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Phase diagrams of the antiferromagnetic XY model on a triangular lattice
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We study the effects of higher-order antinematic interactions on the critical behavior of the antiferromagnetic
(AFM) XY model on a triangular lattice using Monte Carlo simulations. The parameter q of the generalized
antinematic (ANq) interaction is found to have a pronounced effect on the phase diagram topology by inducing
new quasi-long-range ordered phases due to competition with the conventional AFM interaction as well as
geometrical frustration. For values of q divisible by 3, the ground-state competition between the two interactions
results in a frustrated canted AFM phase appearing at low temperatures wedged between the AFM and ANq
phases. For q nondivisible by 3, with the increase of q one can observe the evolution of the phase diagram
topology featuring two (q = 2), three (q = 4, 5), and four (q � 7) ordered phases. In addition to the two phases
previously found for q = 2, the first new phase with solely AFM ordering arises for q = 4 in the limit of
strong AFM coupling and higher temperatures by separating from the phase with the coexisting AFM and ANq
orderings. For q = 7, another phase with AFM ordering but multimodal spin distribution in each sublattice
appears at intermediate temperatures. All these algebraic phases also display standard and generalized chiral
long-range orderings, which decouple at higher temperatures in the regime of dominant ANq (AFM) interaction
for q � 4 (q � 7) preserving only the generalized (standard) chiral ordering.
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I. INTRODUCTION

Although the two-dimensional XY model with short-range
interactions and continuous symmetry lacks any form of
true long-range ordering (LRO) [1], it still can undergo the
Berezinskii-Kosterlitz-Thouless (BKT) phase transition [2,3].
The low-temperature phase remains critical for all tem-
peratures below the transition point at TBKT, displaying
quasi-long-range ordering (QLRO) with an algebraically de-
caying spin-spin correlation function due to bound pairs of
vortices and antivortices. At TBKT, the infinite-order phase
transition leads to unbinding of the vortex-antivortex pairs and
a completely disordered phase with an exponentially decaying
correlation function. The behavior of the standard XY model
is well understood; nevertheless, its many generalizations re-
main an active subject of study due to rich and interesting
critical behavior [4–23], in connection with experimental re-
alizations [11,24–27] and the potential for interdisciplinary
applications [28–32].

Most of the above generalizations of the standard XY
model are based on inclusion of higher-order interactions.
Namely, besides the usual magnetic interaction with spin
angle periodicity of 2π , there is an additional (generalized)
nematic interaction characterized by a positive integer q such
that its periodicity is 2π/q. Such a term produces vortices
with noninteger 1/q winding number, which compete with
the conventional vortices and antivortices generated by the
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magnetic interaction. The Hamiltonian of such a generalized
model can be expressed in the form

H = −J1

∑
〈i, j〉

cos(φi, j ) − Jq

∑
〈i, j〉

cos(qφi, j ), (1)

where the summations run over the nearest-neighbor spins,
φi, j = φi − φ j is the angle between two neighboring spins at
sites i and j, and J1 and Jq are the exchange interaction param-
eters. The first term J1 is a usual magnetic, i.e., FM (J1 > 0) or
AFM (J1 < 0) coupling, while the second term Jq represents a
generalized nematic, Nq (Jq > 0) or ANq (Jq < 0) interaction.

When q = 2 and both J1 and J2 are positive, the inclusion
of the nematic N2 term leads to the appearance of the FM
and the nematic N2 QLRO phases, with the phase transi-
tion belonging to the Ising universality class [5–8,12,13,33].
Additionally, theoretical investigations of the model with the
competing FM (J1 > 0) and AN2 (J2 < 0) interactions re-
vealed the existence of a new canted ferromagnetic phase
at very low temperatures wedged between the FM and AN2
phases [16,22]. A recent series of papers [17–19] studied the
effect of the gradual increase of the parameter q > 2 on the
critical properties of the model with both J1 and Jq posi-
tive. It was found that the higher-order interactions lead to a
qualitatively different phase diagrams from the one observed
for q = 2. In particular, for q � 4 they revealed up to two
additional ordered phases originating from the competition
between the FM and Nq couplings, with the phase transitions
belonging to a variety of universality classes.
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The above studies assumed a bipartite (square) lattice, on
which the character of the magnetic interaction (the sign of
J1) is not expected to change the phase diagram. However,
in the model on a nonbipartite (e.g., triangular) lattice, the
AFM (J1 < 0) interaction leads to geometrical frustration,
which can drastically change the critical behavior. Such a
model has been intensively studied [34–39] due to the pos-
sibility of spin-chirality decoupling, where the transitions to
the magnetic QLRO and the vector chiral LRO phases occur
at different temperatures. The inclusion of the AN2 (J2 < 0)
term leads to the emergence of the AFM and AN2 phases, with
the transition belonging to the Ising universality class [14].
Thus, the phase diagram topology as well as the character of
the phase transition between the ordered phases are similar to
those of the FM-N2 case. Nevertheless, the AFM-AN2 model
additionally displays a chiral LRO that slightly extends above
the BKT line.

In our recent study of the geometrically frustrated AFM-
ANq model on a triangular lattice [23], we demonstrated
that the nematic parameter increased to q = 3 induces a new
peculiar canted antiferromagnetic (CAFM) phase. It appears
at low temperatures, situated between the AFM and AN3
phases, with the AFM-CAFM and AN3-CAFM phase tran-
sitions belonging to the weak Ising and weak three-state Potts
universality classes, respectively. Thus, compared to the non-
frustrated FM-Nq model in which the increasing q > 2 first
changed the phase diagram topology for q = 4 [19], in the
frustrated AFM-ANq case such a change occurred already for
q = 3. Apparently, the effect of the increasing q in the two
cases is different, and thus we find it interesting to study the
evolution of the phase diagram topology with the increasing
order of the generalized nematic coupling also in the latter
case. The groundwork for such a study has already been laid in
our previous work [31], which focused on the ground states of
this model for up to q = 8. In the present paper, we extend the
investigation to finite temperatures with the goal to establish
phase diagrams of the AFM-ANq models on the triangular
lattice for 4 � q � 15.

II. SIMULATIONS

We perform Monte Carlo (MC) simulations of the
model (1) using the Metropolis algorithm. We consider the
generalized nematic parameter q = 4, 5, . . . , 10 (with checks
up to q = 15) and the interaction parameters J1 and Jq in
the form J1 = −� and Jq = � − 1, with � ∈ [0, 1] to cover
the interactions between the pure ANq (� = 0) and the pure
AFM (� = 1) limits. Periodic boundary conditions were used
to simulate systems with a linear size L. Due to the highly
efficient parallelized implementation on graphical processing
units (GPUs), we were able to run extensive simulations of rel-
atively large system sizes. For calculation of thermal averages
of various quantities of interest, we typically use L = 384, and
for studying spin distributions we consider much larger sizes
up to L = 1536. We note that the selected values of L should
be multiples of 3 to reflect the fact that the system consists of
three interpenetrating sublattices and that the periodic bound-
ary conditions are imposed. To obtain the thermal averages, at
each temperature step 5 × 106 MC sweeps were performed,
with 20% discarded for equilibration. The simulation at the

next temperature starts from the final configuration obtained
at the previous temperature, which helps to keep the system
near equilibrium throughout the whole simulation.

To detect phase transitions between various phases and
to determine the respective phase diagrams, we calculate the
following quantities: the internal energy per spin,

e = 〈H〉
L2

, (2)

the specific heat per spin,

c = 〈H2〉 − 〈H〉2

T 2L2
, (3)

the magnetic (m1) and generalized nematic (m2, m3, . . . , mq )
QLRO parameters,

mk = 〈Mk〉
L2

= 1

L2

〈√√√√3
3∑

α=1

M2
kα

〉
, k = 1, 2, . . . , q;

α = 1, 2, 3, (4)

where Mkα is the αth sublattice QLRO parameter vector
given by

Mkα =
(∑

i∈α

cos(kφαi ),
∑
i∈α

sin(kφαi )

)
, (5)

and finally the standard (κ1) and generalized (κ2, κ3, . . . , κq)
staggered chiralities,

κk = 〈Kk〉
L2

= 1

2L2

˝∣∣∣∣∣∣
∑

p+∈�
κkp+ −

∑
p−∈�

κkp−

∣∣∣∣∣∣
˛
,

k = 1, 2, . . . , q, (6)

where κkp+ and κkp− are the local generalized chiralities for
each elementary plaquette of upward and downward triangles,
respectively, defined by

κkp = 2{sin[k(φ2 − φ1)] + sin[k(φ3 − φ2)]

+ sin[k(φ1 − φ3)]}/3
√

3. (7)

The susceptibilities of the respective order parameters can be
defined as

χo = 1

T L2
(〈O2〉 − 〈O〉2),

O = M1, M2, . . . , Mq; K1, K2, . . . , Kq. (8)

The above quantities are useful in identifying the character
of the QLRO (from the order parameters) as well as a rough
determination of the phase boundaries (from the response
functions). We note that the focus of the present study is the
evolution of the phase diagram topology in a wide parameter
space rather than precise determination of the phase bound-
aries. The latter would involve a finite-size scaling (FSS)
analysis, which would require tremendous computational de-
mands even on GPU, and thus we leave such analysis for
future considerations.

Nevertheless, in the cases when the above quantities do not
provide conclusive evidence, we further perform a correlation
analysis to more reliably determine different phases. Such
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FIG. 1. Temperature dependencies of the specific heat c for q = 4 (left column) (a,d), q = 7 (middle column) (b,e), and q = 10 (right
column) (c,f), corresponding to � = 0.4 (upper row) (a,b,c) and � = 0.8 (lower row) (d,e,f). In (c) and (e) the effect of � is demonstrated by
adding curves for two more values. The second inset in (c) demonstrates finite-size effects at the low-temperature round peak, and the insets
in (d) demonstrate finite-size effects at the low-temperature shoulder and high-temperature peak.

analysis is based on FSS of the QLRO parameters, obeying
the scaling law

mk (L) ∝ L−ηmk (T ), (9)

where ηmk (T ) is the temperature-dependent critical exponent
of the correlation function Gk = 〈cos(kφi, j )〉, k = 1, . . . , q.
The transition temperature from the phase characterized by
the parameter mk can be determined as the temperature at
which the critical exponent crosses to the value ηmk = 1,
characteristic for an exponential decay of the correlation
function Gk .

III. RESULTS

The ground states of the present model were investigated
in Ref. [31]. It was concluded that for q nondivisible by 3, the
generalized nematic term prefers relative phase angles, which
include �φ = ±2π/3, characteristic for the chiral AFM order
observed in the standard XY model without higher-order cou-
plings. Thus, there is no competition between the magnetic
and generalized nematic interactions, and the system shows
the chiral AFM ordering. However, for q divisible by 3, such
sublattice-uniform ordering disappears. Instead, the neighbor-
ing spins belonging to different sublattices align, forming
phase angles with the values dependent on the ratio of the
exchange interactions J1 and Jq in such a way that on each
triangular plaquette two neighbors are oriented almost parallel

with respect to each other and almost antiparallel with respect
to the third one. Such a microscopic arrangement results in a
macroscopic degeneracy, loss of the sublattice uniformity, and
the canted AFM (CAFM) phase.

Our recent study of the model with q = 3 [23] showed that
the CAFM phase extends to finite temperatures and crosses
to the AFM phase for dominant J1 or to the AN3 phase for
dominant J3 or straight to the paramagnetic phase for J1 and
J3 of comparable strengths. Thus, the increase of q from 2 to 3
resulted in the change of the phase diagram topology from the
one with two phases (AFM and AN2) to that featuring three
phases (AFM, AN3, and CAFM). The results of the present
study indicate that such a topology remains unchanged for
any q divisible by 3 up to at least q = 15. Therefore, in the
following, we will focus on the study of the phase diagram
topology evolution with the increasing q > 3 for the values
nondivisible by 3. As we will see, even though there is no
competition between the AFM and ANq interactions for such
cases in the ground state, there is still competition present at
finite temperatures, which will result in the formation of new
phases.

Potential phase transitions between different phases can be
detected from the peaks in the response functions. In Fig. 1
we present temperature dependencies of the specific heat for
q = 4, 7, and 10 in the regimes of the dominant ANq (for � =
0.4 in the upper panels) and AFM (for � = 0.8 in the lower
panels) interactions. Focusing first on the case of � = 0.4, for
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FIG. 2. Distributions of spin orientations in the observed phases for q = 10 at the fixed T = 0.09 and varying values of �, obtained from
a single configuration snapshot with L = 1536. Different colors (shades) represent different sublattices.

q = 4 [Fig. 1(a)] one can observe two distinct sharp peaks,
pointing to the presence of two phase transitions. However,
for q = 7 [Fig. 1(b)] an additional rounder peak appears in
the low-temperature region, and with the increasing q it shifts
to lower temperatures [see Fig. 1(c) for q = 10]. The third
peak may suggest the possibility of another phase transition
and thus the existence of four different phases. Nevertheless,
its insensitivity to the system size increase [see the top right
inset of Fig. 1(c)] may correspond to a crossover rather than a
genuine phase transition.

On the other hand, the picture is rather different in the
regime when the AFM coupling prevails. The lower row in
Fig. 1 shows that for q = 4 the specific heat displays only
one sharp peak at higher temperatures and one relatively
broad shoulder at lower temperatures [Fig. 1(d)]. The behavior
of the respective anomalies with the increasing system size,
shown in the insets, indicates their different characters. While
with the increasing size the high-temperature peak becomes
sharper, which is a typical behavior at a phase transition,
the low-temperature shoulder is practically insensitive to the
change of the system size. Nevertheless, with the increasing
q, the broad shoulder evolves first to a round but distinct peak
[see Fig. 1(e) for q = 7] and then to a sharp peak [see Fig. 1(f)
for q = 10]. The low-temperature round peaks do not get
sharper only with the increasing q but also with the decreasing
�, as demonstrated in the top left inset of Fig. 1(c) and in
Fig. 1(e). The question whether the round peaks reflect some
kind of phase transition will be addressed below. Neverthe-
less, if all the anomalies observed in the specific-heat behavior
signified different phase transitions, then we would witness
the change of the phase diagram topology with the increasing
q from the symmetric one with two phase transitions on each
side of the interval � to the asymmetric one with three phase
transitions for smaller and two phase transitions for larger �.
Below we will try to shed more light on the critical behavior

associated with the presented anomalies in the specific heat
and clarify the nature of the corresponding phases.

To understand the character of the spin ordering in
the possible different phases, separated by the specific-heat
anomalies, let us study spin distributions of microstates
in the respective regions of the parameter space. Let us
consider the case of q = 10, for which the observed anoma-
lies appear the most pronounced. To capture the lowest-
temperature phase in the three-phase-transitions scenario at
smaller � and study its disappearance/transition into its coun-
terpart in the two-phase-transitions structure at larger �, we
fix the temperature to T = 0.09 and vary the value of �.
In the lowest panel of Fig. 2 we present the distributions of
spin orientations (angles) for � = 0.1, i.e., in the limit of the
strong ANq interaction. One can easily confirm that spins in
each sublattice show q = 10 possible orientations distributed
with equal weights and the spin angle periodicity of 2π/10,
as one would expect in the ANq phase. The appropriate order
parameter (for finite systems) in this phase is thus m10. With
the increasing influence of the AFM coupling, the distribution
undergoes a qualitative change, as demonstrated for � = 0.4
in the second panel from the bottom. Spins in each sublat-
tice display only five preferential orientations with different
weights, which are confined to the same half-plane with the
corresponding modes in different sublattices separated by the
angle 2π/3. Consequently, in each sublattice there is a net
magnetization and the resulting AFM ordering between sub-
lattices.

With further increase of the AFM coupling, the possible
spin orientations become more constrained with a single pref-
erential direction in each sublattice, as shown for � = 0.7
in the second panel from the top. It is important to note
that even though the resulting ordering is antiferromagnetic,
it differs from the standard AFM phase in the absence of
the higher-order coupling. In particular, due to the persisting
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FIG. 3. Spin angle distributions in one of the three sublattices, corresponding to q = 10, T = 0.09 for (a) � = 0.4 (left panel) and (b) � =
0.7 (right panel).

effect of the ANq coupling, the widths of the sublattice spin
distributions are constrained by the value 2π/q. Considering
the above arguments, the appropriate order parameter for the
transition between these two peculiar AFM phases is m5.
Finally, in the strong limit of the AFM coupling, such as that
for � = 0.9 presented in the top panel of Fig. 2, the ordering
becomes usual AFM, for which the spin distribution widths
are only controlled by the temperature, and the appropriate
order parameter is m1. One can notice that in this phase
the distributions become much wider than for � = 0.7, even
though the temperature remains the same.

The differences in the spin orderings at � = 0.4 and 0.7,
which are both different from the usual AFM ordering at
� = 0, are illustrated in the snapshots presented in Fig. 3.
For clarity, spin configurations (angles) are shown only in
one of the three sublattices [the snapshots on the remaining
sublattices look similar with shifted mean values, as shown
by different colors (shades) in Fig. 2]. Notice the different
scales in the two plots. While the spin angles for � = 0.4
are distributed around five modes centered at φ = 4π/3 with
the frequencies corresponding to the green histogram in the
second panel from the bottom of Fig. 2, those for � = 0.7
have a unimodal distribution in a much narrower interval, in
accordance with the green histogram in the second panel from
the top.

In Fig. 4 we present the distributions of relative spin an-
gles, �φ = φi − φ j , between neighboring spins for the same
parameters as in Fig. 2, which provide more information about
local spin arrangements. In particular, one can clearly observe
that the influence of even a relatively small ANq coupling (for
� = 0.9 in the upper panel) or AFM coupling (for � = 0.1
in the bottom panel) can distort the symmetric distributions
around �φ = ±2π/3 in the former case and reweigh and
shift the equally weighted distributions around �φ = ±kπ/q,
k = 1, . . . , q in the latter case.

Having characterized various phases and defined the ap-
propriate parameters for magnetic and nematic ordering,
let us examine their behavior, as well as the behavior of
the corresponding response functions, in order to estab-
lish the respective phase boundaries. In Fig. 5 we present
temperature variations of the relevant generalized magnetic
order parameters, and in Fig. 6 we present the corre-
sponding susceptibilities, for q = 4, 7 and 10, again in the

regimes of the superior ANq (� = 0.4) and AFM (� = 0.8)
interactions.

For � = 0.4 (upper rows in Figs. 5 and 6), the respective
order parameters, as well as the corresponding susceptibili-
ties, indeed indicate two (q = 4) and three (q = 7 and 10)
phase transitions, signaled by the anomalies in the specific
heat above. From the order parameters it follows that for q =
4 the system first displays the phase transition from the para-
magnetic (P) to the AN4 phase, followed by another transition
to the AFM phase at lower temperatures. The low-temperature
phase thus features both the AN4 and AFM orderings. To
distinguish it from the standard AFM0 phase with no AN4
ordering, observed in the limit of large �, we will refer to it
as the AFM1 phase. For q = 7 and 10, another phase with a
net AFM order emerges in between the AFM1, AFM0, and
ANq phases. This phase corresponds to the spin arrangement
described in the third panel from the top in Figs. 2 and 4 and
will be referred to as AFM2.

For � = 0.8 (lower rows in Figs. 5 and 6), as expected,
the order of the magnetic and nematic transitions is reversed:
The former precedes the latter as the temperature is lowered.
Again, in line with the prediction based on the specific-heat
behavior, only two possible phase transitions can be observed
for all values of q. Furthermore, the broad shoulder appearing
in the specific heat for q = 4 translates in a very gentle decay
of the order parameter m4 and a broad peak of the associated
susceptibility χm4 .

Such a behavior is not typical for a phase transition,
and therefore to better explore it we further perform a FSS
analysis, based on the scaling relation (9), and study the
associated correlation functions. To distinguish the AFM0

phase with solely magnetic algebraic correlations from the
AFM1 phase with both magnetic and generalized nematic
correlations, we study decays of the pair-correlation functions
G1 and Gq. In Fig. 7(a) we show for q = 4 the temperature
dependencies of the corresponding critical exponents ηm1

(full symbols) and ηm4 (empty symbols), respectively, for
different values of �. One can observe a sharp increase of
ηm1 at the AFM0-P phase transition but only a rather gentle
increase of ηm4 spread over a wide temperature interval.
Nevertheless, at least for larger values of �, it is apparent that
the value of 1, corresponding to the exponential decay of the
correlation function in the paramagnetic phase, is reached by
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FIG. 4. Distributions of relative angles between neighboring spins in the observed phases for q = 10 at the fixed T = 0.09 and varying
values of �, obtained from a single configuration snapshot with L = 1536.

ηm4 at temperatures lower than those corresponding to ηm1 .
This finding tells us that the generalized nematic (AN4)
correlations disappear before the magnetic (AFM)

ones, and thus it suggests the existence of separate
AFM1 and AFM0 phases. However, the behavior of
ηm4 is not typical for a standard phase transition, and

FIG. 5. Temperature dependencies of the standard and generalized magnetic order parameters for q = 4 (left column), q = 7 (middle
column), and q = 10 (right column), corresponding to � = 0.4 (upper row) and � = 0.8 (lower row).
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FIG. 6. Temperature dependencies of the standard and generalized magnetic susceptibilities for q = 4 (left column), q = 7 (middle
column), and q = 10 (right column), corresponding to � = 0.4 (upper row) and � = 0.8 (lower row).

thus instead of a phase transition it might signal a
crossover, which is not accompanied with a singular
behavior.

In Fig. 7(b) we demonstrate the separation of the AFM0

and AFM1 phases with the increasing q � 2 (nondivisible by
3) for a fixed � = 0.8. For q = 2 the transition to the para-
magnetic phase clearly occurs at the same temperature, and

thus the two phases do not separate. The separation becomes
apparent for q = 4, but the exponent ηm4 crosses to the value
of 1 gradually over an extended interval of temperatures. With
further increase of q the separation distance increases and the
slope of ηmq becomes sharper. The shape of ηm7 showing a
relatively sharp increase is already much closer to the stan-
dard phase transition behavior. Nevertheless, the specific-heat

FIG. 7. Temperature dependencies of the critical exponents ηm1 (full symbols) and ηmq (empty symbols), respectively, for (a) q = 4 and
different values of �, and (b) � = 0.8 and different values of q.
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FIG. 8. Temperature dependencies of the standard and generalized chiral order parameters for q = 4 (left column), q = 7 (middle column),
and q = 10 (right column), corresponding to � = 0.4 (upper row) and � = 0.8 (lower row).

curves presented in Fig. 1 would suggest instead that such a
behavior, which would be reflected in a truly sharp peak, only
occurs at still higher q. Our analysis confirms that for � = 0.8
it happens starting from q = 8 (not shown). Nevertheless, as
already indicated by the evolving shape of the specific-heat
peaks, the behavior of ηmq also depends on the value of �.
Consequently, for sufficiently low � ≈ 0.6 it is possible to
obtain the standard critical behavior at the AFM0-AFM1 phase
transition with the sharp specific-heat peak and the sharp
increase of ηmq for the nematic parameter as low as q = 5.
For q = 4 we were able to confirm by the correlation analysis
the possibility of AFM0 and AFM1 phase separation, but it
does not seem to occur via a standard phase transition for any
value of �.

It is also interesting to notice that in the low-temperature
AFM1 phase, the magnetic correlation function decays ex-
tremely slowly. The associated critical exponent ηm1 (of the
order of 10−4) is about two orders of magnitude smaller than
within the AFM0 phase. This is also reflected in an even more
dramatic drop of the magnetic susceptibility χm1 at the AFM1-
AFM0 phase transition, as shown in Fig. 6. This behavior
can be ascribed to the suppressed magnetic fluctuations in the
AFM1 phase, as demonstrated in Fig. 2.

Let us recall that in addition to the magnetic and nematic
orderings, in the present frustrated model there are also (gen-
eralized) chirality orderings in the system. In Figs. 8 and 9
we present temperature dependencies of the standard and gen-
eralized staggered chiralities, κ1 and κq, and the associated
generalized chiral susceptibilities, χκ1 and χκq . We note that

in the previously studied q = 3 case, both of the chiral order
parameters vanished only close to the transition to the para-
magnetic phase. For q > 3, their behavior changes depending
on q. In particular, for 0 < � < 0.5, κ1 vanishes together with
the magnetic order parameter m1 at either the AFM1-ANq
or, for the values of q where the AFM2 phase exists, at the
AFM2-ANq phase transition. Thus, only κq remains finite in
the ANq phases. For 0.5 < � < 1.0, both chiralities remain
finite in the intermediate AFM0 phase for q up to 6. Note that
in Fig. 8(d) the parameter κ4 shows some decline below the
transition to the paramagnetic phase; nevertheless, its value
remains finite up to the temperature at which κ1 vanishes.
However, starting from q = 7, only κ1 remains finite while κq

copies the behavior of mq and vanishes at the AFM1-AFM0 or
AFM2-AFM0 transition. None of the chiral order parameters
vanish at the AFM1-AFM2 transition, and all of the phases
display at least one form of chiral ordering for all values of q.

The results are summarized in the phase diagrams shown
in Fig. 10, which were constructed using the order pa-
rameter susceptibility peaks (squares) as well as the peaks
in the specific-heat measurements (diamonds). The phase
boundaries roughly estimated by these two methods show a
rather good correspondence, except for the AFM1-AFM0 and
AFM1-AFM2 phase boundaries, for which the specific-heat
peaks predict, respectively, higher and lower transition tem-
peratures than the corresponding susceptibilities peaks. We
note that for q = 4 and 5 with larger �, the specific-heat
curves do not provide a reliable estimate of the location of
the AFM1-AFM0 phase boundary, as instead of sharp peaks
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FIG. 9. Temperature dependencies of the standard and generalized chiral susceptibilities for q = 4 (left column), q = 7 (middle column),
and q = 10 (right column), corresponding to � = 0.4 (upper row) and � = 0.8 (lower row).

they only show either broad shoulders (q = 4) or round and
broad maxima (q = 5). Nevertheless, increasing the nematic
parameter q from 4 to 5 does not seem to alter the system’s
critical behavior, while q = 6 converts the low-temperature
AFM1 phase to the CAFM phase. The topology of the phase
diagram for q = 6, as shown in Fig. 10(b), is similar to the
q = 3 case from our previous work [23]. In fact, all the values
of q divisible by 3 (up to q = 15 studied in this work) show
the same magnetic phase diagram topology and no apparent
deviations from the q = 3 case.

For q = 7 there is another change in the phase diagram
topology. Namely, the AFM1-ANq phase transition line bi-
furcates, creating an additional AFM2 phase. The region
occupied by this new phase increases with q at the cost of
the AFM1 phase. The AFM1-AFM2 transition temperature
appears to decrease with q for all values of � as q−2, as
shown in Fig. 11. There are no further changes in the phase
diagram topology for q up to 14, the largest studied value of q
nondivisible by 3.

IV. SUMMARY AND DISCUSSION

In this study, we have extended our previous work [23]
on the critical behavior of the generalized XY model on a
triangular lattice with AFM and generalized ANq interactions
for q = 3 by considering higher values of the generalized
nematic parameter up to q = 15. As previously shown [31],
the inclusion of the ANq interaction for q = 3 and 6 changes
the ground state from the usual AFM structure with 2π/3

relative phase angles to a peculiar canted (CAFM) state. This
change is caused by the ground-state competition between the
AFM and ANq interactions on the geometrically frustrated
lattice and leads to phase diagrams containing three QLRO
phases for all values of q divisible by 3 at least up to q = 15,
the highest value studied in this work. Besides the CAFM
phase with unsaturated values of the magnetic and generalized
nematic order parameters down to zero temperatures, there
are two intermediate-temperature phases with pure AFM and
ANq orderings.

In the case of q nondivisible by 3, the well-known phase
diagram topology for q = 2 changes first at q = 4 and then
again at q = 7. In particular, for q = 4 the AFM0 phase with
purely AFM correlations separates from the AFM1 phase
with the coexistent AFM and AN4 correlations. In the AFM1

phase, both the magnetic and generalized nematic order pa-
rameters reach saturated values at low temperatures, and the
snapshots show typical AFM structure. Increasing the nematic
parameter to q = 7 leads to the appearance of the AFM2 phase
in a part of the region previously occupied by the AFM1

phase. This new phase still shows both the AFM and ANq
orderings; however, the typical AFM spin structure disap-
pears. Instead, for each sublattice there are �q/2	 possible
spin orientations with different weights belonging to the same
half-plane. The order parameter for the AFM1-AFM2 phase
transition is m�q/2	.

All the observed phases display at least some kind of chiral
LRO. In the low-temperature AFM1 and AFM2 phases, as
well as the frustrated CAFM phase, both the standard κ1
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FIG. 10. Phase diagrams in the �-T parameter plane for representative values of q = 4 (a), 6 (b), 7 (c), and 10 (d). Diamond (square)
symbols represent phase boundaries located from the peaks of the specific heat (generalized magnetic order susceptibility). In (a) the AFM0-
AFM1 phase boundary could not be estimated based on the specific heat due to the absence of a distinct peak for q = 4. The captions display
the observed phases and the corresponding order parameters, with those taking finite values in the respective phases highlighted in bold.

and the generalized κq staggered chiralities remain finite. κ1

vanishes at the transition to the ANq phase from the low-
temperature phases for all q so that inside the ANq phases
only κq remains finite. On the other hand, at the transition to
the AFM0 phase from the low-temperature phases, κq remains
nonzero for q up to 6, while starting with q = 7 it drops
to zero together with the nematic mq order parameter at the
AFM1-AFM0 or AFM2-AFM0 transition, and thus inside the
AFM0 phase only κ1 remains finite.

It is interesting to compare the results for the present frus-
trated AFM-ANq models with those obtained for the related
nonfrustrated models with FM-Nq interactions on a square
lattice [17–19]. It is worth noting that for q = 2 both systems
display the same phase diagram topology (see, e.g., [13,14]).
However, for q > 2, in the former case the ground-state com-

petition between the AFM and ANq interactions caused by
the geometrical frustration arises for q divisible by 3, which
is absent in the latter models, and leads to the formation
of the CAFM phase. For q nondivisible by 3, there is no
ground-state competition between the two interactions, and
the results can be more easily compared. In the FM-Nq models
as q increases, a new QLRO phase appears for q = 4 at low
temperatures due to the competition between the FM and
N4 interactions, denoted in Ref. [19] as F1 phase. Similar
behavior was observed in the present AFM-AN4 model, ac-
companied by the emergence of the AFM1 phase, albeit there
might be a crossover rather than a standard phase transition to
this phase. Further increase of the nematic parameter q to 5
results in another change in the phase diagram topology of the
FM-N5 model, featuring the F2 phase, while the topology of
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FIG. 11. Fits of the AFM1-AFM2 transition temperature depen-
dence on the nematic parameter q, for various �.

the AFM-AN5 model seems to remain unchanged. Neverthe-
less, the AFM2 phase, which might be viewed as a counterpart
of the F2 phase, appears in the present models for q = 7.
Thus, except for the CAFM phase in the AFM-ANq models,
which has no analog in the nonfrustrated FM-Nq counter-
parts, the nature of the remaining phases in the two cases can
be related. Namely, the respective types of orderings in the
square-lattice FM-Nq models can be observed on each of the
three sublattices of the triangular-lattice AFM-ANq models.
We think that because of the increased “stiffness” of the spin
distributions in the latter models, due to the AFM constraints
between spins belonging to different sublattices, a larger value
of q is required for splitting the unimodal distribution in the
AFM1 phase to facilitate the emergence of the multimodal
distribution in the AFM2 phase. No further topology changes
are observed in either model with the increasing q; neverthe-

less, the area occupied by the F2 and AFM2 phases increases
due to the power-law decrease of the F2-F1 and AFM2-AFM1

transition temperatures as q−2.
Finally, the goal of the present study was the evolution of

the phase diagram topology of the model with the increasing
higher-order coupling, and we have not attempted to deter-
mine the character of all the identified phase transitions. As
we found out when performing such an analysis for the q = 3
case [23], this task for the present frustrated systems in such a
broad parameter space would require an enormous amount of
additional simulations, and thus we leave it for future consid-
erations. The main bottleneck is a huge autocorrelation time at
the transition boundaries (including the crossover behavior),
which hampers a reliable FSS analysis involving larger lattice
sizes. Alternatively, one can suppress the autocorrelation time
by opting for some more efficient nonlocal cluster algorithms.
However, their implementation on GPU in the case of AFM
systems composed of several sublattices is more complicated
than in the case of FM systems. Moreover, compared to the
local and thus naturally parallelized single spin-flip update
simulations, for which the GPU implementation can lead to
speedups of two to three orders of magnitude, the GPU im-
plementation of the cluster algorithms is considerably more
complicated even in the case of FM systems with much more
modest expected speedups, especially close to criticality (up
to about 30) [40]. Nevertheless, their implementation still
leads to significant performance gains, and the interesting
results obtained for their nonfrustrated counterparts [17–19],
featuring phase transitions belonging to a variety of universal-
ity classes, as well as our findings pointing to the possibility
of a crossover instead of a genuine phase transition along the
AFM0-AFM1 and AFM2-AFM1 boundaries, would suggest
that it is well worth trying.
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