(ω) = δ(ω), the critical coupling obtained from Eq. (6) is
Kc = 2D. On the other hand, for a system with quenched
disorder but without Gaussian noise, D = 0, Eq. (6) evaluates
to Kc = 2

πg(0) .
One of the goals of this article is the derivation of an

analogous relation to that in Eq. (6) for an extended Ku-
ramoto model that includes run-and-tumble type of dynamics
developed and analyzed in this work. The inclusion of run-
and-tumble dynamics, which permits particles to sporadically
change their angular velocity ωi with a rate α, can be consid-

ered as a third source of disorder, in addition to the quenched
disorder and the Gaussian noise.

Kuramoto model for self-propelled particles

As stated above, in this work we consider an exten-
sion of the Kuramoto model that incorporates self-propelled
motion—or more specifically, run-and-tumble type of dy-
namics. While in the original model, governed by the FP
equation (4), an angular velocity of an individual particle ωi

is fixed, in the extended version, individual angular velocities
are allowed to evolve in time. As a consequence, every particle
can sample velocities of the distribution g(ω).

On the microscopic level this means that a particle changes
velocity at time intervals drawn from the Poisson distribu-
tion ∝ e−αt , where α is the frequency at which this event
takes place. A new velocity is then randomly drawn from the
distribution g(ω). This type of dynamics corresponds to the
run-and-tumble type of motion, one of the standard models of
self-propelled particles [8–18]. What might be different in our
version of the run-and-tumble dynamics, compared to more
conventional ways it is implemented, is that the distribution
of angular velocities g(ω) is arbitrary.

We note that the run-and-tumble dynamics is linked to
the distribution g(ω) and, thereby, to quenched disorder of a
system [7]. If a distribution is g(ω) = δ(ω), therefore, there
is no quenched disorder, then the run-and-tumble dynamics is
no longer possible, no matter what value of the parameter α.
Run-and-tumble dynamics is about how fast a single particle
can sample a system’s quenched disorder.

The extension of the Kuramoto model just described is
most conveniently incorporated within the Fokker-Planck for-
mulation. This is done by including a linear “reaction” term to
the FP equation in Eq. (4), resulting in

∂ρ

∂t
= D

∂2ρ

∂θ2
− ∂

∂θ
[ρ(ω + Kr sin(ψ − θ ))] + α(ρ̄ − ρ),

(7)

where to simplify expressions, we introduce the average den-
sity defined as

ρ̄(θ, t ) =
∫ ∞

−∞
dω g(ω)ρ(θ ′, ω, t ). (8)

If particles with different ω are interpreted as different species,
then the “reaction” term can be viewed as a process that
converts one type of particle into another.

It is impossible, based on a simple inspection of Eq. (7),
to predict how the parameter α should modify Eq. (6). Both
K and α act as coupling parameters, that is, they both couple
different distributions ρ(θ, ω, t ) for different ω. This produces
an expectation that by enhancing coupling, α should lower the
critical point Kc. On the other hand, the rate α that controls the
frequency with which a particle changes its angular velocity,
could be regarded as a diffusion enhancing contribution, in
which role it should increase the critical point Kc.

The motivation to consider such an extension of the
Kuramoto model is to gain deeper and more fundamental
understanding of self-propelled motion by considering it in
different settings. The Kuramoto model, in particular, pro-
vides an interesting case study due to occurrence of a phase

024203-2



KURAMOTO MODEL WITH RUN-AND-TUMBLE DYNAMICS PHYSICAL REVIEW E 104, 024203 (2021)

transition. In consequence, it offers a simple setting for study-
ing critical phenomenon with participation of self-propelled
motion.

III. THE CASE K = 0 AND α = 0

We start by considering a simple scenario: the Kuramoto
model with both coupling parameters set to zero, K = α =
0. Eq. (7) in this situation reduces to a diffusion-convection
equation

∂ρ

∂t
= D

∂2ρ

∂θ2
− ω

∂ρ

∂θ
. (9)

For the initial distribution

ρ(θ, ω, 0) = δ(θ ), (10)

that is, for all particles initially placed at θi = 0, the solution
is a propagating Gaussian distribution

ρ(θ, ω, t ) = e−(θ−ωt )2/4Dt

√
4πDt

. (11)

Note that the above solution ignores periodic boundary con-
ditions, that is, ρ(θ + 2π,ω, t ) 
= ρ(θ, ω, t ). As we are not
interested in the distribution ρ(θ, t ) per se but quantities
derived from it, the above expression is sufficient to our pur-
poses.

The quantity that is of interest is r defined earlier in Eq. (5).
It not only measures the extent of interactions in both Eqs. (4)
and (7) but also plays the role of the order parameter of a
phase transition. Below, we define r a little differently from
the definition in Eq. (5):

r(t )e−iψ =
∫ ∞

−∞
dω g(ω)

∫ π

−π

dθ ρ(θ, ω, t )e−iθ . (12)

But if we want to use the solution in Eq. (11), without periodic
boundary conditions, we have to modify the above integral as

r(t )e−iψ =
∫ ∞

−∞
dω g(ω)

∫ ∞

−∞
dθ ρ(θ, ω, t )e−iθ . (13)

As periodic boundary conditions are implicit in e−iθ , we are
justified to ignore the periodicity in ρ. Substituting the solu-
tion in Eq. (11) into a modified definition for r in Eq. (13)
yields

r(t ) = e−Dt
∫ ∞

−∞
dω g(ω)e−iωt . (14)

For r to be real valued, g(ω) ought to have an even symmetry.
The above result tells us how r(t ) evolves in time. At time

t = 0, for the initial distribution in Eq. (10), r = 1. Without
coupling between particles, there can be no phase transition
and at long times r(t ) → 0. The above expression distin-
guishes between two mechanisms of relaxation: the collisional
relaxation that produces exponential decay e−Dt , and the col-
lisionless relaxation that involves simple mixing as a result
of quenched disorder, arising as a result of distribution of
angular velocities g(ω). The collisionless mechanism depends
on particular functional form of g(ω) [33].

Concrete examples

For a system without quenched disorder, represented by a
singular distribution g(ω) = δ(ω), Eq. (14) evaluates to

r(t ) = e−Dt . (15)

Here, the only mechanism of relaxation is collisional dissipa-
tion producing exponential decay.

Next, we consider a Lorentz distribution, g(ω) = 1
π

ω0

ω2
0+ω2 .

In this case Eq. (14) evaluates to

r(t ) = e−(D+ω0 )t . (16)

For this type of quenched disorder, the relaxation due to col-
lisionless mechanism is exponential, like that for collisional
mechanism. The two processes are, therefore, compatible, and
we can think of D + ω0 as an effective diffusion.

For a Gaussian distribution, g(ω) = e−ω2/2ω2
0√

2πω2
0

, Eq. (14) eval-

uates to

r(t ) = e−Dt e−ω2
0t2/2. (17)

Even though the collisionless and collisional relaxation have
different functional form, both processes are fast.

A uniform distribution, g(ω) = 1
2ω0

defined on the interval
−ω0 � ω � ω0, is somewhat different from the two cases
above. Eq. (14) for this type of quenched disorder evaluates
to

r(t ) = e−Dt | sin ω0t |
ω0t

. (18)

The collisionless relaxation in this case has a more interesting
behavior; its decay is algebraic and it exhibits oscillations.

Another distribution frequently considered in the context
of the Kuramoto model is a discrete binodal distribution
g(ω) = 1

2δ(ω − ω0) + 1
2δ(ω + ω0) [30–32]. Equation (14) in

this case yields

r(t ) = e−Dt | cos(ω0t )|. (19)

For this distribution, the collisionless relaxation mechanism
due to mixing does not exist. It would seem that a collisionless
mechanism requires a continuous distribution g(ω).

IV. THE CASE α > 0 AND K = 0

Next, we consider the Kuramoto model with run-and-
tumble type of motion but without other type of interactions,
K = 0. The FP equation describing this situation is

∂ρ

∂t
= D

∂2ρ

∂θ2
− ω

∂ρ

∂θ
+ α(ρ̄ − ρ). (20)

As we are interested in the behavior of the order parameter
r, we will transform the above equation into an equivalent
relation but in terms of r.

We proceed by operating on both sides of Eq. (4) with∫ π

−π
dθ e−iθ . This amounts to Fourier transforming the FP

equation with respect to the wave number k = 1. The trans-
formed equation is

∂c1

∂t
= −(D + α + iω)c1 + αr(t )e−iψ, (21)
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where

c1(ω, t ) =
∫ π

−π

dθ ρ(θ, ω, t )e−iθ . (22)

The last term in Eq. (21) comes from the definition re−iψ =∫ ∞
−∞ dω g(ω)c1(ω, t ). If regarded as a first order inhomoge-

neous equation, which is possible if we ignore the fact that r
is a functional of c1, then the solution to Eq. (21) for the initial
distribution in Eq. (10), can be represented as

c1(ω, t ) = e−iθ0 e−(D+α+iω)t

+ αe−iψ
∫ t

0
dt ′ e−(D+α+iω)(t−t ′ )r(t ′). (23)

Finally, by operating on the above equation with
∫ ∞
−∞ dω g(ω)

we get

r(t ) = R(t ) + α

∫ t

0
dt ′ r(t ′)R(t − t ′). (24)

The result is a convolution equation where the kernel R is
given by

R(t ) = e−(D+α)t
∫ ∞

−∞
dω g(ω)e−iωt . (25)

For α = 0, Eq. (24) recovers the result in Eq. (14). For α > 0,
the evolution of r(t ) involves a kernel that is expected to slow
down the relaxation of r.

The behavior of r, as determined by Eq. (24), depends on
a particular type of quenched disorder, that is, a particular
distribution g(ω). For a singular, Lorentz, discrete bimodal
distribution, the equation can be solved exactly. For a uniform
and Gaussian distributions exact expression doesn’t seem pos-
sible, or at least it is not straightforward. For those cases, we
focus on an analysis of an asymptotic behavior at long times.

A. Laplace analysis

We start by pointing out that Eq. (24) represents the
Volterra integral equation of the second kind. A common
method of analyzing this type of equation is by using the
Laplace transform techniques. This is the approach that we
are going to take.

We start by recalling the a Laplace transformed function
f (t ) is defined as f̂ (s) = ∫ ∞

0 dt e−st f (t ). Taking the Laplace
transform of Eq. (24) yields

r̂(s) = R̂(s)

1 − αR̂(s)
,

where

R̂(s) =
∫ ∞

−∞
dω

g(ω)

s + D + α + iω
.

To obtain an expression of r in real time, we use the inverse
Laplace transform [34] leading to

r(t ) = 1

2π i
lim

T →∞

∫ a+iT

a−iT
ds

R̂(s)est

1 − αR̂(s)
. (26)

The above expression has an advantage that it can be analyzed
using the residue theorem that boils down to identification of

the poles sp and r can be represented in terms of residues at
those poles as

r(t ) =
∑

sp

Res

[
R̂(s)est

1 − αR̂(s)

]
.

To make the integral in Eq. (26) more intelligible, we explic-
itly represent R̂(s) of the numerator, yielding

r(t ) = 1

2π i

∫ γ+iT

γ−iT

ds est

1 − αR̂(s)

∫ ∞

−∞

dω g(ω)

s + D + α + iω
. (27)

The above expression allows us to distinguish two types of
poles. The poles of the second fraction,

sc = −D − α − iω, (28)

are continuous by virtue of the integral over ω. On a complex
plane, those poles are represented by a line parallel to an
imaginary axis and offset to the left by −D − α.

Discrete poles of the second fractional term, on the other
hand, satisfy the relation 1 = αR̂(sd ), which if written explic-
itly leads to the following relation:

1 = α

∫ ∞

−∞
dω

g(ω)

sd + D + α + iω
. (29)

Note that α appears in two different places in Eq. (38)—the
fact we have already alluded to before. On the one hand,
α enhances the diffusion constant D. On the other hand, it
appears separately from D where it plays the role of a coupling
parameter. The coupling function of α is captured by discrete
poles sd . Consequently, we restrict our analysis to sd .

Prior to considering different concrete cases, we indicate
that if g(ω) has even symmetry and is unimodal then there can
be at most one pole sd whose value is real [3,5]. For the case
of a discrete bimodal g(ω), there are two poles sd that are not
restricted to a real value [31,32].

B. Concrete examples

We start with a singular distribution g(ω) = δ(ω)—a sys-
tem without quenched disorder. Equation (24) in this case is
solved exactly where, unsurprisingly, it recovers the result in
Eq. (15) for a system for α = 0,

r(t ) = e−Dt . (30)

Without quenched disorder there can be no run-and-tumbling
dynamics.

For a Lorentz distribution, Eq. (24) is solved exactly, lead-
ing to

r(t ) = e−Dt e−ω0t .

This is the same result as that in Eq. (16) for α = 0, implying
that the run-and-tumble dynamics does not alter the evolution
of r(t ). This is different from the case g(ω) = δ(ω), where the
run-and-tumble dynamic simply does not exist. If we focus
on a single particle trajectory (for a system with a Lorentz
distribution), we would find that trajectories for different α are
very different. Yet when considering dynamics collectively,
by looking at the evolution of r, we detect no change. This
unusual result, rather than being general is a feature of a
Lorentz distribution.
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To see this, we consider next a uniform distribution on the
interval −ω0 � ω � ω0. Because Eq. (24) cannot be solved
exactly, we analyze an asymptotic behavior, r(t ) ≈ esdt , de-
termined by a discrete pole sd . From the relation (29) we get

sd = −(D + α) + ω0 cot(ω0/α), (31)

implying the following long time relaxation r ∝
e−(D+α)t etω0 cot(ω0/α). Compared to evolution of r in Eq. (18)
for α = 0, we see that the run-and-tumble dynamics modifies
the functional form from algebraic oscillatory to exponential
monotonic.

Change of a functional form implies a discontinuity that
occurs at some specific value of α, which we refer to as a
point of crossover, αcross. A crossover can be determined from
Eq. (29) by noting that for g(ω) that is unimodal and with even
symmetry sd is real valued. This permits us to rewrite Eq. (29)
as

1 = α

∫ ∞

−∞
dω g(ω)

sd + D + α

(sd + D + α)2 + ω2
. (32)

The above integral can be interpreted as an overlap integral
between two normalized distributions, g(ω) and the Lorentz
distribution. Since sd � −D − α (if sd < −D − α, the inte-
gral term becomes negative and equality cannot be satisfied),
we may assume that the crossover occurs at the border
value sd = −D − α. In such a case, the Lorentz distribution
transforms into a delta function, leading to 1 = παcrossg(0).
Consequently, we may write

αcross = 1

πg(0)
. (33)

We will next establish that the coupling due to a finite α

cannot produce phase transition, that is, there is no finite value
of α that yields sd = 0. If we take the limit α → ∞, Eq. (32)
reduces to

1 ≈ α

sd + D + α
. (34)

The limiting value of sd is sd = −D which is approached from
below. This means that sd = 0 can only occur if D = 0 and
α → ∞. We can, therefore, exclude any phase transition. As
sd = −D corresponds to a system without quenched disorder,
see Eq. (30), this means that in the limit α → ∞ quenched
disorder is completely eliminated.

Separating terms in Eq. (31) that depend on α, we may
find that the contributions of a run-and-tumble motion vanish
in the limit α → ∞, that is, ω0 cot(ω0/α) − α → 0. In Fig. 1
we plot Eq. (31) as a function of α.

The fact that large α eliminates a quenched disorder is
not surprising to anyone familiar with propelled particles
wherein the limit α → ∞ is considered as an equilibrium
state where stationary distributions recover Boltzmann func-
tional form [7,16].

In Fig. 2 we plot the evolution of r(t ) for a uniform dis-
tribution for three different values of α: below, above, and at
the crossover value of α. For a uniform distribution, αcross =
2ω0/π .

For a Gaussian distribution g(ω) we get a similar behavior
to that for a uniform distribution. The crossover point where

αcross α

-D-αcross

-D

s d

FIG. 1. Discrete pole sd as a function of α for a uniform distribu-
tion g(ω). The results correspond to Eq. (31) for parameters D = 1
and ω0 = 1.

the functional form in Eq. (17) changes to an exponential de-
cay is obtained using Eq. (33). Then as α approaches infinity,
quenched disorder is eliminated.

As a last example, we consider a discrete bimodal distribu-
tion already introduced at the end of Sec. III A. Equation (24)
for this distribution is solved exactly and the result is

r(t ) = e−(D+ α
2 )t

∣∣∣∣ cos(ωet ) + 1

2

α

ωe
sin(ωet )

∣∣∣∣,
where

ωe = ω0

√
1 −

(
α

2ω0

)2

.

This is a solution for a damped oscillator. The parameter
α affects the change from an underdamped to overdamped
dynamics at α = 2ω0.

V. FINITE K AND α

The Kuramoto model with both coupling parameters set to
finite value, α > 0 and K > 0, is governed by the following
FP equation:

∂ρ

∂t
= D

∂2ρ

∂θ2
− ω

∂ρ

∂θ
+ α(ρ̄ − ρ) − Kr

∂ρ sin(ψ − θ )

∂θ
.

(35)

0 2 4 6 8 10 12
t

0

0.5

1

r

 = 0.1
 = 2 /
 = 1

cross

FIG. 2. Evolution of r(t ) for a uniform g(ω). The system parame-
ters are D = 0 and ω0 = 1. The results are from dynamic simulation
for N = 106 particles and time interval dt = 0.001 with the initial
configuration corresponding to all particles placed at θi = 0.
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To apply a linear analysis of the previous section, the last term
in the equation is linearized by representing the density as
ρ = 1

2π
+ δρ, where δρ is the deviation from a uniform den-

sity. The linearized last term then becomes −Kr ∂ρ sin(ψ−θ )
∂θ

≈
K
2π

r cos(ψ − θ ), and the corresponding linearized FP equa-
tion is

∂ρ

∂t
= D

∂2ρ

∂θ2
− ω

∂ρ

∂θ
+ α(ρ̄ − ρ) + K

2π
r cos(ψ − θ ). (36)

Following the steps in Eqs. (21) and (23) we arrive at an
analogous result to that in Eq. (24):

r(t ) = R(t ) +
(

K

2
+ α

) ∫ t

0
dt ′ r(t ′)R(t − t ′) (37)

with R(t ) is defined in Eq. (5). The equation is next trans-
formed using the Laplace transform techniques into

r(t ) = 1

2π i

∫ γ+iT

γ−iT
ds

est R̂(s)

1 − (α + K/2)R̂(s)
, (38)

where the discrete pole is obtained from the following rela-
tion:

1 =
(

K

2
+ α

) ∫ ∞

−∞
dω

g(ω)

sd + D + α + iω
. (39)

The above relation can subsequently be used to obtain a
critical value of K where the incoherent solution becomes un-
stable. Assuming that g(ω) is unimodal with even symmetry,
this occurs when sd = 0 leading to

1 =
(

Kc

2
+ α

) ∫ ∞

−∞
dω g(ω)

D + α

(D + α)2 + ω2
. (40)

The above relation is a central result of this article. It
is analogous to a similar relation for the Kuramoto model
without self-consistent dynamics, see Eq. (6). It shows how
the onset of self-propelled motion modifies a critical point.
The parameter α appears in two places, suggesting two dif-
ferent roles. On the one hand, it functions as an enhancement
of diffusion D. On the other hand, it enhances the coupling
parameter K . The two roles work in opposite directions. En-
hanced dissipation is expected to increase the critical value Kc

(increased dissipation means stronger coupling is required to
bring about the coherent state), while enhanced coupling is
expected to reduce the critical value Kc.

A. Concrete examples

In the case of a Lorentz distribution, Kc does not depend on
α, and Eq. (40) in this case leads to

Kc = 2(D + ω0).

Even though dynamics of individual particles is a function
of α, when it comes to collective dynamics (in the case of
a Lorentz distribution) no change can be detected.

For a uniform distribution g(ω), the relation in Eq. (40)
yields

Kc = 2ω0

arctan
(

ω0
D+α

) − 2α. (41)

As the first term increases with increasing α, the second term
produces an opposite trend. In the first term, α enhances dif-
fusion, and in the second term it enhances coupling between

0 30α

2D

Kcα=0

K
c

FIG. 3. Kc as a function of α as given in Eq. (42) for a uniform
g(ω). The parameters are D = 1 and ω0 = 1.

particles. The net behavior is seen in Fig. 3 where we plot Kc

in Eq. (42) as a function of α. The plot shows a monotonically
decreasing Kc, indicating that the contribution of α to coupling
is a dominant factor. For large α, the dependence of Kc on α

is

lim
α→∞ Kc ≈ 2D + 2ω2

0

3

1

α
,

where the limiting value of Kc is 2D. As discussed in Sec. II,
below Eq. (6), this value corresponds to the system without
quenched disorder [when the distribution g(ω) is singular].
This once again goes to show that the self-propelled dynamics
effectively leads to elimination of quenched disorder.

A similar behavior is observed for a Gaussian distribution
g(ω). In this case Eq. (40) evaluates to

Kc = 2ω0√
π/2

e
− (D+α)2

2ω2
0

erfc
[

D+α

ω0
√

2

] − 2α, (42)

where for large α we have

lim
α→∞ Kc ≈ 2D + 2ω2

0

α
,

indicating a gradual elimination of quenched disorder as
Kc → 2D.

As a final example, we consider a discrete bimodal distri-
bution. This scenario is more complicated, involving multiple
bifurcations, full understanding of which requires nonlinear
analysis [4,31,32]. Here, we limit ourselves to linear analysis
and the role played by α.

From Eq. (39) we get

sd = −
(

D + α

2
− K

4

)
± iω0

√
1 −

(
2α + K

4ω0

)2

, (43)

indicating the existence of two poles. The result is similar to
that found in Eq. (12) of Ref. [32] but limited to the case α =
0. In the regime 4ω0 > K + 2α, the poles are complex. The
incoherent state becomes unstable when the real part of sd

vanishes, which corresponds to

Kh
c = 4D + 2α. (44)

The superscript ”h” designates a Hopf bifurcation and in-
volves transformation to a time-periodic behavior of the order
parameter r(t ). This bifurcation is shifted up as α increases. In
the regime 4ω0 < K + 2α where the poles are real, the phase
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2 4 6
K/D

1

2

ω
0/D

FIG. 4. Linear stability diagram for a discrete bimodal distribu-
tion g(ω) in the parameter space (K/D, ω0/D). The incoherent state
is linearly stable to the left of the lines. The black lines are for
α = 0 and red lines for α = D. The solid circles designate a tricritical
point above which the transition corresponds to a Hopf bifurcation
represented by vertical lines in Eq. (44). A similar diagram for α = 0
can be found in Fig. 1 of Ref. [32].

transition occurs when the smaller of the two poles becomes
zero. This corresponds to

Kc = 2D + 2ω2
0

D + α
. (45)

In this case, Kc is shifted down with increasing α. Phase
diagram constructed from Eq. (43) is shown in Fig. 4 for two
cases: α = 0 and α = D.

B. The model for K > Kc

In this section we consider the Kuramoto model for a uni-
form distribution g(ω) for K above the critical value, K > Kc.
In Fig. 5 we plot the data points for average value of r as a
function of K obtained from dynamic simulations. The results
indicate the shift of the curvatures toward lower values of K as
α increases. The data points where K goes to zero agree with
the theoretical prediction for Kc in Eq. (42).

A similar plot can be obtained for r plotted as a function of
α with fixed K , see Fig. 6.

0 1 2
K

0

1

r

α=0.5
α=1.0
α=2.0

FIG. 5. Data points for an average r as a function of K for a
uniform g(ω). The data points are obtained from dynamic simula-
tions for N = 105 particles and time step t = 0.01. The system
parameters are ω0 = 1 and D = 0. The three data points (brown
circles) on the x axis representing Kc are from Eq. (42).

1 2α
0

1

r

K=0.5

FIG. 6. Data points for an average r as a function of α for a
uniform g(ω). The system parameters are ω0 = 1 and D = 0.

VI. CONCLUSION

In this work we extend the Kuramoto model by incorporat-
ing run-and-tumble dynamics. The extension is implemented
by an addition of a linear “reaction” term in the Fokker-Planck
equation. On the microscopic level, the extension allows indi-
vidual particles to sample different velocities drawn from the
distribution g(ω), where α is the sampling rate. The original
model is recovered when α = 0, in which case individual
velocities are fixed.

How the rate of sampling α affects system dynamics
depends on a particular case. For uniform and Gaussian distri-
butions, increased α brings about reduced degree of quenched
disorder and in the limit α → ∞ quenched disorder is com-
pletely eliminated and the system behaves as if g(ω) → δ(ω).
The reduction of a quenched disorder occasioned by increased
α shifts down the critical value Kc.

Such a behavior, however, is not universal. In the case of
a Lorentz distribution, collective dynamics, or at least the
evolution of r(t ), is independent of α, even if the dynamics
of individual particles is strongly dependent on α. Run-and-
tumble dynamics for this distribution does not reduce a degree
of quenched disorder. Consequently, Kc is unaffected by a
sampling rate α.

For a discrete bimodal distribution, the situation is also
not straightforward as there are two types of transitions from
an incoherent state. One of the transitions involves Hopf bi-
furcation, in which case the incoherent state transforms to a
state with r(t ) that is periodic in time. In this case, increased
α shifts up the critical value of K . If the transformation to
a coherent state does not involve Hopf transformation, then
the behavior is similar to that for a Gaussian and uniform
distributions.1
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