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Magnetization profiles at the upper critical dimension as solutions of the integer Yamabe problem
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We study the connection between the magnetization profiles of models described by a scalar field with
marginal interaction term in a bounded domain and the solutions of the so-called Yamabe problem in the same
domain, which amounts to finding a metric having constant curvature. Taking the slab as a reference domain, we
first study the magnetization profiles at the upper critical dimensions d = 3, 4, 6 for different (scale-invariant)
boundary conditions. By studying the saddle-point equations for the magnetization, we find general formulas
in terms of Weierstrass elliptic functions, extending exact results known in literature and finding ones for the
case of percolation. The zeros and poles of the Weierstrass elliptic solutions can be put in direct connection with
the boundary conditions. We then show that, for any dimension d , the magnetization profiles are solution of the
corresponding integer Yamabe equation at the same d and with the same boundary conditions. The magnetization
profiles in the specific case of the four-dimensional Ising model with fixed boundary conditions are compared
with Monte Carlo simulations, finding good agreement. These results explicitly confirm at the upper critical
dimension recent results presented in Gori and Trombettoni [J. Stat. Mech: Theory Exp. (2020) 063210].
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I. INTRODUCTION

Within the field of critical phenomena, a research line that
attracted considerable attention along the years is the study of
critical systems in presence of boundaries [1,2]. Among the
motivations for such a study, the first is to correctly compare
theoretical predictions with experimental results or numerical
simulations coming from finite systems. In general, the intro-
duction of a boundary alters thermodynamic properties and
subleading corrections to bulk values have been extensively
studied [3]. Techniques such as finite-size scaling can be used
to extract critical exponents and other important quantities [4].
In two-dimensional systems, the coefficient of the next-to-
next-to-leading order in the free energy is related to the central
charge of the theory [5] and the study of boundary conformal
field theory developed in the last decades as a very active field
of research [6].

A remarkable property emerging in critical bounded do-
mains is that a given bulk universality class corresponds
to several surface universality classes, making boundary
critical phenomena a rich and well-studied playground. In
many cases, boundaries are the source of very interesting
effects and phenomena. A major example is the thermo-
dynamic Casimir effect: it has been studied thoroughly to
obtain universal scaling function and Casimir amplitudes
[7]. The interest in the Casimir effect has shifted the at-
tention from semi-infinite systems [8–11] to the geometry
of a slab [12–16]. Obtaining the critical magnetization pro-
file [17,18] is a crucial piece of information in this line of
research.

The study of critical phenomena with a field theoretical
approach [19] naturally highlights the role of the dimension-
ality which rules the relevance of fluctuations at the critical
point. For d matching the so-called upper critical dimension
dc [4,20] the critical theory becomes typically tractable, yield-
ing in a controlled way the mean-field approximation and the
typical logarithmic corrections on top of it [21,22]. If critical
exponents at the upper critical dimension are found to be just
the mean-field ones, in bounded systems there is the possibil-
ity to study inhomogeneous, space-dependent quantities and
corrections due to the presence of boundaries.

Here we are going to focus on magnetization profiles of
models at their upper critical dimension. They can be a useful
starting point for calculation of critical magnetization profiles
at lower dimensions, as they give the background around
which (nonlogarithmic) fluctuations can be added. Moreover,
an advantage of being at the upper critical dimension is that
one can obtain, by a saddle-point treatment, analytical expres-
sions to be compared with numerical results.

Our goal in this paper is threefold. First, we obtain magne-
tization profiles in a unified framework for different boundary
conditions, by considering the analytic structure of the saddle-
point solutions. This will allow us to recast known results in
a more accessible and compact way while deriving novel pre-
dictions, e.g., for percolation at its upper critical dimension.
For the Ising model in four dimensions we test the findings
obtained by the discussed approach by comparing them with
results of Monte Carlo simulations.

Another main objective is to provide a geometric interpre-
tation of the results for the critical magnetization profiles at
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the upper critical dimension. The main idea is to write the field
theory equations for the magnetization profiles as a variational
solution of a geometric problem. In this way, our aim of
finding the critical profiles is explicitly put in connection with
the solution of a celebrated problem in differential geometry:
the Yamabe problem [23], which amounts to finding a metric,
in the same conformal class of another given metric, that
makes the scalar curvature constant. The Yamabe problem in
its various generalizations has been the object of intense math-
ematical work in the last decades [24,25]. It is also related
to general relativity, when one looks for solutions of Einstein
field equations which are conformally flat or more generally
within a conformal class [26]. A discussion of the connection
between the (mean-field) Landau-Ginzburg equations and the
Hilbert-Einstein action functional for pure gravity in presence
of cosmological term is presented in [27].

As a third motivation, the present study intends to ex-
plicitly verify the validity at the upper critical dimension of
results presented in [28]. There, a hypothesis—referred to as
“uniformization”—is put forward to relate the critical mag-
netization profile of a bounded domain with a metric factor
γ (x), which is the solution of a fractional Yamabe equation in
the same domain. This metric is used to compute distances
between points, which are then used to construct spin-spin
correlation functions. In this “critical geometry” approach, the
points close to the boundary are put at larger distances by
inflating locally and isotropically the original metric. In [28]
the uniformization hypothesis was supported by numerical
simulations of the three-dimensional Ising model, given the
lack of analytical results for this model. It is important to
notice that below the upper critical dimension a nonvanishing
anomalous dimensions η arises: in order to take this into
account, the Yamabe equation has to be modified, by intro-
ducing a fractional power of the Laplacian operator, obtaining
the fractional Yamabe equation [29]. But at the upper critical
dimension η = 0 and the fractional Yamabe equation reduces
to the standard Yamabe equation, which for clarity we call the
integer Yamabe equation, since in it only the usual Laplacian
enters. Therefore the study of critical magnetization profiles
at d = dc allows us to test, analytically and numerically, the
validity of the “critical geometry” approach in a solvable
case.

We observe that the relation between critical magnetiza-
tion profiles and the integer Yamabe equation holds in any
bounded domain. We specialize to the slab geometry since it
is convenient for both analytical calculations and simulations
and for its relevance for the Casimir effect. We will comment
on the general case when useful for our presentation.

The plan of the paper is the following: first we will consider
Landau-Ginzburg actions with marginal interaction, for vari-
ous dimensions: in each case, we will obtain the saddle-point
equation at the corresponding upper critical dimension; solu-
tions will be given for the possible boundary conditions (BCs).
These equations will then be generalized through the intro-
duction of the Yamabe equation. After solving it for a slab in
arbitrary dimension, we recover the previous solutions. The
theoretical magnetization profiles are then compared to the
numerical solution of the Ising mean field equation, and to the
results of a Monte Carlo simulation of the four-dimensional
Ising model.

II. MAGNETIZATION PROFILES

In the following, we study exact solution for the critical
magnetization profiles for models living at their upper critical
dimension. We write the action of a scalar field with marginal
coupling and Z2 symmetry as

S =
∫

dd x

[
1

2
φ(−�)φ + 1

2
μ2φ2 + gcd (φ2)

d
d−2

]
, (1)

where the field φ = φ(x) with x ∈ � and � ⊂ Rd is a
bounded domain. As usual, the operator −� is the positive
definite Laplacian. Notice that the exponent of the potential
term is integer for d = 3, 4, which are the dimensions we are
going to focus on. The case of percolation, considered later,
has to be treated separately with the introduction of a similar
action in d = 6. The action can be generalized to a vector field
�φ with N components: in this case, φ2 in the potential term is
replaced by

∑N
i=1 φ2

i . The factor in the interaction constant

cd ≡ (d − 2)2

8
(2)

has been chosen for convenience, as it will appear later. Since
in d dimensions the field has scaling dimension �φ = d−2

2 ,
the interaction term in (1) is written so that the action is at the
upper critical dimension. The mass term ∝ φ2 vanishing at the
critical point is also included [4,20].

The saddle-point equation for the action (1) at the critical
point reads

�m(x) = g
d (d − 2)

4
m(x)

d+2
d−2 (3)

with m(x) = 〈φ(x)〉.
We will now specialize the study of the saddle-point ap-

proximation for the action (1) for the physical dimensions
taking the values d = 3, 4, and 6. This is first due to their
physical relevance, but also for the striking mathematical
properties they display only for these values of d . The pecu-
liarity amounts to the fact that they are the only dimensions
where the magnetization profiles can be expressed as suitable
powers of the Weierstrass elliptic function ℘ (see Appendix A
and [30] for reference). Before moving to the different cases
d = 3, 4, and 6 in Secs. II B–II D, we discuss the different
boundary conditions we are going to treat.

A. Boundary conditions

Let us start from the Ising model. We have different choices
of boundary conditions on a slab; forcing the spins on the two
boundaries to be aligned [fixed boundary conditions (FBCs)]
corresponds to diverging order parameter at the boundaries.
One could have ++ or −− FBCs (due to symmetry, we
consider only the ++ case). If the spins on the two boundaries
are antiparallel, then one has +− FBCs.

The corresponding, conformally invariant, boundary con-
dition in the field theory is 〈φ〉 = ±∞. Of course, on a lattice
the order parameter cannot diverge: the magnetization at the
boundaries will be ±1. For the ++ FBCs, the value at the
center of the slab, however, will scale with the system size as
L−�φ , so one can rescale the magnetization in a way that it
is constant at the center. In the thermodynamic limit, it then
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TABLE I. Labels for the possible boundary conditions, with the
corresponding (average) spin configuration and behavior of the con-
tinuous profile near the boundaries.

BC Lattice m(x → 0) m(x → L)

++ ↑ . . . ↑ x−�φ (L − x)−�φ

+− ↑ . . . ↓ x−�φ −(L − x)−�φ

+0 ↑ . . . 0 x−�φ L − x

diverges at the slab edges. It is this rescaled form which is
accessible via field theory.

Another way to understand it is the following: if the lattice
magnetization profile were prolonged a few sites beyond the
boundary, these singularities would appear. This concept is
quantified by the extrapolation length aL [1]: if the boundaries
where we fixed the spins are at x = 0 and x = L, after we
fit the resulting profile m(x), we would see divergences at
m(−aL ) and at m(L + aL ). In the L → ∞ limit, aL → 0 and
the magnetization diverges at the boundaries.

One can also fix the spins on one boundary to the value
+1 and the spins on the other boundary to the value −1 (+−
FBCs). The corresponding magnetization profile vanishes in
the center, so either half of this profile could be obtained
by fixing the spins on one boundary, and leaving the other
boundary free (mixed boundary conditions, +0.)

We clarify that in the following, in agreement with action
(1), we do not consider an external magnetic field, except for
the one needed to fix the values of the spins at the boundaries.
Therefore open boundary conditions (OBCs) are trivial, in the
sense that the magnetization at the critical point has to vanish.
In Appendix C we discuss the case of OBCs with a suitably
chosen scaling magnetic field, providing an illustration of the
usefulness of the calculation developed in this section and a
further interesting perspective on the mathematical structure
of the solutions.

From the scaling dimension �φ of the order parameter, we
can also obtain the behavior near the boundary (see Table I).

If we were to consider O(N ) models with N > 1, there
would be an additional degree of freedom in the choice of
boundary conditions: the angle between the spins on the two
boundaries. The magnetization becomes then a vector in the
plane spanned by the boundary spins, and the saddle point
becomes a system of two equations. So, while the +− solution
is specific to the Ising model, the ++ one is valid for any
O(N ) model with parallel boundary spins. Here we focus on
conformally invariant boundary conditions, which are homo-
geneous on the slab plates. Other boundary conditions are
possible, such as the one considered in [31] to enforce a
topological excitation.

B. φ4 theory in four dimensions

In four dimensions the action (1) reads

S =
∫

d4x

[
1

2
φ(−�)φ + 1

2
μ2φ2 + 1

2
gφ4

]
. (4)

A corresponding model in the lattice is of course the Ising
model. Since the theory is at the upper critical dimension,
we proceed by writing the saddle-point equation. The saddle-

point equation for the action at the critical point μ = 0 is

�m(x) = 2 gm(x)3. (5)

We are interested in solving Eq. (5) in the case of a slab
domain [0, L] × R3. The magnetization m(x) depends only
on the transverse direction x, so the Laplacian � reduces to
∂2

x . The different solutions for various boundary conditions
will be analyzed and compared in the rest of the this section.
In Sec. VI we will compare the analytical results so obtained
with Monte Carlo simulations for the Ising model on a four-
dimensional slab geometry with fixed boundary conditions.

Notice that given a solution m(x) of (5) we can generate
other solutions by translation and rescaling ruled by the pa-
rameters x0, β, and λ, all of them being possibly complex:

m(x) → β m[λ (x − x0)], g → gβ− 4
d−2 λ2. (6)

This allows us to change the domain or coupling constant as
desired; for convenience we set g = 1. In general such scaling
will alter the boundary conditions, however scaling invariant
conditions, i.e., m = 0, ∞, are left unchanged. We remark that
the scaling (6) also applies to other values of d and it will thus
be useful in the next subsections.

The general solution to Eq. (5) (with g = 1) is

m(x) = λ℘l [λ(x − x0)]1/2, (7)

where ℘l is the Weierstrass ℘ function with invariants
(g2, g3) = (1, 0). This is the so-called lemniscatic case. When
it is written in terms of the complex variable z as ℘l (z), it
corresponds in the complex plane to a square lattice, with a
real half-period ωl = �( 1

4 )2/(4
√

π ).
The Weierstrass elliptic ℘, whose basic properties are re-

freshed in Appendix A, is a doubly periodic function. Within
one of its domains in the complex plane, it has a double pole
and two zeros possibly coinciding (as here): taking segments
with poles or zeros as their endpoints gives solutions with
various boundary conditions, as can be seen in Fig. 1. Along
the segments the function has to be real or have a constant
phase (which can removed) in order to be interpreted as mag-
netization profiles.

The corresponding (unscaled) solutions are

m++(x) = ℘l (x)1/2, x ∈ (0, 2 ωl ),

m+0(x) = ℘l (x eiπ/4)1/2eiπ/4, x ∈ (0,
√

2 ωl ]. (8)

By extending the m+0(x) solution to the interval x ∈
(0, 2

√
2ωL ) we indeed generate a solution m+− connecting

the + and − boundary states. This reflects the Z2 symmetry
of the model as it is apparent in the saddle-point equation (5)
with m(x) → −m(x).

C. φ6 theory in three dimensions

A φ6 theory has upper critical dimension dc = 3. The steps
of the previous section can be repeated in this case. We start
from the Landau-Ginzburg action at the critical point, where
the couplings of the φ2 and φ4 terms vanish:

S =
∫

d3x

[
−1

2
φ(−�)φ + g

8
φ6

]
. (9)
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FIG. 1. d = 4 Above: modulus of the square root of the lem-
niscatic elliptic function; poles are white and zeros dark. Below:
magnetization profiles for the different boundary conditions dis-
cussed in the text

On the slab geometry [0, L] × R2, we get the saddle-point
equation

m′′(x) = 3
4 gm5, (10)

where again due to the scaling property (6) we set g = 1. The
solution is

m(x) = λ1/2℘e[i λ (x − x0)]−1/2. (11)

In the present case, the invariants of the Weierstrass function
℘e are (g2, g3) = (0, 1), from which its real half-period is
ωe = �( 1

3 )3/(4π ).
The above case ℘e of the Weierstrass function is the so-

called equiharmonic case, where the lattice used to define the
elliptic function is the regular triangular tiling of the plane;
see Fig. 2.

Remarkably, the solution for d = 6, presented in the next
subsection, will turn out to be dual to this one. Again, looking
at the poles and zeros of m(z), we obtain solutions for the
possible boundary conditions:

m++(x) = ℘e(ωe + i x)−1/2, x ∈
(

− ωe√
3
,

ωe√
3

)
,

m+0(x) = ℘e(x eiπ/6)−1/2e−iπ/6, x ∈
(

− 2ωe√
3

, 0

]
. (12)

These solutions could also be expressed through Jacobi
elliptic functions, as was done for the ++ solution in [32],
through Fisher–De Gennes theory [33]. Again due to Z2

invariance, reflected in the m(x) → −m(x) symmetry in the
saddle-point equation, the m+0(x) can be extended further in
the interval x ∈ (− 2√

3
ωe,

2√
3
ωe) yielding a m+−(x) profile.

FIG. 2. As in Fig. 1, but here for d = 6, the modulus of m(z)
in the complex plane, with the solutions for the different boundary
conditions.

D. φ3 theory in six dimensions

In d = 6, we consider an action with cubic potential:

S =
∫

d6x

[
1

2
φ(−�)φ + 2 gφ3

]
, (13)

which is used to describe percolation at the upper critical
dimension [34,35]. This action is not obtained directly by
plugging d = 6 into (1), so it differs from the previously
considered d = 3, 4 cases; since the potential is odd, it lacks
Z2 symmetry. This implies the absence of opposing (+−)
boundary conditions, which becomes clear when one thinks
of the possible boundary conditions for percolation: one can
either force a boundary to belong to the percolating cluster
(+), or leave it free, but opposing boundaries no longer make
sense. However, we can still find a solution connecting the +
and 0 boundary states. The saddle-point equation now is

m′′(x) = 6 gm(x)2. (14)

The general solution is (taking g = 1 as in the previous cases)
the function ℘e:

m(x) = λ2℘e[λ (x − x0)], (15)

meaning that the profiles are just the square of the reciprocal
of the φ6 results, as evidenced in Fig. 3. Now the double pole
in the origin directly yields the expected divergence for the
m++ order parameter profile, since the dimension of the field
is d−2

2 = 2. The profiles are

m++(x) = ℘e(x), x ∈ (0, 2ωe),

m+0(x) = ℘e(x eiπ/6)eiπ/3, x ∈
(

0,
2ωe√

3

]
. (16)
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FIG. 3. The zero and pole structure for d = 6 is inverted with
respected to Fig. 2. What would be the +− profile now ends at 0,
giving the mixed boundary condition +0.

III. THE YAMABE EQUATION

In the following we provide the solution to the saddle-point
equation for φ2m theories, valid for critical dimensions dc =

2m
m−1 (in this general case, they will not possess the analytic
properties displayed by the d = 3, 4, 6 cases discussed above).

In order to introduce a geometric interpretation of the
critical magnetization profile, we notice that it is possible
to rewrite the saddle-point equation in a convenient form.
Since the scaling dimension of the order parameter field is
�φ = d−2

2 , we introduce a function γ (x) which acts as a
point-dependent scale. We then write

m(x) = αγ (x)−�φ = αγ (x)−
d−2

2 , (17)

where α is a constant, to be fixed.
The main point of this section, as well as the main result of

the paper, is that the solution m(x) of the saddle-point equation
(3), once rescaled as in (17), can be written as

(−�)γ (x)−
d−2

2 = −d (d − 2)

4
γ (x)−

d+2
2 , (18)

where α in (17) is chosen to be α = g(2−d )/4 so that the right-
hand side has the correct coefficient to obtain what is known
as the Yamabe equation. Equation (18) can be also recast in
the form

1 − | �∇γ (x)|2 + 2

d
γ (x)�γ (x) = 0. (19)

The Yamabe equation has the geometric interpretation of a
constraint on the curvature of a manifold. This equation can
be viewed as a special case of the more general fractional
Yamabe equation, which contains a fractional Laplacian, al-

lowing it to describe theories with nonvanishing anomalous
dimension as done in [28]. In the following, whenever we
mention the Yamabe equation, we are referring to the integer
one, with standard Laplacian, as first introduced in [23] .

To understand how a geometric problem emerges from
one-point functions of a bounded system at criticality, we
discuss the connection of the obtained results with the “uni-
formization” hypothesis put forward in [28].

A. Uniformization hypothesis and the Yamabe equation

The main property a system typically gains at its criti-
cal points is conformal invariance [36,37]. Heuristically, this
means that every point and every region of the system look
the same. Introducing a boundary clearly breaks this property.
The question addressed in [28] is then: is there a way to
recover it? If a metric is introduced which sets the boundary at
an infinite distance, then we would no longer have a distinc-
tion between points close to the boundary and points deep in
the bulk. The only changes of the euclidean metric that we can
allow are conformal transformations, since the system must
still be locally euclidean. This means that the choice of metric
reduces to the choice of a function γ (x) which sets a local
scale:

δi j → gi j = δi j

γ (x)2
, (20)

δi j being the flat metric, i.e., the identity matrix, and i, j =
1, . . . , d .

Constraints on the function γ have to be imposed. Since we
have a curved space, we should look into the various quantities
that describe its curvature, the most obvious one being the
Ricci scalar curvature. The main hypothesis in [28] is that
the metric must make a bounded critical system as uniform
as possible: this means making the scalar curvature constant.
This curvature would have to be negative, since spaces with
positive curvature, like spheres, lack boundaries. The simplest
examples of space with constant negative curvature are the
Poincaré half plane and disk models.

Starting from the metric with an unknown γ (x), one can
compute the Christoffel symbols, from which one gets the
Ricci tensor, and finally the Ricci scalar:

R =
d∑

i, j=1

Ri jg
i j = κ, κ < 0. (21)

Without losing generality, we can set κ = −1. We can now
write this condition as an equation for the factor γ (x), get-
ting (18), supplemented by the condition γ (x) = 0 at the
boundaries of the domain �. This is enough to get solutions
which, close to the boundary, are proportional to the euclidean
distance from it. The distance from any point to the boundary,
computed with this metric, is therefore infinite, as desired.

To frame it more generally, the Yamabe problem consists in
finding a metric in the conformal class of another given metric
for a smooth Riemann space, that makes the scalar curvature
constant [24]. A solution has been proven to exist for any such
space, provided it is compact.
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The two-dimensional limit of (18) gives the Liouville
equation

(−�) log γ (x) = −γ (x)−2. (22)

The Yamabe equation is a nonlinear differential equation.
There are a few cases where the Yamabe equation has simple
solutions: e.g., for a ball of radius R in any dimension, one
finds γ = R2−|x|2

2R [25,28]; the case of the slab geometry will
be treated in the next section.

One-point functions and the scale factor transform simi-
larly under a dilation of the system � → λ�:

〈φλ�(λx)〉 = λ−�φ 〈φ�(x)〉, γλ�(λx) = λγ�(x), (23)

where �φ is the scaling dimension of the field. Therefore,
once γ (x) is known, all one-point functions are determined
up to a constant C:

〈φ(x)〉 = C
γ (x)�φ

. (24)

As an example, for a half space in any dimension, with x1 > 0
and {x2, . . . , xd} ∈ Rd−1, we have γ (x) = x1, so

〈φ(x)〉 = C
x�φ

1

, (25)

reproducing a standard result of boundary conformal field
theory [6].

The introduction of γ (x) in (17) should now be clearer: the
mean-field equation for a (multi-)critical of the O(N ) model is
equivalent to the Yamabe equation at the corresponding upper
critical dimension. Once the scale factor γ (x) is obtained by
solving the Yamabe equation, the magnetization is recovered
through (24).

IV. ANALYTICAL RESULTS FOR THE SLAB GEOMETRY

For the slab geometry we can actually obtain the solution
for general dimension d in implicit form. We denote the solu-
tion of the Yamabe equation (18) with γd (x) to emphasize the
dependence on the dimension d . For convenience we assume
x ∈ [0, 2] (i.e., L = 2), so that the center of the slab is in
x = 1.

For x ∈ [0, 1] and ++ FBC, the relation between x and γd

is given in terms of the 2F1 hypergeometric function. From the
Yamabe equation one straightforwardly finds

x(γd ) = 2F1

[
1

d
,

1

2
; 1 + 1

d
;

(
γd

γm

)d]
γd . (26)

By reflecting x around 1: x → 2 − x the other branch is ob-
tained. The constant

γm = �
(

1
2 + 1

d

)
√

π �
(
1 + 1

d

) (27)

is the (maximum) value acquired by the conformal factor at
the center of the slab. Equation (26) is valid for any d � 2,
including the cases d = 4, 6, 3, 2 and also real values of d .
Notice that a slab configuration cannot be defined for d < 2.
The formulas for other boundary conditions are written below.

We pause here to comment that one sees a (minor) advan-
tage of using the Yamabe equation in the form (19) instead of

using directly the saddle-point equation (3). The latter, when
written in the slab geometry, gives rise to the so-called Emden-
Fowler equation [38]. The latter, for a function m(x), reads in
its canonical form m′′(x) = A xN m(x)M [38], with our case
corresponding evidently to N = 0 and M = (d + 2)/(d −
2). The case N = 0 can be solved by quadrature [38], writing
the solution in term of an integral and for certain values of M
the corresponding analytical expressions are tabulated [38].
However, solving the Yamabe equation (19) and using the
procedure prescribed in ordinary differential equations text-
books (or directly MATHEMATICA) one finds that the solution
is given by the inverse of the hypergeometric function 2F1 for
any d . Therefore, rewriting m in terms of γ via the equation
(17) may also help to find easier analytical solutions, as the
case of the slab geometry shows. In Appendix C, we discuss
how to relate the result (26) to different boundary conditions,
including open boundary conditions with an external magnetic
field.

We can see what the general result (26) simplifies to when
we substitute d = 4, 3, 6, 2:

– d = 4: the inverse of (26) is ℘l (x)−1/2, the lemniscatic
Weierstrass function used in (5); see Appendix B.

– d = 6: the inverse is the equiharmonic elliptic function
℘e(x) as seen in (15).

– d = 3: this case is dual to the d = 6 case, since the
solution here is simply the square root of the reciprocal of
the previous solution, after an appropriate translation; this is
clarified in Appendix C.

– d = 2: the value d = 2 cannot be directly chosen in
the Yamabe equation (18): a limit has to be performed,
yielding the Liouville equation (22). One may then as-
sume that plugging d = 2 into (26) will give an incorrect
result. Surprisingly, that is not the case: for d = 2, the func-
tion 2F1( 1

2 , 1
2 ; 3

2 ; γ 2 π2

4 )γ reduces to the inverse sine: indeed,
γ2(x) = 2

π
sin(πx/2).

This agrees with and generalizes previous results: profiles
for ++ and +− boundary conditions were found for d = 4
in [17], and for d = 2 in [39]; the ++ profiles for d = 2, 3, 4
are also found in [32]. In both [17] and [32] Jacobi functions
were used. Switching to Weierstrass functions allowed us in
the present paper to write profiles for various dimensions in
a compact way, retrieving the previously listed known results
and extending them to all the conformally invariant boundary
conditions. We also obtain results for the critical magnetiza-
tion profiles in d = 6, which, to the best of our knowledge,
are not present in literature.

V. SOLUTION OF LATTICE MEAN-FIELD EQUATIONS

In this section we discuss the solution of the mean-field
equations for the Ising model in a slab geometry directly on
the lattice. The goal is to see how lattice profiles can be accu-
rately described by a continuous function from field theory in
the thermodynamic limit. For this reason in this section we
take the slab coordinate x to be an integer variable, going
from 1 to L, and then take L → ∞. In this calculation it is
not necessary to specify the number of sites in the directions
perpendicular to x, since we can assume that the probabil-
ity distribution function P of any spin depends only on its
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transverse coordinate x. For this reason we put

P(si ) = 1 + mx

2
δsi,1 + 1 − mx

2
δsi,−1, (28)

where si = ±1 is the Ising variable in the site i having x as
coordinate along the direction of the slab.

We can find the discrete magnetization profile mx = 〈si〉
minimizing the free energy. The mean-field equation [21] is

mx = tanh

(
β

∑
j

〈s j〉
)

. (29)

This is the same equation used to find the inverse critical
temperature βc in the bulk, i.e. in the case of no boundaries.
Having set the coupling J to 1 for convenience, it is βc =
1/2d . Of course, it differs from the critical temperature of the
actual Ising lattice; see the next section.

In a four-dimensional slab with d = 4, this becomes

mx = tanh [β(6mx + mx+1 + mx−1)]. (30)

For the case of FBC m1 = mL = 1, this equation can be solved
iteratively until the difference between the two sides is smaller
than a fixed threshold.

The value of the magnetization at the center of the slab
decays, as the system size increases, as 1/L. Since profiles
for different sizes must have the same functional shape at
the critical point, we rescale them by multiplying each profile
by its corresponding size L. This also clarifies the correspon-
dence between fixing the boundary spins to +1 in the lattice
model and diverging boundary conditions in the field theory.
As the size increases, the rescaled boundary magnetization
grows proportional to L.

At the same time, as L increases, the extrapolation length
aL [1] decreases, meaning that the point where the profile
diverges gets closer to the lattice boundaries. In the limit
L → ∞, aL → 0 and the rescaled m(0) = m(L) → ∞.

Once the rescaling is done, we clearly see a collapse of the
various profiles, showing that we are at the critical point. The
corresponding results are in Fig. 4. For large L, the extrapola-
tion length vanishes and the mean-field profile coincides with
the saddle-point solution. We also studied the solutions of
the lattice mean-field equations for +0 boundary conditions,
finding a similarly good agreement between them and the
solution of the corresponding Yamabe equation.

VI. MONTE CARLO SIMULATION OF THE 4d ISING
MODEL ON A SLAB

The previous predictions have been obtained by perform-
ing the saddle-point approximation on the action (1). It is very
well known that in four dimensions for the φ4 theory, and in
general at the upper critical dimension, the critical exponents
are the mean-field ones [4,20–22]. This is routinely exploited
in conformal bootstrap calculations for the bulk geometry,
where in d = 4 the critical theory is Gaussian [40]. However,
in a bounded domain—to the best of our knowledge—there
is no proof that the critical magnetization profile in the ther-
modynamic limit given by the saddle-point approximation is
exact in d = 4 for the φ4 theory, although it is expected.
For this reason we decided to numerically test the saddle-

FIG. 4. Collapse of the mean-field magnetization profiles. Since
they are symmetric around the center of the slab, we plot only the left
half. Each set of magnetization values has been rescaled by a factor
L, while the x coordinate has been rescaled through its extrapolation
length.

point findings by Monte Carlo simulations and validate our
predictions via numerical experiments. In order to obtain a
numerical check of the magnetization profiles, we will con-
centrate on the Ising model on the slab geometry with FBC.
Notice that explicit numerical investigations for high dimen-
sions of phenomena arising from inhomogeneities are rather
sparse especially if compared to two-dimensional systems.
Three-dimensional models did receive of course attention,
and basic predictions from scale or conformal invariance have
recently been tested [41,42].

We performed Monte Carlo simulations of the Ising model
at its upper critical dimension, 4, in a slab of sizes L in the
transverse direction, and 4L in the other three directions; L
ranges from 16 to 56. The FBC are implemented by fixing
the spins to the same (+1) or opposite (±1) on the two faces
in the transverse direction, while the other directions have
periodic boundary conditions. We can then expect the ++
and +− magnetization profiles from (8). The critical inverse
temperature βc is taken to be βc = 0.1496927 from [43]; see
also [44,45].

The simulation uses the standard Metropolis algorithm,
whose moves are single spin flips. After a thermalization
time, we measured the average magnetization and local energy
along hyperplanes parallel to the boundaries. As explained in
Secs. II and V, since the spins are fixed at the edge faces and
one is at the bulk critical temperature, the magnetization pro-
file will start from the value 1 at one boundary, will decrease
as one approaches the center, should reach a value of order of
1/L, and then rise again up to 1 in the other slab boundary.
One can rescale the numerical data in a way that the value of
the magnetization at the center is constant, meaning that the
boundary magnetization increases with L.

The magnetization data are then fitted with

m(x) = kL

[
γ
( x

1 + aL

)]−1
, (31)

where kL is a multiplicative constant roughly proportional to
the system size, and aL is the extrapolation length, with the
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TABLE II. Decreasing extrapolation lengths as the size increases
(+ + BC).

L aL

16 0.2465
24 0.1724
32 0.1314
40 0.1070
48 0.0884
56 0.0404

index L denoting the dependence on the size. The extrapola-
tion length shrinks the lattice profile so that the divergence
of the order parameter would appear a few sites beyond the
edges [1,4]. In Table II, we see that it becomes smaller as
the size grows, meaning that larger sizes describe a larger
portion of the saddle-point profile. In Figs. 5 and 6, we plot the
magnetization profiles obtained for different sizes, compared
with the prediction from (24). The magnetization m(x) for dif-
ferent sizes are plotted as functions of the respective rescaled
variable ξ = x/(1 + aL ), which highlights the collapse.
Simulations with +0 boundary conditions would look like
half of the profile shown in Fig. 6.

Despite qualitative agreement between the prediction and
the numerical data, the distance between raw data points and
the theoretical curve is larger than the estimated numerical
error (in Figs. 5 and 6 smaller than the point sizes). This is to
be expected: while (24) gives the correct mean-field behavior,
observables at the upper critical dimension also include some
logarithmic corrections. To account for them, we proceed as
in [43]. At the critical temperature, the main finite size correc-
tions to the bulk magnetization take the form

m = c
(ln L)1/4

L

√
b0 + b1

ln L
+ b2

(ln L)2
, (32)

where terms with higher powers of 1/ ln L have been ne-
glected. In our case, the magnetization is a function of x (or
rather of the rescaled coordinate ξ ), and therefore so are b0,

FIG. 5. Collapse of the critical magnetization profiles in the
four-dimensional Ising model for slabs of different sizes with ++
boundary conditions. Again, we plot only half the profile. Each set
of points has been rescaled with a multiplicative constant and its
extrapolation length, obtained from the fit 31.

FIG. 6. Collapse of the critical magnetization profiles in the four-
dimensional Ising model for +− boundary conditions.

b1 and b2. For every ξ we find the values of b0(ξ ), b1(ξ )
and b2(ξ ) which best fit m(ξ, L), seen as a function of L =
{16, 24, 32, 40, 48, 56}.1

In order to compare with the analytical prediction (8) for
++ BC, the constant c in (32) is chosen so that

√
b0(0) =

m(0). We then plot in Fig. 7 the ratio
√

b0(ξ )/m(ξ ), and we
see that it remains close to 1. As we approach the bound-
aries, the value of the first logarithmic correction b1 grows,
explaining the deviation of the ratio from 1. Larger values of
b1 simply imply that it is numerically harder to measure the
values predicted by (24) near the boundaries, as it requires
simulating even larger systems.

From ξ = −1 to ξ = −0.4 we decided not to plot the ratio√
b0(ξ )/m(ξ ) since, due to the values of the extrapolation

length, for these ξ ’s we do not have points for each of the
considered values of L. We remind that we are in the left
part of the slab geometry, ξ = 0 corresponding to the center
and ξ = −1 to the left edge (we discretize ξ in steps of
0.01). We notice that by fitting the points from the magne-
tization using (32) without the logarithmic corrections one

1Notice that in [43] the (bulk) four-dimensional Ising model at
criticality is studied for linear sizes L′ from 2 up to 48 (to match
our notations, the hypercube in [43] is L′ × L′ × L′ × L′, while our
slab is 4L × 4L × 4L × L).

FIG. 7. Ratio of the square root of the fit parameter b0 and the ex-
pected magnetization (+ + BC). The boundary x = −1 corresponds
to ξ = −1/(1 + aL ), and the first few points close to the boundary
must be discarded, so the plot starts from ξ = −0.39.
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obtains a clearly worse estimate of the χ2, confirming the
validity of the fitting function (32). Moreover, for any ξ we
find b0 > b1/ ln Lmax > b2/(ln Lmax )2, where Lmax = 56 is the
maximum value of L we were able to simulate. This shows
that each successive term is a smaller correction to the infinite-
size term, proportional to b0. The standard deviations σ in
Fig. 7 are obtained by fitting the magnetization points without
weighting them with their respective errors. The point for
ξ = 0 has ratio

√
b0(ξ = 0)/m(0) = 1 by construction, and

with standard deviation—determined as explained above—
σ = 0.04. The final result, depicted in Fig. 7, shows that√

b0(ξ ) is compatible with m(ξ ) within σ for −0.32 � ξ � 0
and within 2σ for −0.39 � ξ � −0.33. To obtain more data
in the range −1 < ξ � −0.4 one should have larger sizes.
For the +− data reported in Fig. 6 similar results have been
obtained.

The conclusion is that for the data we have, the analytical
predictions is in agreement with the Monte Carlo numerical
results within 2σ .

VII. CONCLUSIONS

In this paper we studied the magnetization profiles of mod-
els with marginal interaction for different (scale-invariant)
boundary conditions. Taking the slab as a reference domain,
we first studied the magnetization profiles at the upper crit-
ical dimensions d = 3, 4, 6. We put the zeros and poles of
the Weierstrass elliptic solutions (written as a function of a
complex variable) in connection with the different boundary
conditions. We found general formulas in terms of Weierstrass
elliptic functions, extending known results and finding origi-
nal ones for percolation.

We then studied the connection between the critical mag-
netization profiles in a general domain and the solutions of
the Yamabe problem in the same domain and with the same
boundary conditions.

The solutions of the Yamabe equation solve the so-called
Yamabe problem, which amounts to finding a metric having
constant curvature. This shows that the saddle-point equation
for the critical magnetization at the upper critical dimension
is equivalent to a purely geometric description, where the
euclidean metric is conformally altered to obtain a space with
uniform negative curvature. In the slab geometry, using the
Yamabe equations we derived analytical expressions for criti-
cal magnetization profile as inverse hypergeometric functions
valid for any dimension d � 2. The expressions are valid
for fixed boundary conditions, but with suitable shifts in the
argument of the slab coordinate variable we can obtain the
corresponding solutions for the other considered boundary
conditions. Lattice mean-field results for the slab geometry
in d = 4 have been also presented.

The magnetization profiles in the specific case of the four-
dimensional Ising model with fixed boundary conditions in
the slab are compared with Monte Carlo simulations, finding
good agreement.

The presented results explicitly confirm at the upper critical
dimension recent results presented in [28]. There, general
correlation functions of the magnetization field in a bounded
domain have been conjectured to be related to the solution of a

fractional Yamabe problem, which with vanishing anomalous
dimension becomes the integer problem here considered.

As next step at the upper critical dimension, a worthwhile
subject of investigation would be to study spin-spin corre-
lation functions in the four-dimensional case for bounded
domains, and check how or if they depend on the geometric
distance defined by the metric obtained from the solution of
the integer Yamabe problem in the considered domain. An-
other important question is how the present approach can treat
or be extended to other surface universality classes, such as the
special transitions [1]. We also observe that the present paper
confirms that the Yamabe approach correctly describes fixed
boundary conditions, while more work is needed to under-
stand whether it can be extended to other boundary conditions
such as open boundary conditions.

The well-known statistical models have a small anomalous
dimension in three dimensions Hence, one could be led to the
study of a fractional Yamabe problem in which the exponent
of the Laplacian is close to an integer value, to try and obtain
a solution as a perturbation around the solution of the integer
Yamabe equation. This would be interesting both to compare
with other perturbative approaches and for the challenging
task to develop a suitable perturbative schemes to solve the
fractional Yamabe equation relevant for critical models below
the upper critical dimension. Its effectiveness would then have
to be compared with standard perturbative techniques.

We also wonder if the analytic structure found can be
extended beyond the slab geometry at the upper critical di-
mension treated here. When the domain is not of the form
[0, L] × Rd−1, is it still possible, given a magnetization pro-
file, to obtain profiles for other boundary conditions by some
process of continuation?

If we instead consider the fractional Yamabe problem (in
the slab to begin with) can we use similar techniques to the
ones described here to provide a solution? The solution to
this problem was already found in [28] via generalization
of AdS/CFT-borne scattering techniques [46] providing a
beautiful mathematical framework. When searching for ex-
plicit solutions to the fractional Yamabe problem within this
framework, however, one is faced with great mathematical
challenges, as it requires to both solve the vacuum Einstein
equations for a metric in d + 1 dimensions, and then find the
solution of a nonlinear eigenvalue problem in the obtained
metric space. It would be very appealing to have simpler
schemes available.

More concretely, the next step will be to study a three
dimensional system, a case which is also numerically more
accessible, to test the predictions of the fractional Yamabe
equation against data below dc. It is then worth asking whether
the profiles obtained from γ (x) and the unknown function
that describes two-point correlations can be approximately
recovered in a perturbative manner, as an expansion around
the four-dimensional solutions.
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APPENDIX A: REMINDERS ABOUT WEIERSTRASS
ELLIPTIC FUNCTIONS

Elliptic functions appear in numerous areas of physics.
They get their name from their property of being the inverse of
elliptic integrals. A complex function of one complex variable
f (z) is called elliptic if it is meromorphic (its only singulari-
ties are poles) and is doubly periodic,

f (z + 2ω1) = f (z), f (z + 2ω2) = f (z), (A1)

with ω1/ω2 /∈ R. ω1 and ω2 are called half-periods. The dou-
ble periodicity induces a tessellation of the complex plane in
parallelograms. It is therefore sufficient to know the values of
the function within one of these parallelograms, say, the one
with vertices 0, 2ω1, 2ω2, and 2ω1 + 2ω2.

The Weierstrass ℘ function is probably the most intuitive
elliptic function to construct, starting from the definition and
the requirement of having only a double pole within each cell:

℘(z) = 1

z2
+

∞∑
m, n = −∞

(m, n) �= (0, 0)

(
1

(z + 2 m ω1 + 2 n ω2)2

− 1

(2 m ω1 + 2 n ω2)2

)
.

(A2)

Instead of the half periods, the Weierstrass function can be
identified with another pair of numbers, g2 and g3, called in-
variants. They are the lowest order coefficients in the Laurent
expansion of ℘around 0:

℘(z) = 1

z2
+ g2

20
z2 + g3

28
z4 + O(z6). (A3)

The invariants can be obtained from the half periods as

g2 = 60
∑

(m,n)�=(0,0)

1

(2mω1 + 2nω2)4
,

g3 = 140
∑

(m,n)�=(0,0)

1

(2mω1 + 2nω2)6
.

(A4)

The importance of the invariants comes from the fact that
they appear in the differential equation that the Weierstrass
function obeys:

℘′2(z) = 4℘3(z) − g2℘(z) − g3 = 0. (A5)

The particular cases encountered in the text are the
following:

(i) (g2, g3) = (1, 0), called lemniscatic elliptic func-
tion ℘l , which gives orthogonal semiperiods ω1 = ωl =
�( 1

4 )2/(4
√

π ), ω2 = iω1, that tessellate the complex plane
with squares.

(ii) (g2, g3) = (0, 1), the equiharmonic case℘e, with ω1 =
ωe = �( 1

3 )3/(4π ) and ω2 = 1
2 (

√
3i − 1)ω1, which produces a

tessellation of parallelograms each made of two equilateral
triangles.

APPENDIX B: INVERSE FUNCTIONS FOR THE
LEMNISCATIC AND EQUIHARMONIC WEIERSTRASS

ELLIPTIC FUNCTIONS

In the main text explicit solutions for the nonlinear ODE
m′′(x) ∝ m

d+2
d−2 have been derived for special values of d in

terms of the lemniscatic and equiharmonic Weierstrass elliptic
functions ℘l and ℘e. When solving the equation for generic d
a solution has been presented in implicit form. This allows us
to write the following inversion formulas for ℘l and ℘e:

℘l
−1(x) = 1√

x
2F1

(
1

4
,

1

2
;

5

4
;

1

4x2

)
, (B1)

℘e
−1(x) = 1√

x
2F1

(
1

6
,

1

2
;

7

6
;

1

4x3

)
. (B2)

These two results can be obtained by considering differ-
ent representation of the elliptic integrals

∫
dx 1√

4x3−1
and∫

dx 1√
4x3−x

.

APPENDIX C: OPEN BOUNDARY CONDITIONS WITH A
SCALING MAGNETIC FIELD

In the main text we did not consider the possibility of
leaving the spins on both boundaries to take any value, that
is open boundary conditions (OBCs, which we will label 00).
The reason is that in this case, the magnetization profile is
trivially m(x) = 0 throughout the slab since the system is at
the critical temperature (see, e.g., [47]). In order to obtain
nontrivial magnetization profiles for OBCs, one needs to in-
troduce a magnetic field. The action at the critical point thus
reads

S =
∫

dd x

[
1

2
φ(−�)φ + gcd (φ2)

d
d−2 − h(x)φ(x)

]
, (C1)

and the corresponding saddle-point equation is

m′′(x) = g
d (d − 2)

4
m(x)

d+2
d−2 − h(x). (C2)

The scaling dimension of the magnetic field is given by �h =
d − �φ . In the language of the Yamabe approach, γ (x) takes
the role of the point-dependent length scale of the system, so
a sensible choice would be to introduce a scaling magnetic
field, given by an appropriate power of the conformal factor:
m(x) ∝ γ (x)�φ−d . One can then use (17) to replace γ (x) with
the magnetization profile itself. Remembering that �φ = d−2

2 ,

FIG. 8. Magnetization profiles with OBC and a scaling magnetic
field in the three cases.
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FIG. 9. Pole and zero structure of the solutions of the saddle-point equations in d = 4, 3, 6 respectively, with the addition of the 00 profile.
The d = 3 and d = 6 structures are dual to each other: the 00 solution in d = 3 corresponds to the ++ solution in d = 6 and vice versa.

one finds

h(x) ∝ m
d+2
d−2 . (C3)

In particular, choosing

h(x) = g
d (d − 2)

2
m

d+2
d−2 (C4)

one finds that the solutions of (C2) are also solutions of the
saddle-point equation without external field, but with g in
(3) replaces by −g. This means that these solutions also take
the form of elliptic functions: in particular, they are obtained
joining two zeros in the complex plane, as shown in Fig. 9 (as
in the main text, g = 1).

The magnetization profiles with the external field given by
(C4) for d = 4, 3, 6, plotted in Fig. 8 are the following:

d = 4: m00(x) = ℘l (ωl + i x)1/2, x ∈ [−ωl , ωl ],

d = 3: m00(x) = ℘e(x)−1/2, x ∈ [0, 2ωe],

d = 6: m00(x) = ℘e(ωe + i x), x ∈
[
− ωe√

3
,

ωe√
3

]
.

Other magnetic fields could be chosen, however the corre-
sponding magnetization profile would in general no longer be
an elliptic function.

Let us focus on the d = 4 solution. Numerical solutions on
the Ising model with an external field confirmed the correct-
ness of the solution m00. The function m00 is nothing but the
reciprocal of the ++ solution (8), up to a constant: shifting
the argument of the function by half a period has the same
effect as taking its inverse, since both operations swap poles
and zeros. This is because the fundamental domain of ℘L is a
square, and the square lattice tessellation of the plane is self-
dual, as seen in the left panel of Fig. 9. This peculiarity of the
elliptic functions must reflect in a property of the saddle-point
equation, valid only for d = 4 and when the Laplacian reduces
to an ordinary second derivative: if φ(x)−1 is a solution, then
so is K φ(x), for an appropriate K. Starting from

d2

dx2
φ(x)−1 = 2φ(x)−3, (C5)

we get

φφ′′ − 2(φ′)2 + 2 = 0 (C6)

(where φ′′ = d2

dx2 φ). Taking another derivative gives

φ′′′

φ′′ = 3
φ′

φ
, (C7)

and, after integrating and exponentiating, we are left with

φ′′(x) = K φ(x)3, (C8)

which is the saddle-point equation for
√

2
K φ(x).

Similarly, the d = 3 and d = 6 solutions are dual to each
other, as can be seen in Fig. 9: the poles in d = 6 correspond
to the zeros in d = 3 and vice versa, linking the ++ solution
in one case to the 00 solution in the other.

Finally, we can discuss how to relate the result (26) to
different boundary conditions in any dimension. We write
the magnetization via (17) as md (x) = γd (x)−�φ = γd (x)−

d−2
2

where γd (x) is given in (26). If in md (x) we set d = 3, 4,
and 6 and aptly rescale the x domain we recover the ++
boundary magnetization profiles given in Sec. II. This can be
achieved by using the identities reported in Appendix B. The
other profiles, referring to different boundary conditions, can
be found by taking x in (26) to be complex according to the
following scheme:

m++(x) = md (x), x ∈ (0, 2),

m+0(x) = md (x ei π/d )e−i π�φ/d , x ∈ (0, sec(π/d )],

m00(x) = md (1 + i x), x ∈ [− tan(π/d ), tan(π/d )],

where, again, m00(x) solves the saddle-point equation with
opposite sign. It is worth observing that the three BCs can
be found by evaluating γ on the right triangle T = (0, 1, 1 +
i tan(π/d )). Indeed, the function z(w) = w1/d

2F1( 1
d , 1

2 ; 1 +
1
d ; w) appearing in (26) is nothing but the Schwarz function
mapping the upper-half plane (w variable) onto T (z variable,
called x when real) keeping z = 0, 1 fixed. In the convenient
variable w we have that γ = w1/d and m = w−�φ/d = w− d−2

2d .
The above consideration should shed some light on the ap-
pearance of the Weierstrass functions ℘e, ℘l in Sec. II and on
the peculiarity of d = 3, 4, 6: for those values, copies of the
triangle T create a regular tessellation of the complex plane.
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