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Dipolar Ising model: Phases, growth laws, and universality
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The behavior of many magnetic and dielectric solids, and the more contemporary magnetic superlattices, is
governed by dipolar interactions. They are anisotropic and long ranged, having varied consequences ranging
from ground states with complicated magnetic order to the presence of glassy dynamics characterized by
a plethora of relaxation times. These systems are well captured by the dipolar Ising model (DIM) with
nearest-neighbor exchange interactions (J) and long-range dipolar interactions (D). Depending on the relative
interaction strength � = J/D, there are four phases of distinct magnetic order and symmetry. Using Monte
Carlo simulations, we perform deep quenches to study domain growth or coarsening in the d = 3 DIM. This
important nonequilibrium phenomenon has not been addressed as dipolar interactions are notoriously difficult
to handle theoretically. Our study reveals that, in spite of the anisotropy in interactions and diversity in ground
state configurations, we observe universality in the ordering dynamics of all phases.
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I. INTRODUCTION

Dipolar interactions are prevalent in magnetic and dielec-
tric solids composed of rare-earth elements and transition
metals [1–8]. They are anisotropic and long ranged, and arise
from nuclear magnetic moments in alkali hydrides and solid
3He, electron magnetic moments in rare-earth fluorides, chlo-
rides, and hydroxides, electric dipole moments in ferroelectric
and antiferroelectric structures, etc. A large class of these
compounds is well described by the nearest-neighbor (nn)
Ising model with dipolar interactions or the dipolar Ising
model (DIM). For N Ising spins on a d-dimensional cubic
lattice with sites labeled by i, the Hamiltonian is given by

H = − J
∑
〈i j〉

σiσ j − D
∑
i, j

i �= j

(
3 cos2 θi j − 1

r3
i j

)
σiσ j,

σi = ±1. (1)

The first term on the right-hand side is the contribution from
the nn exchange energy. The parameter J represents the inter-
action strength, and favors ferromagnetic (antiferromagnetic)
alignment of spins for J > 0 (J < 0). The second term is
the contribution from the dipole-dipole interactions, whose
strength is given by D = μ2/a3. Here, μ is the dipole moment
of the spin, and a is the spacing between nn sites of the
underlying lattice. Further, �ri j is a vector joining sites i and
j in units of lattice spacing a, and θi j is the angle made by
�ri j with the Ising axis (z axis). The presence of r3

i j in the
denominator makes dipolar interactions long ranged, due to
which spin-spin interactions are significant up to multiple
lattice spacings. Consequently, the sum in the second term
extends over all spin pairs. In addition to being long ranged,

the dipolar interactions are anisotropic, fluctuating in sign and
strongly influenced by the underlying lattice structure. The
θi j dependence implies that dipolar interactions can be zero,
positive, or negative, depending on the positions of the spins
i and j. For a reference spin i, the interaction with spin j is
zero for 3 cos2 θi j − 1 = 0, antiferromagnetic for 55◦ < θi j <

125◦, and ferromagnetic for other values. Therefore, a ferro-
magnetic alignment of spins is favored along the z direction,
but domain walls are preferred along the xy plane.

A phase diagram of the DIM was obtained by Kretschmer
and Binder for a simple cubic lattice (L3, L = 6, 8) using
Monte Carlo (MC) simulations [1]. The interplay of the nn ex-
change interactions and the complicated dipolar interactions
reveals rich phase behavior. The phase diagram in Fig. 1 has
been obtained by varying J, T with fixed D = 1. Depend-
ing on the relative interaction strength � = J/D, the system
exhibits four phases with distinct magnetic order and symme-
try:

(I) For � < −1.338, the nn exchange interaction with J <

0 dominates over the dipolar term. As expected, the ground
state (GS) is an antiferromagnet (AFM).

(II) For −1.338 < � < 0.127, the dipolar term domi-
nates over the nn exchange interaction. The ground state is
anisotropic and consists of ferromagnetic columns along the z
axis arranged antiferromagnetically in the xy plane. We refer
to this GS as a columnar antiferromagnet (CAFM).

(III) For 0.127 < � < 0.164, the nn exchange favors fer-
romagnetic alignment and the dipolar interaction continues to
dominate. The GS structure changes to a layered antiferro-
magnet (LAFM) with a two-component order parameter.

(IV) For � > 0.164, the exchange interactions are domi-
nant and the GS is a ferromagnet (FM).
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FIG. 1. Schematic phase diagram of the DIM model in the
(�, kBT/D) plane, where � = J/D. We set D = 1 and vary J, T .
There are four distinct phases: (I) antiferromagnet (AFM); (II)
columnar antiferromagnet (CAFM); (III) layered antiferromagnet
(LAFM); (IV) ferromagnet (FM). The corresponding ground state
configurations are shown below. The quench locations are marked
by crosses, and satisfy T = 0.5Tc(�). The corresponding parameter
values are (�, kBT/D) = (−10, 1.75) for AFM; (0,1.19) for CAFM;
(0.14,0.825) for LAFM; and (∞,∞) for FM.

It is interesting to note the systematic transition from the
AFM phase to the FM phase via the onset of ferromagnetic
alignment: first along a single-site one-dimensional column
(CAFM), then along a two-dimensional layer (LAFM), and,
finally ferromagnetic ordering is observed. The lower panel
depicts the corresponding ground state (GS) configurations
for each phase. The symmetry of the Hamiltonian under σi →
−σi spins results in a degenerate GS. The degeneracy is 2 for
phases I, II, IV, and 4 for phase III. The equilibrium states for
a given value of � at nonzero T will be combinations of the
corresponding degenerate GS, separated by frustrated spins
due to conflicting interactions. The free energy landscape is
complex with several local minima, especially in the dipolar-
dominated regimes.

A large number of experimental realizations of the DIM
indeed exhibit a nontrivial organization of dipoles in the
(so-called) equilibrium phase. For example, magnetic mea-
surements of rare-earth hydroxides reveal FM ordering for
Tb(OH)3, Dy(OH)3, and Ho(OH)3, and a complex AFM
ordering for Nd(OH)3 and Gd(OH)3 [9]. Amongst rare-
earth fluorides, LiHoF4 and LiTbF4 exhibit FM ordering,
while LiErF4 shows AFM ordering [6,10–12]. Similar ob-
servations have been made in the context of rare-earth
ethyl sulphates [13], rare-earth perovskites [7,14], and rare-
earth garnets [8]. The above examples have captured much
attention in modern solid state physics and materials sci-
ence because they exhibit interesting magnetic, multiferroic,
and optical effects. Some of these systems, due to their
low critical temperatures, are also realizations of quantum
Hamiltonians and exhibit phase transitions driven by quan-
tum fluctuations [15,16]. The presence of a glassy phase
due to frustrated moments arising from conflicting FM
and AFM interactions has also been seriously contemplated
[17–19]. Recent inclusions in the family of dipolar solids

are self-assembled superlattices of monodisperse magnetic
nanoparticles such as ferric oxide (Fe2O3) or magnetite
(Fe3O4) [20,21]. They exhibit a rich phase diagram revealing
a variety of stable structures such as hexagonal close packed,
face centered cubic, spherical, cylindrical, etc. [22,23].
Complex and almost perfect geometric ordering of the
nanodipoles has also been observed in microscopy snapshots
[24]. Both these observations have been interpreted in the
context of dipolar interactions between individual particles.

Laboratory experiments generally require application of
external fields that drive the system out of equilibrium. The
system reequilibrates, and the approach to equilibrium crit-
ically depends on the free energy landscape. An important
non equilibrium study in this context is the kinetics of domain
growth or phase ordering, initiated by a sudden quench of the
system from the disordered phase to the ordered phase [25].
The subsequent domain growth or coarsening, characterized
by a growing length scale �(t ), is monitored with time. The
growth law reveals details of the free energy landscape and
relaxation timescales [26]. For example, pure and isotropic
systems with nonconserved kinetics such as the Ising model
(D = 0) obey the Lifshitz-Allen-Cahn (LAC) law: �(t ) ∼ t1/2

[27,28]. It is characteristic of systems with no energy barriers
to coarsening and a unique relaxation timescale. Systems with
complicated free energy landscape due to disorder and com-
peting interactions have a plethora of relaxation timescales
[29–32]. The interfaces are usually rough fractals, and the
barriers to coarsening grow as a power law of the domain size
[33–35]. Domain growth in these systems exhibits logarithmic
behavior in the asymptotic limit [36].

In spite of its wide-ranging presence, there are only a few
studies of the DIM in d = 3, and nonequilibrium phenomena
are even less addressed [37,38]. This is primarily because
handling long-ranged interactions is notoriously difficult, both
analytically and computationally. Thus challenged, we were
motivated to develop theoretical techniques to study the DIM.
In a benchmarking study, we investigated coarsening via
largescale Monte Carlo (MC) simulations on cubic lattices
(L = 128) using Ewald summation procedures to accurately
handle the long-range dipolar interactions [37]. We investi-
gated their effect on growth laws in the FM phase for a limited
range of � values (� 0.16). Encouraged by the unusual obser-
vation of anisotropic growth laws in this simplest phase, we
now undertake the task of exploring the entire phase diagram.
Our investigations are guided by the following questions:
Are the growth laws distinct in the four phases or are they
universal? What information can we obtain about the energy
landscapes of the four phases? Is the system characterized by
a universal scaling behavior or is it phase specific? Does the
complexity and frustration introduced by dipolar interactions
yield rough fractal interfaces?

There are two important results in our paper. Our first find-
ing is that, although the equilibrium states in the four phases
have distinct symmetry and the interactions are anisotropic,
the system obeys the LAC domain growth law �(t ) ∼ t1/2

across phases and directions. The growth exponent 1/2 is
universal for the DIM. The second important result is that
the two-point equal-time correlation function that quantifies
domain growth exhibits generalized scaling in all phases:
C(x, y, z, t ) = g(ρ/�ρ, z/�z ), where ρ is the radial coordinate
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in the xy plane. The coarsening system is thus characterized
by unique but distinct length scales along xy and z directions.
The scaling function in both directions is universal, and can
be approximated by the well-known Ohta-Jasnow-Kawasaki
(OJK) function [25,39]. The rest of the paper is organized as
follows. In Sec. II, we present detailed numerical results on
coarsening in phases I–IV of the DIM. Section III provides a
summary and discussion.

II. COARSENING STUDIES

We now proceed to present detailed results from our studies
of coarsening. These studies use local single-spin flip moves
which are computationally expensive in contrast to the clus-
ter algorithms often used for equilibrium studies. Further, in
systems with long-range dipolar interactions, spins separated
by multiple lattice spacings also contribute to the energy. An
explicit evaluation of the latter is only possible for small
systems as the number of computations scales as O(N2). A
successful procedure for dealing with long-range interactions
is the Ewald summation technique [40]. The basic idea here is
to write the potential in two parts using the identity

1

r3
= f (r)

r3
+ 1 − f (r)

r3
. (2)

Here, f (r) is an appropriate splitting function with the fol-
lowing properties: (i) The first part is negligible beyond a
certain cutoff rcut so that the summation up to this cutoff is
a good approximation of this contribution to the total energy.
(ii) The second part is a slowly varying function for all r so
that its Fourier transform can be represented by only a few
k vectors with |k| � kcut = 2π/rcut. Therefore, this part can
be efficiently evaluated in reciprocal space. There are many
choices of f (r) that satisfy the above two conditions, but the
usual choice is a complementary error function:

erfc(r) = 2√
π

∫ ∞

r
e−t2

dt . (3)

In particular, we use f (r) = erfc(
√

η r), where the Ewald
splitting parameter η decides the relative weights of the real
and Fourier terms. By a suitable choice of η, we can optimize
the computation time for a specified error bound. An excellent
discussion of this procedure is found in Ref. [41].

Using cubic systems of up to 1283 spins, we performed
deep quenches to T = 0.5 Tc(�) in the ordered phase. The
quench locations are marked in the phase diagram in Fig. 1.
The initial state for all quenches was chosen to be a random
configuration of σi = ±1 corresponding to the disordered
(paramagnetic) phase. The Ewald summation technique with
metallic boundary conditions was used to compute the dipolar
term of Eq. (1) [40]. We chose the Ewald splitting parameter
η = 0.032, which yields an error of δ = 10−3 in the evaluation
of the dipolar term. We also performed simulations designed
to yield an error of δ = 10−4 on smaller lattices. This did
not alter the growth laws obtained with δ = 10−3 for larger
lattices.

The system evolution was studied using spin-flip Glauber
dynamics with the standard Metropolis procedure up to 1024
MC steps (MCS). In each phase, the acceptance rate (fraction
of spins flipped in 1 MCS) decreases exponentially with time.

TABLE I. Typical values of the acceptance rate at different times
in the four quenches studied here.

�

−10.0 0.0 0.14 ∞
t = 100 0.345 0.358 0.335 0.537
t = 101 0.052 0.080 0.066 0.147
t = 102 0.014 0.024 0.027 0.055
t = 103 0.001 0.003 0.003 0.012

In Table I, we show typical values of the acceptance rate in
the four quenches studied in this paper.

All statistical quantities have been averaged over ten
different initial conditions. This results in error bars for
the correlation function and length scale data which are
smaller than the symbol sizes we use subsequently for these
quantities.

In Fig. 2, we present typical snapshots of coarsening mor-
phologies in the four phases. The top row shows the snapshots
at t = 8 MCS, and the second row at t = 64 MCS. During the
coarsening process, the degenerate equilibrium states com-
pete with one another, and the corresponding domains are
separated by interfacial defects. As time evolves, the defects
annihilate and the system selects one of the ground states. The
different colors in each snapshot represent domains of one of
the degenerate ground states of that phase, as shown in the
keys below. To identify the domains in phases I–III, a standard
prescription is used to define the staggered magnetization:

(i) In phase I, the morphology has AFM spin arrangement
along x, y, and z directions. The staggered spin variables are
obtained using

ψxyz = (−1)x+y+zσxyz. (4)

The green (blue) domains in Fig. 2(a) correspond to correlated
regions of up (down) spins in the staggered representation.
The key below also shows the corresponding GS configura-
tions in terms of the original spin variables σxyz.

(ii) In phase II, the morphology is AFM along the x and
y directions, and FM along the z direction. So the spins are
staggered using

ψxyz = (−1)x+yσxyz. (5)

The green (blue) domains in Fig. 2(b) correspond to correlated
regions of up (down) spins in the staggered representation of
the GS.

(iii) In phase III, the morphology comprises FM xz (or
yz) planes with an AFM arrangement in the y (x) direction.
In such morphologies, the system is characterized by a two-
component order parameter �ψxyz ≡ (ψ1

xyz, ψ
2
xyz ) [42,43] with

ψ1
xyz = (−1)x 1

4 [σxyz + σx(y+1)z − (σ(x+1)yz + σ(x+1)(y+1)z )],

(6)

ψ2
xyz = (−1)y 1

4 [σxyz + σ(x+1)yz − (σx(y+1)z + σ(x+1)(y+1)z )].

(7)

In the morphologies in Fig. 2(c), a site is assigned: green for
�ψxyz = (1, 0); blue for �ψxyz = (−1, 0); red for �ψxyz = (0, 1);
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FIG. 2. Evolution snapshots of the staggered magnetization at t = 8 MCS (top row) and t = 64 MCS (second row) for the four phases
(a) AFM, (b) CAFM, (c) LAFM, and (d) FM. The key shows the color code for the degenerate GS in each phase, as described in the text.

orange for �ψxyz = (0,−1). Each of the colored domains repre-
sents correlated regions corresponding to one of the four GSs,
as shown in the key below.

(iv) No staggering is required for the morphologies in
Fig. 2(d) in the FM phase. For uniformity of notation, we
assign ψxyz = σxyz.

Clearly, the domains in each phase grow with time, al-
though the growth is faster in the z direction as compared in
the xy plane. However, the growth in the xy plane for Fig. 2(c)
is arrested as the system gets stuck in metastable states. The
problem of metastability is widespread in phase III due to the
presence of four competing GS.

The length scales associated with the evolving domains
can be evaluated from the two-point equal-time correlation
function:

C(�r, t ) = 〈ψ (�r1, t )ψ (�r2, t )〉 − 〈ψ (�r1, t )〉 〈ψ (�r2, t )〉. (8)

Here, ψ is the appropriate order parameter, �r = �r1 − �r2, and
〈· · ·〉 represents an average over independent runs [25]. In
the case of isotropic domain growth, the dynamical scaling
ansatz assumes the presence of a single length scale �(t ).
This is demonstrated post facto by the scaling collapse of
the correlation function: C(�r, t ) = g(r/�). The validity of this
has been shown in many experiments and simulations. In
the anisotropic case considered here, we propose (following
Refs. [44,45]) the simplest anisotropic generalization of this
ansatz. This also has to be verified post facto by the dynam-
ical scaling of the correlation function. Thus, we introduce
C(�r, t ) ≡ C(�ρ, z; t ), where �ρ = (x, y). In the case of unique
length scales �ρ and �z characterizing domain growth in the
xy and z directions, the correlation function should exhibit
generalized dynamical scaling: C(�ρ, z, t ) = g(ρ/�ρ, z/�z ).

In the isotropic case, an approximate analytical form of the
correlation function for a system described by a scalar non-
conserved order parameter has been obtained by Ohta et al.
(OJK) by studying the interfacial defect dynamics [25,39].
The OJK function is given by

C(r, t ) = 2

π
sin−1 γ , γ = exp(−r2/�2). (9)

In Fig. 3, we show the scaled correlation functions for
phase II with � = 0: C(�ρ, 0, t ) vs ρ/�ρ in Fig. 3(a), and
C(0, z, t ) vs z/�z in Fig. 3(b). The data collapse is obtained
via the usual technique followed in domain growth problems
[25], viz., the length scales �ρ and �z are self-consistently
obtained from the corresponding correlation function as the
characteristic distance over which it decays to (say) 0.2 times
its maximum value. (As can be seen from Fig. 3, the maximum
value arises at zero distance.) We emphasize that no fitting
parameters have been used to observe this data collapse. Both
data sets exhibit dynamical scaling, indicating that the system
is characterized by unique but distinct length scales along
xy and z directions. More striking is their agreement with
the OJK function (solid line), which shows that the defect
dynamics is robust across directions in spite of the inher-
ent anisotropy of the dipolar interactions. Figure 3(c) shows
C(�ρ, 0, t ) vs ρ/�ρ for t = 64 in phases I–IV for the specified
values of �. Figure 3(d) shows the corresponding data for
C(0, z, t ) vs z/�z for t = 64. The data collapse is excellent
in both Figs. 3(c) and 3(d), and is well approximated by
the OJK form. These observations reveal that the coarsening
morphologies are robust across diverse phases of the DIM.

Finally, we discuss the growth laws in the four phases of
the DIM. In this context, it is useful to reiterate observations
from earlier studies [46] of domain growth in the Ising model
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FIG. 3. Scaled correlation functions at t = 16, 64, 128 for � = 0
in phase II: (a) C(ρ, 0, t ) vs ρ/�ρ , and (b) C(0, z, t ) vs z/�z. Scaled
correlation functions at t = 64 for specified �-values: (c) C(ρ, 0, t )
vs ρ/�ρ , and (d) C(0, z, t ) vs z/�z. The solid line in (a)–(d) represents
the OJK function.

with isotropic long-range interactions:

J (ri j ) ∼ r−(d+μ)
i j . (10)

Using energy scaling arguments, Bray and Rutenberg [46]
predicted the following domain growth laws:

�(t ) ∼
⎧⎨
⎩

t1/1+μ, μ < 1,

(t ln t )1/2, μ = 1,

t1/2, μ > 1.

(11)

A recent work by Christiansen et al. [47] studied coarsening
in the d = 2 Ising model with additional long-range interac-
tions as in Eq. (10). Using efficient numerical schemes, the
authors confirmed the predictions in Eq. (11) for many values
of μ.

The angular dependence of the dipolar interactions yields
anisotropic morphologies due to ferromagnetic interactions
along the z direction and antiferromagnetic interactions in the
xy plane. Roughly speaking, the system behaves as a long-
range Ising model along the z axis with d = 1, μ = 2. Then,
the expected growth law from Eq. (11) is �z(t ) ∼ t1/2. On the
other hand, in the xy plane, we have d = 2, μ = 1 in Eq. (10).
Again, we expect the growth to be predominantly diffusive
with logarithmic corrections.

In Fig. 4, we present the growth laws �ρ (t ) vs t and �z(t )
vs t on a log-log scale for phases I–IV. We have not shown
�ρ vs t for the LAFM phase as the growth in the xy plane
is almost frozen in that phase [1]. Further, as the growth in
the z direction is very rapid, we see finite-size effects in the
late-time data for the FM phase. The error bars for each data
point are smaller than the symbol sizes used except in the
regime where finite-size effects are seen. The dashed lines
with the expected slope 1/2 have been plotted for reference.

FIG. 4. Characteristic length scales �ρ (t ) vs t and �z(t ) vs t on
a log-log scale. The panels correspond to (a) � = −10, (b) � = 0,
(c) � = 0.14; (d) � = ∞. In (b), we also include data for systems of
size 323 and 643 to show the finite-size effects. In (c), we have not
shown �ρ vs. t as there is almost no growth in that direction. In (d),
the data sets for �ρ and �z are numerically indistinguishable as the
growth is isotropic. The dashed line in each panel denotes the LAC
law: �(t ) ∼ t1/2.

It is striking that the growth in both directions, in spite of the
diversity of phases and the inherent anisotropy of the dipolar
interactions, obeys the universal LAC law �(t ) ∼ t1/2. Their
presence is thus confined to the prefactors alone. There are
no length-scale-dependent barriers to coarsening in the DIM,
and the non equilibrium evolution is characterized by a unique
relaxation timescale. (In our earlier study, the domain growth
in the FM phase is studied for smaller values of � � 0.16
that are close to the phase boundary separating the LAFM
and FM phases [37]. Here, longer timescales are required to
observe the t1/2 law and the anisotropy is again contained in
the prefactors.)

Before concluding, it is relevant to ask how the finite size
of the system would affect the growth laws. In contrast to the
equilibrium case, various physical quantities do not change
systematically with the system size. Rather, the domains grow
in a power-law manner until the domain scale becomes some
significant fraction of the lateral system size. After that, finite-
size effects are seen via a crossover to a regime with flattening
and saturation of the domain growth law. Typically, the data
sets for different system sizes are numerically coincident until
they encounter finite-size effects. This is shown in Fig. 4(b)
for the case with � = 0.

III. SUMMARY AND DISCUSSION

We end this paper with a summary of our results, their
implications, and future directions. We have performed large-
scale Monte Carlo (MC) simulations to study coarsening
dynamics in the dipolar Ising model (DIM) which encom-
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passes short-range exchange interactions as well as long-range
dipolar interactions. This model is characterized by four
distinct phases: (i) antiferromagnet (AFM), (ii) columnar anti-
ferromagnet (CAFM), (iii) layered antiferromagnet (LAFM),
(iv) ferromagnet (FM). The dipolar interactions lead to di-
verse ground state (GS) configurations with strong anisotropy.
Yet the nonequilibrium dynamics is characterized by uni-
versality. Our main observations are that (i) the spatial
correlation function exhibits universal scaling; (ii) the do-
main growth law obeys the universal Lifshitz-Allen-Cahn law
�(t ) ∼ t1/2.

Thermal quenches are a starting point for many nonequi-
librium studies in the laboratory. In these experiments,
the system often accesses long-lived metastable states that
are encountered in our simulations. So our observations
could provide a fresh outlook to interpret relaxation phe-
nomena in dipolar solids [5,6,14]. Our work also suggests
novel experimental investigations in the more contemporary
self-assembled superlattices [48]. In the latter system, the
constituent magnetic nanoparticles are usually functionalized
with an insulating surfactant layer to prevent aggregation. The
surfactant thickness can be adjusted to manipulate dipole-
dipole interactions to tailor spin morphologies dictated by
applications. For example, a large class of self-assembled
lattices finds applications for spintronic devices that require an
AFM arrangement of the nanodipoles for efficient operation
[49–55]. An improved understanding of the interplay of short-
range and long-range interactions would yield better strategies
to achieve such challenges.

To the best of our knowledge, this is the first study
of coarsening in (d = 3) dipolar solids. The developed
methodologies provide a basis for relaxation studies in sys-

tems with anisotropic and long-range interactions in general.
We have identified unexpected dynamical universalities in the
DIM, which is representative of a large class of microscopic
and mesoscopic systems. However, there are many puzzles
that still need to be understood. For example the basis for
universality, the role of lattice geometry and other forms of
long-range interactions, and the possibility of the glassy state
in the LAFM phase are open questions. Another nonequilib-
rium phenomenon of great relevance in experimental systems
is that of aging [29,30]. This property probes the history-
dependent evolution of correlation and response functions
when the system is driven out of equilibrium by, e.g., a thermal
quench or the application of a magnetic field. There are a few
such studies for the Ising model with long-range interactions
in d = 2, and these have suggested novel violations, phases,
and exponents [56–58]. It will be interesting to study aging
phenomena in the anisotropic DIM. The consequence of spe-
cial directions on the relationship between waiting times and
relaxation times is an open question. We hope that our study
will motivate investigations to seek these answers, which are
important for fundamental understanding as well as experi-
mental interpretations.
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