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Periodic environmental changes are commonly observed in nature from the amount of daylight to seasonal
temperature. These changes usually affect individuals’ death or birth rates, dragging the system from its previous
stable states. When the fluctuation of abundance is amplified due to such changes, extinction of species may be
accelerated. To see this effect, we examine how the abundance and the mean time to extinction respond to the
periodic environmental changes. We consider a population wherein two species coexist together implemented
by three rules—birth, spontaneous death, and death from competitions. As the interspecific interaction strength
is varied, we observe the resonance behavior in both fluctuations of abundances and the mean time to extinction.
Our result suggests that neither too high nor too low competition rates make the system more susceptible to
environmental changes.
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I. INTRODUCTION

Temporal environmental variations commonly occur in
ecosystems through the variations of sunlight, atmospheric
circulation, precipitation, etc. Those variations are often pe-
riodic because the variations mainly come from the revolution
and rotation of the Earth, alternating the evolutionary favor-
able species in an ecological community. For example, two
barnacle species favors different temperature competing for
free space in intertidal zone, Semibalanus balanoides and
Chthamalus: the former outperforms in arctic-boreal region
while the latter favors warm water. As two species have dif-
ferent thermal tolerances, it has been reported that sea surface
temperature (SST) determines which species will successfully
take over free space; the rise of SST makes S. balanoides
exclude Chthamalus by occupying free space, and vice versa
with temperature drop [1–3]. Likewise, seasonal tempera-
ture changes induce the variation of interspecific interactions,
eventually leads to the fluctuation of abundances. Thus, envi-
ronmental variations may destabilize the coexistence and can
even cause the extinction of one species.

Effects of such alternating environmental changes on
ecological communities have recently received increasing
attention [4–7] while most existing studies focused on a
constant environment. For example, it has been shown that
switching environments can exponentially reduce the mean
time to extinction (MTE) of a single-species population
described by simple birth-death processes [4]. Besides ex-
tinction behavior, a stationary abundance distribution under
switching environments has been investigated for a single-
species population as well [5]. For two-species populations,
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analytical tools to study the extinction behavior have been
recently developed in Refs. [6,7]. Those studies have well
explained the role of environmental variations in shaping
ecological communities. However, studies on stochastic res-
onance (SR) behavior related to the environmental changes
are still lacking. Even though SR has been observed for a
single-type population with bistable states [8], yet the under-
lying mechanism has not been related to the environmental
variations.

Stochastic resonance is a phenomenon in that noise can
amplify a response signal when a system confronts an energy
barrier under a periodic external driving force [9]. It occurs
when the internal timescale of the system determined by noise
matches the timescale of an external signal [9–13]. When it
comes to a dynamical system, the internal timescale can be de-
termined by how fast the system relaxes toward a stable fixed
point, which is related to the curvature of the corresponding
Lyapunov function. Thus Lyapunov function of the abundance
dynamics is analogous to free-energy landscape determining
the intrinsic timescale of the system. Even though there are no
explicit noise and energy barriers in ecological systems de-
scribed by birth and death processes, from the above analogy
we can expect that SR behavior may occur in the dynamical
system with environmental variation which acts as an external
field.

Our main goal is to detect the SR in a two-species sys-
tem that has a single coexistence state, which maps into a
stochastic competitive Lotka-Volterra model [14–17]. Specifi-
cally, to explore how periodic environmental changes affect an
ecological system we design the three reaction rules for pop-
ulation dynamics: birth, spontaneous death, and competition
death. Brought from the evolutionary game analogy, we con-
nect payoffs and the competition death rates. We implement
the temporal environmental changes which are alternating
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favorable species by time-varying interspecific interactions.
To capture SR behavior, we estimate how the system responds
to the environmental changes within the linear response theory
scheme.

To examine the behavior of abundance fluctuations and
the MTE, we use both deterministic and stochastic ap-
proaches. The deterministic approach well describes the
average abundances, providing well-known equations called
the competitive Lotka-Volterra equations [18,19]. A master
equation is used to deal with probabilities for considering
extinction behavior caused by noise. We define two different
susceptibilities for each approach and check the SR behavior
via the existence of susceptibility peaks.

This paper is organized as follows. In Sec. II, we in-
troduce the birth and death rules which describe ecological
systems with temporal environmental changes. Assuming in-
finitesimally small environmental changes, we analytically
investigate how the abundance fluctuations and the MTE re-
spond in Secs. III and IV, respectively. Finally, we summarize
our findings and discuss them in Sec. V.

II. MODEL

We consider a two-species population using an individual-
based model. Each individual gives birth and spontaneously
dies with constant rates λb and λd , respectively. Competition
occurs between any two individuals, and one of them dies at
a certain rate. We assume that birth and spontaneous death
rates are the same for both species, while the competition
death rates depend on the species of competing individuals. In
summary, all three rules governing population dynamics are
represented by the following reaction scheme:

Xi → Xi + Xi at rate λb,

Xi → ∅ at rate λd ,

Xi + Xj → Xj at rate αi j, (1)

where Xi and Xj indicate individuals of species i and j, re-
spectively (i, j ∈ {1, 2}). When the net growth rate without
competition is positive (λb > λd ), the population is regulated
by the competition death, having a steady state.

Connecting the competition death rates to payoffs in evo-
lutionary game theory [16,20], we set the competition death
rate as a decreasing function of the payoff �i j (> 0):

αi j = (M�i j )
−1. (2)

The parameter M scales the strength of competition rates
determining the magnitude of the population size. The for-
mula indicates that an individual who has a huge payoff is
less likely to die.

For the sake of simplicity, we consider the symmetric pay-
off matrix

� =
[

a b
b a

]
. (3)

The diagonal elements of � represent the payoff of in-
traspecific interactions and off-diagonal elements represent
the payoff of interspecific interactions. There is no compe-
tition advantage bias for any species, but the competition
death rates depend on interaction types. To guarantee the

FIG. 1. Abundance dynamics and the fixed points of Eq. (5)
without an external field. Four symbols represent the fixed points:
the open circle (unstable), two gray-filled diamonds (saddle), and
the black-filled circle (stable). The color of the arrows indicate the
values of the Lyapunov function, φ(n, m) = μ

2M2 (n2 + m2) − λμ

M (n +
m) + nm

M2 (see Appendix A). The coexistence is the only stable fixed
point located at the minimum of the Lyapunov function. Parameters
M = 2000, λb = 0.6, λd = 0.1, and μ = 2 are used.

coexistence of two species, we focus on the case where the
interspecific interaction gives a higher payoff than the in-
traspecific interaction (a < b) [16].

Now we take the periodic environmental changes into ac-
count through modulating the interspecific payoff in time.
We also normalize the payoff matrix with a without loss of
generality. Thus, the time-varying payoff matrix becomes

�(t ) =
[

1 μ + ε sin ωt
μ − ε sin ωt 1

]
. (4)

Different species have opposite effects (competition advan-
tage or disadvantage) from the environment. The criterion for
the coexistence of two species is 1 < μ − ε. Hereafter, we
treat the environmental changes as an “external field,” and
ε and ω are the amplitude and the angular frequency of the
external field. Considering infinitesimally small external field
ε � 1, we investigate how the system responds to the external
field.

III. STOCHASTIC RESONANCE OF ABUNDANCE
FLUCTUATIONS

To investigate the abundance fluctuation induced by the
temporal environmental changes, we focus on the abundance
dynamics. For large population sizes (equivalently for large M
values), the abundances n and m of each species 1 and 2 can
be described by the deterministic equations,

ṅ = n

[
λ − 1

M

(
n + m

μ + h(t )

)]
,

ṁ = m

[
λ − 1

M

(
n

μ − h(t )
+ m

)]
, (5)

where h(t ) ≡ ε sin ωt and λ ≡ λb − λd . With the adiabatic
approximation (ω � 1), we can find four fixed points for
this system: (0,0), (λM, 0), (0, λM ), and (n∗(t ), m∗(t )). Under
the coexistence criterion, only the coexistence fixed point
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[n∗(t ), m∗(t )] is stable; (0,0) is unstable; (λM, 0) and (0, λM )
are saddle fixed points. The fixed points and the dynamic
flows of Eq. (5) without an external field (h = 0) are shown
in Fig. 1. The position of the stable fixed point (n∗(t ), m∗(t ))
varies in time with a nonzero field h(t ),

n∗(t ) = (μ − h)(μ + h − 1)

μ2 − h2 − 1
λM,

m∗(t ) = (μ + h)(μ − h − 1)

μ2 − h2 − 1
λM. (6)

This indicates that the abundances fluctuate due to the
external field h(t ).

Considering the normalized abundances x = n/M and y =
m/M, we get rid of M dependency in the dynamics [dividing
Eq. (5) by M and writing them in terms of x and y]. Thus the
normalized abundances follow the trajectory of [x∗(t ), y∗(t )].
When the environmental changes are sufficiently small (μ �
ε), the system will fluctuate around the zero-field (h = 0)
coexistence state (x∗, y∗) = ( μλ

μ+1 ,
μλ

μ+1 ). The dynamics of
normalized abundance fluctuation δ = (δx, δy) is then

δ̇x = λ2

(μ + 1)2
h − λμ

μ + 1
δx − λ

μ + 1
δy + O(δ2, hδ),

δ̇y = − λ2

(μ + 1)2
h − λ

μ + 1
δx − λμ

μ + 1
δy + O(δ2, hδ).

(7)

These fluctuations capture the averaged noise behavior,
allowing us to examine the stochastic effect (see Appendix
B).

Because of interspecific interactions, the dynamics of δx

and δy are coupled. By setting new variables, δ‖ = (δx −
δy)/

√
2 and δ⊥ = (δx + δy)/

√
2, we can decouple the dynam-

ics,

δ̇‖ =
√

2h‖ − μ − 1

μ + 1
λδ‖,

δ̇⊥ = −λδ⊥,

(8)

with the external field h‖ ≡ [λ2/(μ + 1)2]h for the δ‖
direction. For the zero-field case, both parallel (‖) and perpen-
dicular (⊥) fluctuations decay exponentially. The relaxation
times are τ−1

‖ = λ(μ − 1)/(μ + 1) and τ−1
⊥ = λ, respectively.

However, with the time-varying external field, only the
perpendicular direction has an exponentially decaying solu-
tion, not the parallel direction. Thus, after a transient time,
the system fluctuates only in the parallel direction, effectively
reducing its dynamics into the one-dimensional behavior.
Solving Eq. (8), we obtain the oscillating fluctuation in the
parallel direction,

δ‖(t ) = δ0 sin(ωt − σ ), (9)

with the phase lag σ = tan−1(ωτ‖) and the amplitude

δ0 =
√

2λ2

(μ + 1)2

ετ‖√
1 + ω2τ 2

‖
. (10)

The fluctuation amplitude δ0 is maximized at ω = 0, which
means that there is no classical resonance behavior for this
system; see Fig. 2(a). It is because the system is described by
the first-order ordinary differential equations (ODEs).

(a)

(b)

FIG. 2. The time-averaged susceptibility 〈χD〉 is plotted with
respect to (a) ω for μ = 1.75, 2.00, and 2.25; (b) μ for ω = 0.05,
0.1, and 0.2. The dashed lines and symbols in (a) and (b) indicate
theoretical and numerical results, respectively, exhibiting very good
agreement. The time average has been taken within the last 20 pe-
riods to avoid transient behavior within the whole 1000 periods of
simulation. For numerical calculations, we used the improved Euler
method with M = 2000, λb = 0.6, λd = 0.1, and ε = 0.01.

While the parameters λ and M merely scale the Lyapunov
function, the interspecific interaction μ changes the functional
shape (see Appendix A). Regarding the Lyapunov function as
a free-energy landscape, the role of interspecific interaction
payoff μ is analogous to “temperature” [12]. Thus, we expect
that SR occurs by varying μ: abundance fluctuation induced
by an external field is maximized at a certain μ value. There
still exists a debate on the use of the term stochastic resonance
for results obtained from a deterministic equation. However,
we keep the widely used terminology because the abundance
fluctuations we obtained capture the averaged noise dynamics.
To see the SR behavior, we use linear response theory,

N‖(t ) =
∫ ∞

−∞

δN‖(t )

δh(t ′)
h(t ′) dt ′. (11)

Inserting N‖(t ) = Mδ‖(t ) and taking Fourier transform, we
can measure how susceptible the system is to the external
driving field through the use of the so-called susceptibility
given by

χD(ω,μ) = Re

[
lim
δh→0

δN‖(ω)

δh(ω)

]
=

√
2λ2M

(μ + 1)2

τ‖
1 + ω2τ 2

‖
. (12)
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Since χD → 0 for both limiting cases of μ → 1 and μ →
∞, χD is maximized when ∂χD/∂μ = 0. From

∂χD

∂μ
= χD

[
1 + 2τ‖

(
1

λτ 2
‖ − τ‖

− ω2τ‖
1 + ω2τ 2

‖

)]
dτ‖
dμ

, (13)

the extremum condition yields a solution μ = μD which satis-
fies the equivalent condition ω = τ−1

‖
√

(λτ‖ + 1)/(λτ‖ − 3).

Thus, the resonance occurs at μD where ω = τ−1
‖ is

satisfied for λτ‖ � 1. This theoretical prediction agrees
well with numerical calculations of solving Eq. (5); see
Fig. 2(b).

IV. STOCHASTIC RESONANCE OF MEAN TIME TO
EXTINCTION

Since the abundance fluctuation is amplified at a certain μ

value, we expect that such SR behavior occurs for the mean
time to extinction (MTE) as well. Hence, in this section, we
examine how the environmental changes affect the extinction
time. Because the deterministic approach cannot capture the
extinction behavior, we deal with a stochastic approach. Start-
ing from a master equation, a set of time differential equations
of probabilities for each abundance state, we will calculate the
MTE by using Wentzel-Kramers-Brillouin (WKB) approxi-
mation [8,21–25].

Without the field, the probability distribution Pn,m(t ) for
the system to be in state (n, m) at time t follows the master
equation,

Ṗn,m = λb[(n−1)Pn−1,m+(m−1)Pn,m−1−(n+m)Pn,m]

+ λd [(n+1)Pn+1,m+(m+1)Pn,m+1−(n+m)Pn,m]

+ 1

M
[(n+1)nPn+1,m+(m+1)mPn,m+1

−n(n−1)Pn,m−m(m−1)Pn,m]

+ 1

μM
[(n+1)mPn+1,m+n(m+1)Pn,m+1−2nmPn,m].

(14)

Introducing a generating function

G(p1, p2, t ) =
∑
n,m

pn
1 pm

2 Pn,m(t ), (15)

we derive the effective Hamiltonian operator Ĥ0 from
Eq. (14) [8,22,23,25]. The imaginary-time Schödinger equa-
tion scheme is applied, ∂t G = −Ĥ0G. The separable so-
lution of momentum-space WKB ansatz is assumed as
G(p1, p2, t ) = e−t/τ e−S0(p1,p2 ), where 1/τ is an exponentially
small eigenvalue of Ĥ0.

Neglecting the second-order derivatives of S0(p1, p2) with
respect to p1 and p2 we obtain a classical Hamilton-Jacobi
equation, H0 ≈ 0, with a Hamiltonian H0,

H0 = λb[(1 − p1)p1q1 + (1 − p2)p2q2]

+ λd [(p1 − 1)q1 + (p2 − 1)q2]

+ 1

M

[
(p1 − 1)p1q2

1 + (p2 − 1)p2q2
2

]
+ 1

μM
[(p1 − 1)p2q1q2 + (p2 − 1)p1q1q2], (16)

with the conjugate coordinates defined as q1 ≡ −∂p1 S
and q2 ≡ −∂p2 S. The system is now mapped into four-
dimensional phase space with corresponding equations of
motion:

q̇1 = −∂p1 H0 = λb(2p1 − 1)q1 − λdq1 − 1

M
(2p1 − 1)q2

1 − 1

μM
(2p2 − 1)q1q2,

q̇2 = −∂p2 H0 = λb(2p2 − 1)q2 − λd q2 − 1

M
(2p2 − 1)q2

2 − 1

μM
(2p1 − 1)q1q2,

ṗ1 = ∂q1 H0 = λb(1 − p1)p1 + λd (p1 − 1) + 2

M
(p1 − 1)p1q1 + 1

μM
(2p1 p2 − p1 − p2)q2,

ṗ2 = ∂q2 H0 = λb(1 − p2)p2 + λd (p2 − 1) + 2

M
(p2 − 1)p2q2 + 1

μM
(2p1 p2 − p2 − p1)q1. (17)

Equation (5), which is obtained in the deterministic approach,
can be reproduced for p1 = p2 = 1. As the dimensionality of
the system increases from two to four, two additional saddle
points appear with zero energy (H0 = 0) related to the ex-
tinction states: η1 = (q1, q2, p1, p2) = (0, λM,

λ+μλd

μλb
, 1) and

η2 = (λM, 0, 1,
λ+μλd

μλb
) which are saddle points. As the coex-

istence fixed point ηc = ( μ

μ+1λM,
μ

μ+1λM, 1, 1) also becomes
a saddle, the transition from the coexistence state ηc to the
extinction state η1 or η2 is possible, which has been forbidden
in the deterministic approach.

The extinction mainly occurs along the zero-energy hete-
roclinic orbit from ηc to either η1 or η2 [26,27]. We estimate

the mean time τE to extinction using the action S0 along the
extinction trajectory, τE ∝ exp(S0) with

S0 =
∫ ∞

−∞
L0(pi, ṗi, t ) dt =

∫ ∞

−∞

(
−

∑
i

qi ṗi − H0

)
dt,

= −
∫ ∞

−∞
(q1 ṗ1 + q2 ṗ2) dt . (18)

Here, L0 is the momentum-space Lagrangian of Eq. (17).
Since both species behave in the same way, we can only focus
on the extinction from ηc to η1.

To find the extinction trajectory, we apply Chernykh-
Stepanov iteration method [28,29]. The momenta p1(t ) and
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(a)

(c)

(b)

FIG. 3. The most probable extinction trajectory T1(T2) from the
coexistence state ηc to the extinction state η1(η2) are projected on
(a) coordinate and (b) momentum spaces. In panel (c), T1 is drawn in
a phase space for each Species 1 (green) and Species 2 (pink). The
dashed line is for the deterministic case, which is relevant to the case
p1 = p2 = 1. Parameters M = 2000, λb = 0.6, λd = 0.1, and μ = 2
are used.

p2(t ) are obtained by solving Eq. (17) backward in time
starting from momenta at η1. With these momenta, we obtain
q1(t ) and q2(t ) by solving Eq. (17) forward in time with
initial coordinates at ηc. Again, the updated q1(t ) and q2(t ) are
used for updating p1(t ) and q2(t ). We take this back-and-forth
iteration process until the path converges to the heteroclinic
orbit. The optimal path obtained by this numerical iteration
is shown in Fig. 3. Calculating S0 along the trajectory, we
numerically get the mean time to extinction τE ∝ exp(S0).

Now we consider the infinitesimal environmental changes
h(t ). Because the magnitude of the external field is small
enough, the new Hamiltonian H ′ can be written as H ′ =
H0 + εHp with

Hp(t, t0) = sin ω(t − t0)

μ2M
(p2 − p1)q1q2. (19)

Assuming the perturbed Hamiltonian εHp is too small to affect
the extinction trajectory obtained from the zero-field Hamil-
tonian, we calculate the minimum additional action along the
same trajectory,

Sp = min
t0

{
−

∫ ∞

−∞
Hp(t, t0) dt

}
. (20)

By varying the phase difference t0 ∈ (0, 2π ], we numeri-
cally obtain the minimum additional action Sp with respect to
t0. The action S from ηc to η1 is now S = S0 + εSp, which
leads to the estimation of MTE by τE ∝ exp(S0 + εSp). Thus

FIG. 4. The logarithmic susceptibility χS is plotted with respect
to μ for ω = 0.05, 0.1, 0.2. In each ω value, we can observe a single
peak of χS indicating the SR behavior. Parameters M = 2000, λb =
0.6, and λd = 0.1 are used.

we can see how much the extinction time alters due to the
environmental change. For instance, along the path T1 shown
in Fig. 3, MTE ratio of unperturbed case to perturbed case is
given by exp(εSp) ≈ 0.5379 for ε = 0.01 and ω = 0.2, which
means that the external field makes MTE nearly cut in half.

To measure how much MTE is reduced due to the external
field, we apply the linear response theory to MTE. This gives
the measure so-called logarithmic susceptibility [4,30],

χS (ω,μ) =
∣∣∣∣ lim
δh→0

δ log τE

δh

∣∣∣∣ = |Sp|. (21)

The logarithmic susceptibility χS evaluated along the extinc-
tion trajectory is shown in Fig. 4. As we expected from
Sec. III, χS also has a peak at some finite value of μ at a given
ω. Hence, we conclude that the SR behavior still remains for
MTE.

V. SUMMARY AND DISCUSSION

We consider a coexisting two-species population under
periodic environmental changes. By adding time-varying
functions to the interspecific competition payoffs, we imple-
ment environmental changes and treat them as an external
field h. Mainly, we analyze how the abundance fluctuations
and the mean time to extinction respond against the external
field and observe the stochastic resonance (SR) behavior by
varying interspecific competition μ for both. The existence of
SR peak indicates that neither too low nor too high interspe-
cific competition payoffs μ make the system unstable to stay
in the coexistence state.

We used an analogy between a Lyapunov function of the
dynamical system and free-energy landscape, which leads
us to interpret the interspecific interaction payoff μ as
“temperature.” Taking this analogy into account, we define
susceptibilities using linear response theory: χD and χS for
the abundance fluctuations and the mean time to extinction,
respectively. Both measurements work well to detect SR peaks
showing good agreement of the analogy.

Interestingly, the peak positions of susceptibilities χD and
χS do not match. This discrepancy may come from the mea-
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surement scale of each susceptibility: The χD measures how
much the abundance fluctuates near the coexistence (a local
quantity) while χS is calculated in the region from the coex-
istence to extinction (a global quantity). The relation between
these local and global quantities is still a remaining question
for future work.
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APPENDIX A: LYAPUNOV FUNCTION

A Lyapunov function is a potential-like smooth scalar func-
tion that describes a dynamical system. More precisely, for a
dynamical system ṅ = f (n) with a set of fixed points {n∗

i }, a
Lyapunov function φ(n) is defined as follows: (i) φ̇(n) � 0
for all n and (ii) φ̇(n) = 0 if and only if n ∈ {n∗

i }. By defi-
nition, the certain path that minimizes the Lyapunov function
represents the flow of the original system. This scalar function
is much easier to handle than high-dimensional ODEs, yet
obtaining the functional form of Lyapunov function needs
“divine inspiration” [31].

Thankfully, one way for constructing the Lyapunov
function of two-species Lotka-Volterra equation has been de-
veloped in Ref. [32]. Following the procedure in Ref. [32], we
calculate the Lyapunov function of Eq. (5) with h = 0,

φ(n, m) = μ

2M2
(n2 + m2) − λμ

M
(n + m) + nm

M2
. (A1)

We can easily check that Eq. (A1) satisfies the two con-
ditions in the definition. First, the time derivative of the
Lyapunov function φ(n, m) is

φ̇(n, m) = ∂φ

∂n
ṅ + ∂φ

∂m
ṁ

= − n

μM

( μ

M
n − λμ + m

M

)2

− m

μM

( μ

M
m − λμ + n

M

)2
� 0 (A2)

for all n, m � 0. Second, the equality in Eq. (A2) holds only at
(n, m) = (0, 0), (λM, 0), (0, λM ), ( μ

μ+1λM,
μ

μ+1λM ) which
exactly correspond to the fixed points of Eq. (5) with h = 0.

Using normalized variables x = n/M and y = m/M, we
now show that the curvature of Lyapunov function in Eq. (A1)
near the coexistence state x∗ = ( μλ

μ+1 ,
μλ

μ+1 ) only depends on
the interspecific interaction μ. Since φx(x∗) = φy(x∗) = 0
from φ̇(x∗) = 0, where the subscripts denote the derivative
with respect to the given parameter, the quadratic approxima-

tion of Eq. (A1) at x∗ is

φ(x, y)|x∗ = 1

2

[
φxx(x∗)x2 + 2φxy(x∗)xy + φyy(x∗)y2

]
= 1

2

[
μx2 + 2xy + μy2

]
.

(A3)

To eliminate the cross term of x and y, we define new variables
x‖ = (x − y)/

√
2 and x⊥ = (x + y)/

√
2, and Eq. (A3) is now

φ(x, y)|x∗ = 1

2

[
(μ − 1)x2

‖ + (μ + 1)x2
⊥
]
, (A4)

with the corresponding principal curvatures k‖ = μ − 1 and
k⊥ = μ + 1 [33]. This suggests that the curvature depends
only on μ. Furthermore, the direct relations between principal
curvatures and relaxation times in Eq. (8) are τ−1

‖ = λ
μ+1 k‖

and τ−1
⊥ = λ

μ+1 k⊥.

APPENDIX B: ABUNDANCE FLUCTUATION AS THE
AVERAGED LINEAR NOISE

Our model based on individual level stochastic processes
represented in Eq. (1) which can be described by the master
Eq. (14). It is well known that the dynamics of the av-
eraged abundance 〈n〉 = ∑

n,m nPn,m and 〈m〉 = ∑
n,m mPn,m

calculated from the master Eq. (14) is equivalent to the deter-
ministic Eq. (5). The similar relation can be derived for the
averaged abundance fluctuation 〈δx〉 and 〈δy〉 calculated from
the master equation and the fluctuations in Eq. (7). Using the
system size expansion technique developed by van Kampen
[34], we show that the averaged abundance fluctuation around
the stationary state with zero-field behaves in the same way
with the fluctuations described in the deterministic Eq. (5).

In this approach, we rewrite the master equation using the
raising and lowering operators E±1

n : n �−→ n ± 1 and E±1
m :

m �−→ m ± 1,

d

dt
Pn,m(t ) = λb

[(
E−1

n − 1
)
n + (

E−1
m − 1

)
m

]
Pn,m(t )

+ λd
[(
E1

n − 1
)
n + (

E1
m − 1

)
m]Pn,m(t

)
+ 1

M

[(
E1

n−1
)
n(n−1)+(

E1
m−1

)
m(m−1)

]
Pn,m(t )

+ 1

μM

[(
E1

n + E1
m − 2

)
nm

]
Pn,m(t ). (B1)

Because the probability distribution Pn,m(t ) has a sharp
peak around the solution of Eq. (5), n = Mx̄(t ) and m =
Mȳ(t ), with a width of order

√
M, we expand the abundances

in terms of the system size factor M, n = Mx̄ + √
Mξ and

m = Mȳ + √
Mζ . We call ξ and ζ are linear noise variables.

For given x̄(t ) and ȳ(t ), n and m have one-to-one mapping
to ξ and ζ , and thus a probability distribution �(ξ, ζ , t ) can
replace Pn,m(t ).

Since the master equation is calculated with fixed n and m,
the time derivation of Pn,m(t ) becomes

dP

dt
= ∂�

∂t
+ dξ

dt

∂�

∂ξ
+ dζ

dt

∂�

∂ζ

= ∂�

∂t
−

√
M

(
dx̄

dt

∂�

∂ξ
+ dȳ

dt

∂�

∂ζ

)
. (B2)
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With the change of variables, the raising and lowering
operators are transformed into E±1

ξ : ξ �−→ ξ ± M−1/2 and

E±1
ζ : ζ �−→ ζ ± M−1/2. Expanding the operators up to the

order of M−1,

E±1
ξ = 1 ± M−1/2 ∂

∂ξ
+ M−1 ∂2

∂ξ 2
+ O(M−3/2),

E±1
ζ = 1 ± M−1/2 ∂

∂ζ
+ M−1 ∂2

∂ζ 2
+ O(M−3/2), (B3)

we can obtain

∂�

∂t
−

√
M

(
dx̄

dt

∂�

∂ξ
+ dȳ

dt

∂�

∂ζ

)

= λb
[−√

M(x̄∂ξ +ȳ∂ζ )+(
x̄∂2

ξ +ȳ∂2
ζ

)−(∂ξ ξ+∂ζ ζ )
]
�

+λd
[√

M(x̄∂ξ +ȳ∂ζ )+(
x̄∂2

ξ +ȳ∂2
ζ

)+(∂ξ ξ+∂ζ ζ )
]
�

+[√
M

(
x̄2∂ξ +ȳ2∂ζ

)+(
x̄2∂2

ξ +ȳ2∂2
ζ

)+2(x̄∂ξ ξ+ȳ∂ζ ζ )
]
�

+1

μ

[√
Mx̄ȳ(∂ξ +∂ζ )+x̄ȳ

(
∂2
ξ +∂2

ζ

)+(∂ξ +∂ζ )(x̄ζ +ȳξ )
]
�,

(B4)

with the notation ∂x = ∂
∂x . Comparing the terms with the order

of
√

M, we get

dx̄

dt
= λx̄ − x̄2 − 1

μ
x̄ȳ,

dȳ

dt
= λȳ − ȳ2 − 1

μ
x̄ȳ, (B5)

which reproduces Eq. (5). Collecting the order of 1 gives us a
form of linear multivariate Fokker-Planck equation

∂�

∂t
= −

∑
i, j

Ai j
∂

∂ξi
(ξ j�) + 1

2

∑
i, j

Bi j
∂2�

∂ξi∂ξ j
, (B6)

where ξ1 = ξ and ξ2 = ζ with

A =
[
λ − 2x̄ − ȳ/μ −x̄/μ

−ȳ/μ λ − 2ȳ − x̄/μ

]
,

B =
[

x̄(λb + λd + x̄ + ȳ/μ) 0
0 ȳ(λb + λd + ȳ + x̄/μ)

]
.

(B7)

From Eq. (B7), we can obtain the dynamics of ξ and ζ by
multiplying the variable and taking average for it,

d

dt
〈ξ 〉 =

(
λ − 2x̄ − ȳ

μ

)
〈ξ 〉 − x̄

μ
〈ζ 〉,

d

dt
〈ζ 〉 = − ȳ

μ
〈ξ 〉 +

(
λ − 2ȳ − x̄

μ

)
〈ζ 〉. (B8)

Since we want to describe the averaged abundance fluctu-
ations around the stationary state with zero field, (x̄∗, ȳ∗) =
( μλ

μ+1 ,
μλ

μ+1 ), we define the fluctuations 〈δx〉 ≡ 〈n − Mx̄∗〉/M
and 〈δy〉 ≡ 〈m − Mȳ∗〉/M; that is to say 〈δx〉 = x̄ − x̄∗ +
〈ξ 〉/√M and 〈δy〉 = ȳ − ȳ∗ + 〈ζ 〉/√M. At stationary state,
thus combining Eq. (B5) and Eq. (B8) eventually gives

d

dt
〈δx〉 = − μλ

μ + 1
〈δx〉 − λ

μ + 1
〈δy〉 + O(M−1),

d

dt
〈δy〉 = − λ

μ + 1
〈δx〉 − μλ

μ + 1
〈δy〉 + O(M−1), (B9)

which is equivalent to the dynamics of abundance fluctuation
δx and δy in Eq. (7) with h = 0. It implies that the abundance
fluctuation derived from the deterministic Eq. (5) reflects the
stochastic effect.

With nonzero h, the additional term appears in Eq. (14),
− h

μ2M [(E1
n − E1

m)nm]Pn,m(t ) + O(h2) for small h. This addi-
tional term perturbs Eq. (B5) and Eq. (B8) as

dx̄

dt
= λx̄ − x̄2 −

(
1

μ
− h

μ2

)
x̄ȳ,

dȳ

dt
= λȳ − ȳ2 −

(
1

μ
+ h

μ2

)
x̄ȳ, (B10)

and

d

dt
〈ξ 〉 =

(
λ − 2x̄ − ȳ

μ
+ h

μ2
ȳ

)
〈ξ 〉 −

(
x̄

μ
− h

μ2
x̄

)
〈ζ 〉,

d

dt
〈ζ 〉 = −

(
x̄

μ
+ h

μ2
ȳ

)
〈ξ 〉 +

(
λ − 2ȳ − x̄

μ
− h

μ2
x̄

)
〈ζ 〉,

(B11)

respectively. If h ∼ O(M−1/2), then we can finally obtain
the averaged abundance fluctuation dynamics at (x̄∗, ȳ∗) =
( μλ

μ+1 ,
μλ

μ+1 ),

d

dt
〈δx〉 = λ2

(μ + 1)2
h − μλ

μ + 1
〈δx〉 − λ

μ + 1
〈δy〉 + O(M−1),

d

dt
〈δy〉 = − λ2

(μ + 1)2
h− λ

μ + 1
〈δx〉− μλ

μ + 1
〈δy〉 + O(M−1),

(B12)

which is equivalent to Eq. (7).
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