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Multistability is one of the most important phenomena in dynamical systems, e.g., bistability enables the
implementation of logic gates and therefore computation. Recently multistability has attracted a greatly renewed
interest related to memristors and graphene structures, to name only a few. We investigate tristability in velocity
dynamics of a Brownian particle subjected to a tilted periodic potential. It is demonstrated that the origin of
this effect is attributed to the arcsine law for the velocity dynamics at the zero temperature limit. We analyze
the impact of thermal fluctuations and construct the phase diagram for the stability of the velocity dynamics.
It suggests an efficient strategy to control the multistability by changing solely the force acting on the particle
or temperature of the system. Our findings for the paradigmatic model of nonequilibrium statistical physics
apply to, inter alia, Brownian motors, Josephson junctions, cold atoms dwelling in optical lattices, and colloidal
systems.
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I. INTRODUCTION

The Brownian motion of a particle dwelling in a tilted
periodic potential has served as an archetypal model of trans-
port phenomena in nonequilibrium statistical physics that for
decades has been applied to both classical and quantum sys-
tems. Examples are the dynamics of the phase difference
across Josephson junctions [1], rotating dipoles in external
fields [2], superionic conductors [3], charge density waves [4],
and cold atoms dwelling in optical lattices [5–7], to mention
only a few. Such a prominent model can be formulated in
terms of the following dimensionless Langevin equation:

ẍ + γ ẋ = −U ′(x) +
√

2γ θ ξ (t ), (1)

where γ is the Stokes friction coefficient, U (x) = − sin x −
f x is the total potential, f the constant bias, and θ ∝ kBT
is the dimensionless temperature of the system. The cou-
pling of the particle with thermostat is modeled by the
δ-correlated Gaussian white noise ξ (t ) of vanishing mean,
namely 〈ξ (t )〉 = 0 and 〈ξ (t )ξ (s)〉 = δ(t − s). The starting di-
mensional equation is presented in Appendix A, where the
corresponding scaling in defined as well.

This nonlinear stochastic system enjoys seemingly never-
ending interest as its different aspects have been studied al-
ready for several decades [8–24]. For example, it may exhibit
unusual phenomena such as the giant diffusion [10–12,17]
or nonmonotonic temperature dependence of the diffusion
coefficient [22]. These effects have been associated with bista-
bility of the velocity dynamics, the phenomenon well known
since the seminal work of Risken et al. [25] who first found
that at low friction and appropriate bias values the velocity
v(t ) = ẋ(t ) can be stable in a locked state (the particle is
trapped in a potential minimum) and also in a running one (the
motion is unbounded in space). To observe this phenomenon
in the deterministic system the constant force f should be

in range f1(γ ) < f < f3 = 1, where the friction-dependent
boundary f1 is the minimal value f for which the running state
starts to appear while for f > f3 = 1 they occur exclusively.
In Fig. 1 we present the phase diagram for the emergence of
the velocity bistability [9]. This effect is observed only if the
friction and force values lie in the marked gray region.

In this paper, we focus on tristability of the Brownian ve-
locity dynamics. Despite many years of intense and beneficial
studies, this distinctive feature in the considered system has
been addressed only recently [22,26]. This effect has also
been reported in similar setups with fractional hydrodynamic
memory [20], for particles subjected to nonlinear friction and
driven by Ornstein-Uhleneck Lèvy noise [21] and also in
systems perturbed by the harmonic Lèvy process [27]. Other
systems exhibiting tristability are currently under intense
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FIG. 1. Phase diagram for occurrence of the velocity bistabil-
ity phenomenon in the deterministic counterpart of the system (1)
presented in the dimensionless parameter plane (γ , f ). The critical
forces f1(γ ) as well as f3 are indicated by the corresponding lines.
Velocity bistability is observed only if the friction and force values
lie in the marked gray area.

2470-0045/2021/104(2)/024132(8) 024132-1 ©2021 American Physical Society

https://orcid.org/0000-0003-2296-4532
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.024132&domain=pdf&date_stamp=2021-08-26
https://doi.org/10.1103/PhysRevE.104.024132


J. SPIECHOWICZ AND J. ŁUCZKA PHYSICAL REVIEW E 104, 024132 (2021)

0
0.002
0.004
0.006
0.008
0.01

0.012

−1−0.5 0 0.5 1 1.5 2 2.5

(b)

p
(v

)

v

f=0.81

f=0.91

f=0.98

0

0.0015

0.003

0.0045

0.006

0.0075

−1−0.5 0 0.5 1 1.5 2 2.5

(a)
p
(v

)

v

θ=0.001

θ=0.01

θ=0.02

θ=0.03

θ=0.05

θ=0.1

FIG. 2. The probability distribution p(v) for the instantaneous
long time velocity v of the Brownian particle is depicted in (a) for
selected values of the dimensionless temperature θ . Parameters are
γ = 0.66 and f = 0.91. In (b) the same characteristic is shown but
for fixed temperature θ = 0.001 and varied bias f values.

investigations. Examples are Kerr cavities driven by optical
waves [28], viscoelastic flows through microscale porous ar-
rays [29], and graphene structures [30].

The structure of the paper is as follows. In Sec. II the prob-
lem of velocity tristability in noisy system is introduced. Next,
to explain the origin of this effect we first study the dynamics
of the deterministic system. Later we discuss the impact of
thermal fluctuations on stability of the velocity dynamics. In.
Sec. III we present the phase diagram for different temperature
of the system. Finally, Sec. IV provides discussion of the re-
sults and a summary. In the Appendixes we present the scaling
of the Langevin equation describing the system, discuss on its
ergodicity and recall the arcsine distribution.

II. TRISTABILITY OF VELOCITY DYNAMICS

At first glance the dynamics described by Eq. (1) may
look simple, but the Fokker-Planck equation for the parti-
cle probability distribution P(x, ẋ, t ) corresponding to it is a
second-order partial differential equation in three variables
(x, ẋ, t ) whose exact solutions up to now are not known.
Moreover, the parameter space of the model given by Eq. (1)
is multidimensional {γ , f , θ}. Therefore we used extensive
numerical simulations of the Langevin dynamics to analyze
the stability of velocity dynamics.

All numerical calculations have been done using a compute
unified device architecture (CUDA) environment imple-
mented on a modern desktop graphics processing unit (GPU).
This method allowed us to speed up necessary calculations
by a factor of the order 103 as compared to the present
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FIG. 3. The probability distribution p(v) for the instantaneous
long time velocity v of the deterministic system θ = 0. The maxima
of p(v) are at v1 = 0, vm = 0.59, and vM = 1.98. In the inset we
display the corresponding distribution P(v) for the time-averaged
velocity v. The parameters are γ = 0.66 and f = 0.91.

central processing unit (CPU) schemes [31]. In Appendix B
we show that in the deterministic limit θ = 0 the ergodic-
ity of the studied system is strongly broken, i.e. its phase
space is decomposed onto two nonintersecting invariant cor-
responding to the locked and running states. Consequently,
to get rid of the dependence of the obtained results on the
initial position x(0) = x0 and velocity v(0) = v0 it is nec-
essary to perform additional average over them. They were
uniformly distributed on the intervals [0, 2π ] and [−2, 2],
respectively. We note that this procedure embodies many of
the experimental situations where the initial conditions are
not known a priori. For any nonzero temperature θ > 0 the
ergodicity of the system is restored [32,33] and the results are
no longer dependent on the initial conditions. Unless stated
otherwise the statistical quantities characterizing the transport
properties of the system were calculated over the ensemble of
219 = 524288 trajectories, each starting with different initial
conditions {x0, v0} according to the above distributions. All
so-obtained results have been tested for convergence with
respect to (i) a time step of numerical integration; (ii) a size of
the statistical ensemble; (iii) a volume of initial conditions.

In Fig. 2 we exemplify the velocity tristability phe-
nomenon. The probability distribution p(v) for the instanta-
neous long time velocity v of the particle is trimodal, i.e.,
it exhibits three maxima: one corresponding to the locked
state v = 0 and the remaining two related to the running state
v �= 0. The latter fact means that the values of instantaneous
velocity v close to these extrema occur significantly more
often than others and in this sense are more stable [34].

A. Deterministic system, θ = 0

The nature of tristability in the velocity Brownian dy-
namics has not been explained. It often happens that the
mechanism behind a physical effect is hidden in the simplified
deterministic behavior of a system [35–37]. We follow this
route and start our analysis with the deterministic counter-
part of the system, i.e., when θ = 0 in Eq. (1). In Fig. 3
we depict the probability distribution p(v) for instantaneous
velocity v at the fixed point of time t = ti � 1 (in simulations
we fixed ti = 105). It corresponds to the parameters regime
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FIG. 4. The exemplary deterministic trajectories of the particle
coordinate x(t ) and velocity ẋ(t ) = v(t ) (in the inset) vs time for
two different initial conditions x0 corresponding to the running state.
Other parameters are γ = 0.66, f = 0.91, θ = 0, and v0 = 0.

presented in Fig. 2(a). Three pronounced peaks are visible
there. The first v1 = 0 describes the locked state whereas the
remaining two vm ≈ 0.59 and vM ≈ 1.98 in U -shaped part of
p(v) correspond to the running state. Therefore already in the
deterministic limit θ = 0 the actual velocity dynamics is not
bistable but rather tristable. Note that these three peaks are
directly related to the position of three maxima of the distri-
bution p(v) for nonzero temperature θ > 0 shown in Fig. 2(a).
Now it is clear that the tristability of velocity observed for the
noisy system must be rooted in the deterministic dynamics.

In the inset of Fig. 3 we illustrate the velocity bistability in
terms of the probability distribution P(v) of the time-averaged
velocity v = limt→∞(1/t )

∫ t
0 ẋ(s) ds. After the temporal av-

eraging the continuum of instantaneous velocities v in the
U -shaped part of p(v) collapses onto the single attractor for
the time-averaged velocity v ≈ 1.18. We stress that for the
asymptotic long time regime the probability measure p(v) is
time invariant and therefore the choice of time instant ti � 1
is arbitrary. For γ = 0.66 and f = 0.91 the support of the
U -shaped part of p(v) corresponding to the running state is
the interval [vm, vM] = [0.59, 1.98]. Moreover, the maxima of
p(v) are located at the boundary of this window. If for the
fixed γ the force f increases then both vm and vM grow, but
|vM − vm| decreases, cf. Fig. 2(b). In turn, if for the fixed force
f the friction γ grows then both vm and vM decrease and at the
same time |vM − vm| increases.

In order to explain the origin of the U -shaped part of
p(v), in Fig. 4 we display two exemplary deterministic tra-
jectories for the position x(t ) and velocity v(t ) corresponding
to the running state. For any initial conditions {x0, v0} cor-
responding to the running state (see Fig. 8 in Appendix B)
the slope of the curves x(t ) is the same as the time-averaged
velocity v ≈ 1.18. However, the key factor for multistability
are velocity trajectories of the running state: for long time
v(t ) are time-periodic functions of the same period and am-
plitude but different phases, which depend on {x0, v0}. The
minimal and maximal values of velocity are vm = 0.59 and
vM = 1.98, respectively, i.e., where the U -shaped part of
p(v) attains its maxima. We have found that the U -shaped
part of the probability density p(v) corresponding to the
running state can be very well approximated by the arcsine
distribution. In Fig. 5(a) we compare the cumulative distribu-

FIG. 5. (a) The cumulative distribution function F (v) for the
instantaneous long time velocity v corresponding to the U -shaped
part of the density p(v) is compared with the arcsine distribution
F (v) = (2/π ) arcsin[

√
(v − vm )/(vM − vm )]. Inset: The solution

v(t ) for x0 = 0.6 and v0 = 0 is compared with the function V (t ) =
A sin (ωt + φ) + c, where A = 0.695, ω = 1.18, φ = −5.6, and c =
1.28. Other parameters are γ = 0.66, f = 0.91 and θ = 0. (b) The
probability density g(φ) for the phase difference φ between the
trajectories v(t ) in the long time regime. Inset: The cumulative
distribution function G(φ) corresponding to the density g(φ) =
dG(φ)/dφ is compared with the cumulative distribution function of
the uniformly distributed random variable (the green curve). Param-
eters are γ = 0.66, f = 0.91 and θ = 0.

tion function F (v) for the instantaneous velocity defined as
F (v) = ∫ v

vm
p(u)du with the exact arcsine distribution given

by the formula F (v) = (2/π ) arcsin[
√

(v − vm)/(vM − vm)].
The agreement between these two curves is indeed quite re-
markable.

The origin of the arcsine law can be understood on the
following basis. In the deterministic limit the asymptotic long
time velocity v(t ) is a time-periodic function of period T ,
which has one maximum and one minimum per the period.
The value of T depends only on γ and f and not on the initial
coordinate and velocity of the particle. The analytical form of
v(t ) is not know. However, in the inset of Fig. 5(a) we compare
v(t ) with the simple harmonic function

V (t ) = A sin (ωt + φ) + c, (2)

where c = const., A = (vM − vm)/2 = 0.695, ω = 2π/T =
L/T = v = 1.18, i.e., the frequency ω is equal to the time-
averaged velocity v corresponding to the running state (L =
2π stands for the spatial period of the potential). For long
time and a fixed set (γ , f ), the parameters (A, ω, c) are the
same for all initial conditions {x0, v0}, which correspond to
the running state, cf. Fig. 4. In Appendix C we show that if the

024132-3



J. SPIECHOWICZ AND J. ŁUCZKA PHYSICAL REVIEW E 104, 024132 (2021)

phase shift φ in the function V (t ) is uniformly distributed on
the interval [0, 2π ] then for an arbitrary but fixed time t = ti
the random variable η = V (ti ) follows exactly the arcsine law
F (v) [38]. The compatibility of the probability distribution
F (v) for the particle and the arcsine distribution F (v) is not
mathematically exact because of two factors: (i) certainly the
function given by Eq. (2) does not obey Eq. (1) and (ii) as
it is shown in Fig. 5(b) the probability distribution of the
phase shift is not strictly uniform. However, the arcsine law
observed for the part of p(v) corresponding to the running
state is surprisingly good and explains its U shape, which in
turn lies at the heart of the multistability of velocity dynamics
in a tilted periodic potential.

Historically, the arcsine law was formulated by Lèvy in
1940 for the distribution of the fraction of time that a tra-
jectory of Brownian motion stays above zero and the last
time when it visits the origin [39]. This law is a cornerstone
of extreme-value statistics and has been applied to describe
inter alia conductance in disordered materials [40], mean
magnetization in spin systems [41], currents in stochastic ther-
modynamics [42], fractional [43] and aging [44] Brownian
motion, ballistic Lèvy random walks [45], to name only a
few. In clear contrast to its common formulation, here the arc-
sinelike law portrays the velocity distribution rather than the
fraction of time that a trajectory of Brownian motion spends
in some regions. This fact serves as a seed for multistability
of the velocity dynamics.

B. Influence of temperature

In Figs. 2(a) and 6 we present the influence of tempera-
ture on the probability distribution p(v) for the instantaneous
long time velocity of the Brownian particle for a selected set
of parameters (γ , f ) illustrating the complexity of different
stability regimes. In Fig. 6(a), for γ = 0.15 and f = 0.45,
we depict the case when the velocity multistability occurs.
In this regime the mean velocity of the deterministic run-
ning state is 〈v〉 = 2.98 while vm = 2.75 and vM = 3.2. We
note that for low temperature θ = 0.001 in fact the particle
velocity is tristable. For θ = 0.01 fine details of the deter-
ministic dynamics are washed out and bistability is observed.
Further growth of temperature causes the disappearing of the
locked state so that for sufficiently high temperature there
is only one running state (not depicted). In Fig. 6(b) of this
figure we exemplify the velocity monostability effect, which
occurs for the parameter pair γ = 0.15 and f = 0.95. In this
regime the mean velocity of the deterministic running state
is 〈v〉 = 6.34 while vm = 6.175 and vM = 6.49. Here in the
low-temperature regime θ = 0.001 the velocity dynamics dis-
plays the bistability phenomenon but as it is illustrated for
θ > 0.01 only the running state survives. When temperature
increases the maximum of p(v) is lowered. All fine details
of the deterministic dynamics have disappeared apart from
the fact that the running state still occurs with relatively high
probability. In the regime presented in Fig. 6(c) only the
running state is detected and p(v) exhibits two well-separated
peaks, which are the residual arcsinelike law. The correspond-
ing parameter regime reads γ = 0.7 and f = 0.99. In this
regime the mean velocity of the deterministic running state
is 〈v〉 = 1.24 while vm = 0.67 and vM = 2. If thermal noise
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FIG. 6. Influence of temperature on the probability distribution
p(v) of the instantaneous long time velocity of the Brownian particle
depicted for different parameter (γ , f ) regimes. (a) Velocity bistabil-
ity (coexistence of the locked and running states) for γ = 0.15 and
f = 0.45; (b) velocity monostability (the running state) for γ = 0.15
and f = 0.95; (c) velocity bistability (induced by the running solu-
tions) for γ = 0.7 and f = 0.99. Velocity multistability (coexistence
of one locked and two running peaks) is exemplified for γ = 0.66
and f = 0.91 in Fig. 2(a).

intensity grows the corresponding maxima of p(v) are gradu-
ally flattened until temperature of the order θ = 0.1 when they
almost disappear so that the velocity dynamics is monostable.
Finally, in Fig. 2(a) we depict the case of the multistable
dynamics, which occurs for γ = 0.66 and f = 0.91. Here
the low-temperature regime θ = 0.001 resembles the deter-
ministic structure of states as there are three peaks. The first
corresponds to the locked solution whereas the remaining two
indicate the running state with the residual arcsine law. The
main difference is that the influence of temperature on the
stability of the locked solution is nonmonotonic. When ther-
mal noise intensity grows first the locked state becomes less
stable as the corresponding maximum is rapidly decreased.
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FIG. 7. Phase diagram for the long time velocity dynamics of the Brownian particle dwelling in the tilted periodic potential shown in
the parameter plane (γ , f ) for selected values of dimensionless temperature θ . (a) θ = 0.001; (b) θ = 0.01; (c) θ = 0.02; (d) θ = 0.03;
(e) θ = 0.05; (f) θ = 0.1. Different regimes of the velocity states are marked with the corresponding color: blue, the monostability (the single
locked state); orange, the monostability (the single running state); green, the bistability (coexistence of the locked and running states); red, the
bistability (concurrence of two running peaks); yellow, the multistability (coexistence of one locked and two running peaks).

However, in the panel we illustrate that further increase of
temperature enhances the stability of the locked solution. The
impact of thermal noise intensity on the running state is the
same as in previous cases, namely, when temperature grows
two maxima are flattened so that it becomes less pronounced.
In the high-temperature limit the probability distribution p(v)
presents only the running state (not depicted).

We summarize this part with the conclusion that in the
parameter region f1(γ ) < f < f3 = 1, where in the deter-
ministic counterpart of the system the effect of velocity
multistability occurs, for the low to moderate temperature
there are four different regimes of the velocity dynamics:
(i) bistability (coexistence of the locked and running states);
(ii) monostability (a single running state); (iii) bistability (in-
duced by two peaks corresponding to the running state); (iv)
multistability (coexistence of one locked and two arcsine-law
peaks).

III. PHASE DIAGRAM

Our innovative computational method of integration of the
Langevin equation (1) allowed us to explore the parameter
space with the unprecedented resolution in order to construct
the phase diagram for the stability of the velocity dynamics.
We performed scans of the following area in the parameter
space γ × f ∈ [0, 1] × [0, 1] for a given temperature θ at a
resolution 400 points per dimension. For each pair (γ , f )
we calculated the probability distribution p(v) for the in-
stantaneous long time velocity and determined the regime of
stability of the solutions, cf. Fig. 6. The result is presented in
Fig. 7 where we show the phase diagrams for selected values
of temperature θ . Different regimes of the velocity dynamics
are marked there with the corresponding color, namely, blue
indicates the monostability (the single locked state); orange,

the monostability (the single running state); green, the bista-
bility (coexistence of the locked and running states); red, the
bistability (two peaks corresponding to the running state);
yellow, the multistability (coexistence of one locked and two
arcsine-law peaks). It generalizes the phase diagram reported
by Risken in his well-known book [9] by extending it to finite
temperature regimes and including the effect of multistability.

A careful inspection, e.g., of Fig. 7(d) reveals several reg-
ularities. First, close to the critical force f3 = 1 there are only
either one or two running states that translate to the mono
or bistable regimes. Second, if γ is sufficiently small then
practically regardless of the bias f the locked state coexists
with the running state implying the bistability of the velocity
dynamics. The same observation holds true when both γ

and f are very close to unity. Third, if f < f1(γ ) then, as
expected, only the locked state emerges. In between these
areas there is a region where the trace of the deterministic
dynamics in the form of the multistability is visible. The latter
is particularly pronounced at low temperature. When thermal
noise intensity grows this region is rapidly shrunk. As it is
presented already for temperature θ = 0.1 it ceases to exist.
The same remark is valid also for the region denoted with red
color that indicates the bistable dynamics with two concurrent
running states. The latter effect occurs for moderate values of
the friction coefficient γ and the biasing force f ≈ 1.

The phase diagrams presented in Fig. 7 suggest efficient
strategies for controlling the multistability of the velocity
dynamics. As it is demonstrated in Figs. 2(a) and 6 this goal
can be achieved by altering temperature of the system. Such
approach opens the opportunity to control the multistability
of particles that carry no charge or dipole or can hardly
be manipulated by means of an external field or force. For
moderate temperature θ = 0.03 one is able to cover all multi-
stability regimes by fixing the force f close to the critical bias
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f = 1 and changing the friction γ . We exemplify this case in
Fig. 7(d) by the white dashed horizontal line corresponding
to f = 0.91. The most convenient way of manipulating the
velocity stability regimes is by changing the constant force f
applied to the particle. It is illustrated in Fig. 7(d) for γ = 0.66
indicated by the white dashed vertical line. For f < 0.85
there exists only single locked state (blue). In the interval
f = [0.85, 1] first the bistability occurs (green) followed by
the multistability (yellow) and then again the bistability but
for the running state (red).

Such an approach can be directly realized, e.g., in a bi-
ased Josephson junction operating in a semiclassical regime
described by the Stewart-McCumber model [1] in which the
Josephson phase ϕ(t ) translates to the particle coordinate x(t ).
Consequently, the voltage drop V(t ) ∝ ϕ̇(t ) across the device
is equivalent to the velocity v(t ) whereas the constant current
I applied to the junction translates to the bias acting on the
particle f . Both the manufacturing of the Josephson junctions
and generating of the DC are well-developed technologies
nowadays and therefore our results are attainable experimen-
tally and ready for corroboration.

IV. DISCUSSION AND SUMMARY

In summary, we explained the underlying physical mech-
anism standing behind the emergence of multistability of
random velocity dynamics of the Brownian particle in a
tilted periodic potential. The origin of this effect lies in the
time periodic dependence of the velocity v(t ) with almost
uniformly distributed phase shift induced by different initial
conditions for the position and velocity. The arcsine law for
the particle velocity in the running state is not mathematically
exact, however, we show that it is a very good approximation.
With the locked state it generates the trimodal shape of the
velocity distribution and in consequence the tristability of the
Brownian particle velocity emerges.

Moreover, we constructed the phase diagram for the
stability of the velocity dynamics, which generalizes the cor-
responding result [9] in a twofold way: it demonstrates the
multistability of the velocity dynamics already in the de-
terministic system and, secondly, describes the occurrence
of the latter effect for nonzero temperature regimes. This
phenomenon is restricted to the island on the (γ , f ) sur-
face, which is immersed in the region of bistability. As we
demonstrated it can be continuously deformed by changing
temperature of the system. Last but not least, it suggests the
efficient strategy to control the multistability by changing
solely, e.g., the external bias force acting on the particle.

We expect that the presented mechanism can readily be
experimentally verified in plentiful of different contexts and
our findings can inspire a vibrant follow-up work due to the
universality and simplicity of the considered paradigmatic
model of nonequilibrium statistical physics.
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APPENDIX A: SCALING OF THE LANGEVIN EQUATION

In the paper we investigate dynamics of a classical Brow-
nian particle of mass M dwelling in a spatially periodic and
symmetric potential U (x) = U (x + L) of the period L and
exposed to a constant force F . Such a system is described by
the following Langevin equation:

Mẍ + �ẋ = −U ′(x) + F +
√

2�kBT ξ (t ), (A1)

where the dot and prime denote differentiation with respect
to the time t and the particle coordinate x, respectively. The
parameter � is the friction coefficient and kB is the Boltzmann
constant. The symmetric potential is assumed to be in the
following simple form:

U (x) = −�U sin

(
2π

L
x

)
, (A2)

where �U is half of the potential barrier height and L is its
spatial period. The coupling of the particle with thermal bath
of temperature T is modeled by the δ-correlated Gaussian
white noise ξ (t ) of vanishing mean and unit intensity, i.e.,

〈ξ (t )〉 = 0, 〈ξ (t )ξ (s)〉 = δ(t − s). (A3)

The noise intensity factor 2�kBT in Eq. (A1) follows from the
fluctuation-dissipation theorem [46] that ensures the canonical
Gibbs statistics when the system is at the equilibrium state.

We define the dimensionless coordinate x̂ and time t̂ in the
following way:

x̂ = 2π

L
x, t̂ = t

τ0
, τ0 = L

2π

√
M

�U
, (A4)

where the characteristic time τ0 = 1/ω0 is the inverse of fre-
quency ω0 of small oscillations in the potential well of U (x).
Under such a choice, Eq. (A1) is translated to the dimension-
less form, namely,

¨̂x + γ ˙̂x = −U ′(x̂) +
√

2γ θ ξ̂ (t̂ ), (A5)

where now the dot and prime denote differentiation with
respect to the dimensionless time t̂ and coordinate x̂, respec-
tively. We note that the dimensionless mass is m = 1. The
dimensionless friction coefficient γ reads

γ = τ0

τ1
= 1

2π

L√
M�U

�, (A6)

where the characteristic time τ1 = M/� describes the velocity
relaxation time for a free Brownian particle. The dimension-
less total potential U (x̂) takes the form

U (x̂) = − sin x̂ − f x̂. (A7)

The dimensionless force f is given by

f = 1

2π

L

�U
F. (A8)

The rescaled temperature θ is the ratio of thermal energy kBT
to half of the activation energy the particle needs to overcome
the original potential barrier �U , i.e.,

θ = kBT

�U
. (A9)
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FIG. 8. (a) The fraction of basins of attraction for the time-averaged velocity v of the particle. The blue region indicates the locked state
whereas red stands for the running states. (b) Snapshot of the instantaneous velocity v in the long time regime. (c) Phase difference φ between
the trajectories v(t ) in the long time limit. All presented versus the initial conditions {x0, v0} of the system. Other parameters read γ = 0.66,
f = 0.91, and θ = 0.

The dimensionless thermal noise ξ̂ (t̂ ) is statistically equiv-
alent to ξ (t ), namely, it is a Gaussian stochastic process
with vanishing mean 〈ξ̂ (t̂ )〉 = 0 and the correlation function
〈ξ̂ (t̂ )ξ̂ (ŝ)〉 = δ(t̂ − ŝ). In the paper we use only the rescaled
variables and therefore to improve the simplicity and read-
ability of the notation we omit the hat appearing in Eq. (A5).

APPENDIX B: ERGODICITY BREAKING

One of the most important quantifiers for characterizing the
single-particle transport is the time-averaged velocity defined
as

v = lim
t→∞

1

t

∫ t

0
ds ẋ(s). (B1)

In the deterministic limit of vanishing thermal noise intensity
θ → 0 ergodicity of the system given by Eq. (1) typically is
strongly broken [47,48]. It means that the phase space of the
system decomposes onto mutually inaccessible and coexisting
attractors for the mean particle velocity v. Then different ini-
tial conditions {x0, v0} for the particle coordinate and velocity
lead to distinct averaged velocity v [49,50]. We exemplify
this case in Fig. 8(a) where we depict a fraction of basins of
attraction for the time-averaged velocity v when γ = 0.66 and
f = 0.91. A larger set of the initial conditions is presented in
Fig. 11.15 in Risken’s book [9]. The initial phase space of
the system is partitioned into two nonintersecting invariant re-
gions corresponding to the locked and running states indicated
by blue and red colors, respectively. Therefore ergodicity of
the system is indeed broken. In Fig. 8(b) we present the
snapshot of the instantaneous long time velocity v for the
same parameter set to illustrate the complexity of the running
solutions. All of them possess the same time-averaged veloc-
ity [cf. Fig. 8(a)] but in dependence on the initial conditions
{x0, v0} they assume different instantaneous values from the
interval [vm, vM], where vm = 0.59 and vM = 1.98. We note
that for nonzero temperature θ the ergodicity of the system is
restored and consequently the results are independent of any
initial conditions [6].

APPENDIX C: ARCSINE LAW

For the paper to be self-contained we now recall the arcsine
law for the random function

V (t ) = A sin (ωt + φ) + c, (C1)

where A and c are constants, and the phase φ is a random
variable uniformly distributed on the interval [0, 2π ], i.e., its
probability density is

g(φ) = 1

2π
θ (φ) θ (2π − φ), (C2)

where θ (x) is the Heaviside step function. First, for the fixed
time t = ti (time of sampling) we define the random variable
η = V (ti ). Its characteristic function Cη(k) reads

Cη(k) = 〈eikη〉 =
∫ ∞

−∞
eik[A sin(a+φ)+c] g(φ) dφ

= 1

2π

∫ 2π

0
eik[A sin(a+φ)+c] dφ

= 1

2π

∫ a+2π

a
eik[A sin(y)+c] dy

=
∫ 1

−1
eik(Az+c) 1

π
√

1 − z2
dz

=
∫ vM

vm

eiku 1

π
√

(u − vm)(vM − u)
du

≡
∫ ∞

−∞
eikuPη(u) du. (C3)

In the above equations we substituted a = ωti and introduced
the minimal vm = c − A and maximal vM = c + A values of
the function V (t ). From this relation it follows that the proba-
bility density of the random variable η has the form

Pη(u) = θ (u − vm) θ (vM − u)

π
√

(u − vm)(vM − u)
(C4)

and the corresponding cumulative distribution defined on the
interval (vm, vM ) is the arcsine function,

F (v) =
∫ v

vm

Pη(u) du = 2

π
arcsin

√
v − vm

vM − vm
. (C5)

For the system studied in the paper the values vM and vm

are determined by two parameters, namely, the dimensionless
friction coefficient γ and the bias force f .
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