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In this paper, the impact of temperature fluctuations in the entanglement of two qubits described by a spin-1/2
XX model is studied. To describe the out-of-equilibrium situation, superstatistics is used with fluctuations given
by a χ 2-distribution function, and its free parameters are chosen in such a way that resembles the nonadditive
Tsallis thermodynamics. In order to preserve the Legendre structure of the thermal functions, particular energy
constraints are imposed on the density operator and the internal energy. Analytical results are obtained using an
additional set of constraints after a parametrization of the physical temperature. We show that the well-known
parametrization may lead to undesirable values of the physical temperature so that by analyzing the entropy as
a function of energy, the correct values are found. The quantum entanglement is obtained from the concurrence
and is compared with the case when the Tsallis restrictions are not imposed on the density operator.
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I. INTRODUCTION

Superstatistics (SS), which were developed by Beck and
Cohen, are an effective way to study the nonequilibrium
processes based on the idea that the thermodynamics of a
system that passes through several equilibrium thermody-
namic states or is divided into subsystems, each in local
equilibrium, can be approximated by postulating an average
Boltzmann factor weighted with the density probability func-
tion of fluctuations [1–3]. The SS framework has been applied
to many topics: turbulence models [4,5], cosmic rays [6],
quantum chromodynamics [7,8], quantum dots [9,10], out-of-
equilibrium Ising models [11], quantum field theory [12,13],
among others [14–17]. More recently, the applicability of SS
has also reached the physics of entangled quantum systems,
for instance, the information exchange between a two-level
system with a temperature-fluctuating boson bath [18]. The
latter makes SS a promising field that deserves attention, given
its versatility in applications.

The present work has a particular interest in the paper by
Ourabah and Tribeche, where the authors explore the impact
of temperature fluctuations in the entanglement of quantum
systems provided by the concurrence function [19]. In order
to model such fluctuations, the SS framework is implemented
by introducing different distribution functions. The authors
found effects of the temperature field variations in the thermal
superstates, where nonequilibrium assumptions determine if
the entanglement is enhanced or prevented. Thus, we present
an extension of those insights, based on the so-called χ2-
distribution function that is closely related to the nonadditive
Tsallis formalism (for example, see Ref. [20]), and we explore
the consequences of its restriction over quantum phenomena.

*Corresponding author: jorgecastanoy@gmail.com

The formal analysis of SS is based on fluctuations of an in-
tensive parameter β̃ (inverse temperature, chemical potential,
noise, mass variation, volatility in finance, etc.), which are
described by a probability density function f (β̃ ). If the sys-
tem admits states of equilibrium described by Boltzmann-like
probabilities, the SS description is addressed with an average
over such stages, given by

B̂ =
∫ ∞

0
dβ̃ f (β̃ )e−β̃Ĥ , (1)

where Ĥ is the Hamiltonian of the system and B̂ is known
as the averaged or modified Boltzmann factor. For analytical
results, it is common to identify f (β̃ ) with the χ2 or Gamma
distribution function, namely,

f (β̃ ) = 1

b�(c)

(
β̃

c

)c−1

e−β̃/b, (2)

where b and c are free parameters. A Tsallis-like description
is found when the parameters are restricted to bc = β and c =
1/(q − 1), so that the modified Boltzmann factor is

B̂ = e−βĤ
q , (3)

where

ex
q ≡ [1 + (1 − q)x]1/(1−q), (4)

which, after a proper normalization, resembles the nonaddi-
tive probability weight factor [21]. In the last equations, the
parameter β is identified with the average temperature through
the expression [1–3]∫ ∞

0
dβ̃ f (β̃ )β̃ = β. (5)

As it was shown in previous works [9,22], admitting par-
allelism between SS and nonextensive thermodynamics has
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profound implications in the energy constraints to let the Leg-
endre structure (LS) be invariant behind a thermal treatment.

Although the computation of quantum entanglement in
Ref. [19] does not use the LS (in the sense of computing
observables from derivatives of the natural logarithm of the
partition function), it is well established that the validity of
LS related to Eq. (3) implies a correct identification of the
physical temperature, which is different from the authors’.

In this work, the impact of the temperature redefinition on
quantum entanglement is achieved by following the results
of the Tsallis nonadditive theory. We point out that the pre-
sented results are not a correction of Ourabah and Tribeche’s
paper: They extend it. The last is because, in that research,
the implementation of the χ2-distribution function is never
associated with a nonadditive formalism, which, in general,
is correct. Hence, the present discussion is valid when SS
with a χ2-distribution function with the particular choice of
parameters for c and b is identified with the Tsallis statistics.

The paper is organized as follows: Section II presents a
short review of the Tsallis nonextensive formalism and the
physical temperature definition. In Sec. III the model for a
spin-1/2 XX dimer is introduced and the thermal state is
found. In Sec. IV we show that the parametrization of the
physical temperature leads to undesirable values of T , and
by analyzing the entropy as a function of internal energy,
we found restrictions over that parametrization. Section V is
devoted to the concurrence, as a measure of quantum entan-
glement. In that section, the concurrence for a nonadditive
point of view is compared with the Gibbs-Boltzmann and with
the framework where SS is not identified with the Tsallis for-
malism. Finally, the summary and conclusions are presented
in Sec. VI.

II. THERMAL STATE IN THE TSALLIS FORMALISM

This section presents a short review of the Tsallis non-
additive formalism, following the calculations presented in
Ref. [21]. For further details and discussion, such a reference
can be consulted, as well as the additional information given
in Ref. [23].

In order to generalize the Gibbs-Boltzmann (GB) statistics,
Tsallis proposed an entropy function depending on a parame-
ter q [24]. As a postulate, it takes the form (kB = 1)

S = 1

q − 1
(1 − Tr[ρ̂q])∀ q ∈ R, (6)

where ρ̂ is the thermal state or density operator. To connect
with the results of the usual Boltzmann statistics, Tsallis
argued that the preservation of the LS leads to a particular
energy constrain given by

U = Tr[ρ̂qĤ ]

Tr[ρ̂q]
, (7)

where Ĥ is the Hamiltonian of the system. Then, after maxi-
mizing S it is straightforward to find that

ρ̂ = 1

Z
expq

(
−β

Ĥ − U

Tr[ρ̂q]

)
, (8)

where β is the inverse physical temperature and the partition
function Z is

Z = Tr

[
expq

(
−β

Ĥ − U

Tr[ρ̂q]

)]
. (9)

It is worth saying that LS can be demanded by more fun-
damental arguments related to an increasing entropy and a
positive definite specific heat [9,25,26]. Moreover, the ther-
modynamic functions can be expressed in terms of Z as
follows,

F (β ) ≡ U (β ) − T S = −β−1 lnq Z1, (10a)

U = −∂β lnq Z1, (10b)

where Z1 is defined from

lnq Z1 = lnq Z − βU . (10c)

It is clear that Eqs. (7)–(9) for ρ̂ are given in an implicit
way, which in general do not have a trivial solution. Neverthe-
less, they can be related to a second energy constraint proposal
that preserves the LS which is given in terms of a nonphysical
temperature β�. Explicitly, the thermal state �̂ and internal
energy U for the second constraints are

�̂ = 1

Z expq(−β�Ĥ ), (11)

and

U = Tr[�̂qĤ ] = −∂β� lnq Z, (12)

where

Z = Tr[expq(−β�Ĥ )]. (13)

Taking into account the last equations, the relations be-
tween Eqs. (7)–(9) and Eqs. (11)–(13) are:

ρ̂(β ) = �̂(β�), Z1(β ) = Z (β�), (14)

so that the physical temperature is parametrized with β� as
follows,

β = β� Tr[�̂q(β�)]

1 − (1 − q)β�U (β�)/Tr[�̂q(β�)]
. (15)

Fom the above, it is possible to find thermal-related ob-
servables from �̂ and Z as a function of β�. For example, the
physical entropy and internal energy will be

S = − (β�)2

∂β�β
∂β� [β−1 lnq Z (β�)], (16a)

U = −(∂β�β )−1∂β� lnq Z (β�), (16b)

so that after applying Eq. (15), the physically meaningful S
and U are obtained.

III. THE SPIN-1/2 XX DIMER

A model for a spin-1/2 XX dimer or the quantum Heisen-
berg antiferromagnetic XY model for two interacting qubits
in the presence of an external magnetic field B is described by
the Hamiltonian [27]

Ĥ = −J (σ+
1 σ−

2 + σ−
1 σ+

2 ) + B

2

(
σ z

1 ⊗ σ0 + σ0 ⊗ σ z
2

)
, (17)
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FIG. 1. Physical temperature T = 1/β as a function of the pseudotemperature T � = 1/β� (both in units of J) computed from Eq. (15) for
several values of q < 1 and B/J . The Gibbs-Boltzmann limit T = T � or q → 1 (dashed line) is plotted for comparison purposes.

where J is the exchange interaction between the two spins
while J > 0 and J < 0 correspond to the antiferromagnetic
and ferromagnetic cases, respectively, and

σ±
1 ≡ σ+ ⊗ σ0, σ±

2 ≡ σ0 ⊗ σ±, σ0 = 12×2. (18)

The eigenvalues and eigenvectors of the Hamiltonian are

Ĥ |00〉 = −B|00〉, Ĥ |11〉 = B|11〉,

Ĥ

( |01〉 ± |10〉√
2

)
= ±J

( |01〉 ± |10〉√
2

)
, (19)

then, in the basis {|00〉, |11〉, |01〉}, |10〉, it is straightforward
to find that

�̂ = 1

Z

⎛
⎜⎜⎝

e−β�B
q 0 0 0
0 coshq(β�J ) − sinhq(β�J ) 0
0 − sinhq(β�J ) coshq(β�J ) 0
0 0 0 eβ�B

q

⎞
⎟⎟⎠,

(20)

where

coshq(x) = ex
q + e−x

q

2
, sinhq(x) = ex

q − e−x
q

2
, (21)

and

Z = 2[coshq(β�J ) + coshq(β�B)]. (22)

IV. THE PHYSICAL TEMPERATURE

One challenging aspect in the Tsallis and χ2 formalisms
is to give an interpretation for the q parameter. By admitting
that SS is an average over M configurations of the intensive
quantity, it can be argued that q = 1 + 2/M and q > 1 so
that in the “thermodynamic” limit (M → ∞) q = 1, and the
Gibbs-Boltzmann statistics is recovered [7,9]. Nevertheless,
there is no a priori reason to ignore values of q < 1. Here, we
explore the two possible regions for q, i.e., q > 1 and q < 1.

The physical temperature T = 1/β computed from
Eq. (15) is shown in Fig. 1, as a function of the pseudotem-
perature T � = 1/β� provided by the thermal state of Eq. (20)

FIG. 2. (a) Physical temperature T = 1/β as a function of the pseudotemperature T � = 1/β� (both in units of J) computed from Eq. (15)
for q = 2 and several values of B/J . The Gibbs-Boltzmann limit T = T � or q → 1 (dashed line) is plotted for comparison purposes.
(b) Magnification in order to appreciate the prediction of negative physical temperatures.
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FIG. 3. (a) Entropy as a function of the internal energy, for the nonextensive formalism of Eqs. (6) and (7) (green squares), compared with
the formalism related to �̂ (blue line) and the GB case q → 1 (red line) for B/J = 1 and q = 0.2. The black stars are nonphysical (positive)
temperatures provided by the parametrization of Eq. (15), where the thermal observables are not functions of T . (b) Identification of the
nonphysical values of T by using (a). In (c) S vs U is computed from ρ̂ for B/J = 4 and q = 2. The black (pink) stars are the nonphysical
positive (negative) parametrized temperatures which are identified in (d).

with q < 1. As can be noticed, depending on the values of
the parameters, not all the temperatures are reached by the
system. In principle, it has a relation with the argument of q
functions where 1 + (1 − q)x � 0. This effect is know in the
so-called kappa distributions, related to correlated systems out
of equilibrium, which are close to the nonadditive formalism
[28,29]. The latter has implications in the temperature notion
and the connection to statistical mechanics: Correlations be-
tween particles make the temperature bounded below [30].
Then, the curves suggest that the system admits the definition
of temperature until a specific minimum value for a particular
parameter window. Of course, restrictions over β� or J and
B are present in Ref. [19], but as Fig. 1 shows, the actual
temperature value differs from what they had considered.

In contrast, for the case q > 1 consider the particular value
q = 2: The differences are more significant and provide an-
other physical point of view. Figure 2 shows the physical
temperature when the quotient B/J changes, with the par-
ticular feature that, depending on the interaction strength,

the system can reach negative absolute temperatures. That is
not a surprising result, given that eigenvalues of the Hamil-
tonian are bounded from above. In the limit of high B or
low J , the system behaves as the limit of the Ising model
in which the interaction term becomes negligible. Therefore,
it is close to a two-level system which develops absolute
negative temperatures [31]. Nevertheless, it marks a crucial
difference between the formalisms, and it can be used to
test the validity of the nonadditive perspective of temperature
fluctuations.

Another critical point to discuss is that the parametrization
of Eq. (15) gives wrong values of T , even with the restriction
1 + (1 − q)x � 0 imposed to Z . To clarify this point, note
that the parametrization does not return a physical temperature
T monotonically increasing for all the values of T �, which
implies that β� is not a single-valued function of β. Then,
when the physical thermal observables are extracted from the
relations of Eq. (14), they are not a function of T , in the sense
of the vertical line test.
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FIG. 4. Concurrence as a function of temperature computed from Eqs. (26)–(28) for q < 1 and B/J = 0, 1, 1.2.

In order to know where the parametrization returns admis-
sible values of the physical T , we use the thermodynamic
definition of temperature, namely,

1

T
= ∂S

∂U
, (23)

which can be computed by using Eqs. (16), after elimination
of the β� parameter. Figure 3 shows the behavior of S as a
function of U for B/J = 1 and q = 0.2, compared with the
same functions when the thermal state �̂ is used and with the
GB limit q → 1. In Fig. 3(a) it is clear that the parametrization
of Eq. (15) leads to a entropy which is not a single-valued
function of the internal energy. The black stars represent the
positive values of temperature, which must be discarded (the
same procedure needs to be performed with the branch of
negative temperatures). The identification of those nonsense
temperatures is displayed in Fig. 3(b), implying that the phys-
ical temperature is the one when the parametrization becomes
a monotonic increasing function of β�. The same situation is
presented in Figs. 3(c) and 3(d), for B/J = 4 and q = 2.

V. CONCURRENCE

For a pair of qubits 1 and 2 with density matrix ρ̂12, the
concurrence, as a measure of quantum entanglement, is de-

fined as [27]

C ≡ max{λ1 − λ2 − λ3 − λ4, 0}, (24)

where the quantities λ1 � λ2 � λ3 � λ4 are the squared root
of the eigenvalues of the operator

η̂12 = ρ̂12(σy ⊗ σy)ρ̂∗
12(σy ⊗ σy), (25)

so that if C �= 0 the qubits are entangled and C = 1 cor-
responds to a maximally entangled state. We compare the
concurrence when ρ̂12 is taken as ρ̂, �̂ and the GB case q → 1,
which are given by

Cρ̂ = max

{
sinhq[β�(β )J] − eq[β�(β )B]eq[−β�(β )B]

coshq[β�(β )J] + coshq[β�(β )B]
, 0

}
,

(26)

C�̂ = max

{
sinhq(β�J ) − eq(β�B)eq(−β�B)

coshq(β�J ) + coshq(β�B)
, 0

}
, (27)

and

CGB = max

{
sinh(βJ ) − 1

cosh(βJ ) + cosh(βB)
, 0

}
. (28)

Note that we emphasize the dependence on the physical
inverse temperature β in Eq. (26) with the parametrization

FIG. 5. Concurrence as a function of temperature computed from Eqs. (26)–(28) for 1 < q � 2 and B/J = 0, 1, 1.2.
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FIG. 6. Concurrence as a function of temperature computed from Eqs. (26)–(28) for 1 � q � 2.8 and B/J = 0, 1, 1.2.

β�(β ). Also, our expression is different from Ref. [19], given
that in the q calculus eq(x)e1(−x) = eq[(q − 1)x2] �= 1.

Figure 4 shows the concurrence as a function of temper-
ature computed from Eqs. (26)–(28) for q < 1 and different
values of B/J . As can be noticed, the temperature renormal-
ization shifts C and gives a lower value compared with the
case when the physical temperature definition is not taken into
account (except for B/J = 0). Furthermore, the critical tem-
perature Tc for Cρ̂ , related to vanishing entanglement, moves
away from the values obtained with C�̂ as the magnetic field
grows. Moreover, the concurrence enhances as q gets closer
to 1. Also, Figs. 4(b) and 4(c) show a hierarchy flip between
the concurrence Cρ̂ for q = 0.2 and q = 0.6, compared with
the behavior of C�̂.

It is important to notice that we are not discussing the
physical interpretation of the q parameter. Then, it can take
arbitrary values in the present work. Figures 5 and 6 show the
variations of the concurrence functions Cρ̂ and C�̂ when the
temperature and the values of the q parameter are modified.
In contrast with Fig. 4(a), the concurrence for B/J = 0 in
Figs. 5(a) and 6(a) is of the same order of the concurrence
when q → 1, reaching the maximum entangled state at T = 0
for Cρ̂ and T �= 0 for C�̂. Moreover, the concurrence curves
for Cρ̂ are very close to each other, and the hierarchy (i.e.,
which curve is at the left or right of another) between them
is inverse to the case computed from C�̂. That inversion is
due to the temperature renormalization provided by Eq. (15).
Finally, Figs. 5(c) and 6(c) show that Cρ̂ vanishes for higher
values of q and B/J . Indeed, for q � 3, both Cρ̂ and C�̂ are
null, independent of the value of B/J .

VI. SUMMARY AND CONCLUSIONS

In conclusion, in this paper, we have studied the super-
statistical description of a spin-1/2 XX dimer model with a
χ2 distribution for the temperature fluctuations, which allows

an interpretation related to the nonadditive Tsallis formalism.
In order to preserve the Legendre structure of the thermo-
dynamics, we followed the energy constraints that define
the thermal state (or density operator) of the system with
a physical temperature. Although the named constraints do
not allow an analytical treatment, we used the fact that the
density operator can be identified with a second set of en-
ergy constraints whose exact solution is well known through
a temperature parametrization. Nevertheless, we found that
such a parametrization leads to nonphysical values of the tem-
perature, and from analyzing the behavior of the entropy and
internal energy, we imposed restrictions over the parametriza-
tion.

In order to study the impact of the temperature fluctua-
tions in the quantum entanglement by following a nonadditive
point of view, we computed the concurrence as a measure of
two qubits. We found that this quantity substantially changes
with the thermal state prescription (ρ̂ or �̂). Also, the critical
temperature where the system is not entangled as well as the
maximally entangled state is modified according to the su-
perstatistical interpretation. The findings of this paper can be
implemented to understand in what situations the description
provided by the superstatistical framework corresponds to the
Tsallis formalism, and it can help to understand better the role
of the q parameter.
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