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Noise-to-noise ratios in correlation length calculations near criticality
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For finite quenched random systems, on regular lattices, it is possible to define two types of variances (noises).
It is demonstrated that their ratio is useful in calculating the correlation length of an infinite and rather general
random system, as a function of temperature. The numerical method of obtaining those variables is not relevant. It
can be real-space numerical renormalization, simulation, or any other method. It does not matter. The correlation
length obtained by this technique may then be used to obtain directly the critical correlation exponent, ν, rather
than indirectly, using scaling relations, as is often done. The method is demonstrated by applying it to the random
field Ising model.

DOI: 10.1103/PhysRevE.104.024125

I. INTRODUCTION

Up until about a decade ago, quenched random systems
were extensively studied, both theoretically and experi-
mentally. Since then, the activity seems to have dwindled
considerably. What may be interpreted as lack of interest due
to all the interesting problems having already been solved,
reflects actually the difficulty of the field and lack of real
progress. For example, even the values of the critical expo-
nents at second-order transitions are not known for accuracy
after decades of research. Take, for instance, the random
field Ising model (RFIM). The various techniques used over
the years for calculating the critical exponent, ν, related
to the correlation length, yielded results wide-ranging from
0.62 to 2.26. (The list of methods includes: exact ground
state [1–3], domain wall renormalization group simulations
[4], Monte Carlo simulations [5–9], Migdal-Kadanoff renor-
malization group [6,10,11], Casher-Schwartz renormalization
group [12,13], modified dimensional reduction [14], and ex-
periment [15–18].)

In this paper, an effort is made to correct the situation by
presenting an alternative method for calculating the correla-
tion length, as a function of temperature, for rather general
quenched random systems, on regular lattices. The correla-
tion length can also be obtained by measuring the correlation
function [13], but that requires much larger systems and many
more calculations per each realization than the present tech-
nique. The reason for that difficulty is that it requires the
calculation of the correlation function as a function of distance
within each realization. It would also require many realiza-
tions to have enough statistics and to have a situation where
the correlation length is still small compared to the size of
the system, which becomes more problematic as the transition
is approached [13]. Inspired by an argument first introduced
by Brout [19], the method is based on defining, for any local
quantity of one’s choice, two types of variances, which arise
fundamentally from the two natural averaging procedures at
our disposal: the average over the distribution of the random-
ness and the spatial average. It is shown how the ratio of two

such variances yields directly the correlation length associated
with the local quantity chosen. “Local quantity” means here a
function of a set of neighboring spins where the linear size of
such a set is small compared to the correlation length. Note
that for an infinite system, for any such linear size of the
set, there is always a range of temperatures, close enough to
the transition temperature, for which the correlation length is
indeed much larger than the linear size of the set in mind. An
immediate byproduct of calculating the correlation length as a
function of temperature, close to the transition, is an estimate
of the transition temperature, along with a direct measure of
the critical exponent related to the correlation length.

The method presented here is quite general. It may be
applied to any quenched random system on any type of reg-
ular lattice. Any type of randomness may be considered and
variances of any local physical quantity may be used. Also,
the way the variances are obtained is actually irrelevant and
any numerical method for obtaining those variances will do.
Due to its generality, the method may be expected to provide
a useful tool in the study of quenched random systems. As
will be seen in the following, the discussion assumes Ising
systems. A careful examination of the derivation of the main
results will convince the reader that the results obtained are
more general. To give a concrete demonstration, the method
is applied to the spin-spin correlation function of the three-
dimensional RFIM.

II. THE METHOD

Consider a large, but finite, general quenched random sys-
tem of Ising spins, represented by the random Hamiltonian

H = −H0 −
∑

A

hASA, (1)

where the coupling constants in the ferromagnetic Hamilto-
nian, H0, are position independent and the sum over A is over
local subsets of neighboring spins in the system. The notation
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SA is used for the product of all spins belonging to a subset A,

SA =
∏
i∈A

si. (2)

The hA’s are random couplings, which average to zero but may
be short ranged correlated. Here are two examples to clarify
the above. For H0 the nearest-neighbors (nn) ferromagnetic
Ising Hamiltonian, the traditional random field Ising model is
obtained by choosing the sets A to be single sites. The random
bond Ising model is obtained by choosing those sets to be pairs
of nn.

Let us denote by Xk a local quantity associated with a
location k on a lattice of volume (the total number of sites), V .
The number of locations K is of the order of V , but it is usually
larger. For example, if Xk is taken to be the spin at k, then
the total number of locations, K , is V . If Xk is chosen as the
product of a pair of nn spins, then the locations k correspond
to the centers of the bonds connecting the two spins in each
pair and thus K = V d on a d-dimensional hyper cubic lattice.
Define next xnk to be the thermal average of Xk, taken for a
given realization of the randomness, n, with n = 1, . . . , N .

Define next two types of averages along with their relevant
variances. The first is the spatial average of xnk within some
realization n of the randomness, that is,

x̄n ≡ 1

K

∑
k

xnk, (3)

Its squared variance is given by

ε2
xn ≡ 1

K

∑
k

x2
nk − x̄2

n . (4)

The second is the total average, the average of x̄n over all
realizations:

x̄ ≡ 1

N

N∑
n=1

x̄n = 1

NK

N∑
n=1

∑
k

xnk. (5)

To the above total average, one can associate two types of
variances. The first is related to the single summation repre-
sentation of x̄ in Eq. (5) and is defined as

δ2
x ≡ 1

N

N∑
n=1

x̄2
n − x̄2. (6)

The second is obviously related to the double summation
representation of x̄ in Eq. (5) and is defined as

σ 2
x ≡ 1

NK

N∑
n=1

∑
k

x2
nk − x̄2. (7)

Note that these two variances are not the same since

σ 2
x − δ2

x = 1

N

N∑
n=1

(
1

K

∑
k

x2
nk − x̄2

n

)
= 1

N

N∑
n=1

ε2
xn ≡ ε2

x .

(8)

Let Kξ be the number of locations, k, within a correlation
volume, at which xnk is obtained. The geometry described
above is represented in Fig. 1, for a two-dimensional system.

FIG. 1. A two-dimensional representation is given schematically.
Each square confined by thick lines is a different random realization
of the system. The 20 different realizations are artificially presented
side by side, just for the purpose of portraying the indices. The
realization index is advanced from left to right along the first row and
then continues from the left on the second row and so on. The volume
V is the number of sites in a square of linear size L. The correlation
volume Vξ is the correlation length squared. A thick arrow represents
a location vector k. The number of locations, K , is taken to be equal
to the system’s size, V .

Systems of linear size L corresponding to different realiza-
tions are artificially depicted side by side, just for the purpose
of portraying the indices. (Having said that, it should be noted
that the whole idea of using different, independent, realiza-
tions is based on an argument, first introduced by Brout [19],
which claims that a sufficiently large system may be broken up
into subsystems large enough to be considered independent of
each other. Thus, the representation of the different realiza-
tions as if they constitute a one larger system, as presented in
Fig. 1, is not devoid of physical meaning, provided L is large
enough.)

A. Away from the transition

Away from the transition, where the correlation length, ξ ,
is much smaller than the linear size of the system, L, the
number of statistically independent variables in the system,
K/Kξ , is very large (note that for the RFIM this is possible
only for temperatures above the transition, because below the
transition the correlation length is always of the order of L
[13,20]). In that case, according to the central limit theorem,
x̄n may be viewed as distributed normally around its average,
x̄, with variance σ 2

x /(K/Kξ ). Following the definition of δ2
x ,

given by Eq. (6), one obtains δ2
x = σ 2

x Kξ /K , or

Kξ =
(

δx

σx

)2

K. (9)

For the following, it proves useful to define, for the general
local quantity x, a function

fx(T, L) ≡
(

δx(T )

σx(T )

)2/d

L, (10)
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where T is the temperature and d is the dimensionality of the
system. For example, if x represents the local magnetization,
m, or the local susceptibility, χ , then it is clear that K = Ld

and Kξ = ξ d , since both quantities are defined for a single site.
Thus, when ξ is much smaller than L, substituting the above
K and Kξ into Eq. (9), leads to

ξ (T, L) = fx(T, L). (11)

Equation (11), together with the definition of fx(T, L) given
by Eq. (10), are the main result of this paper. It may seem
that Eq. (11) is based on the local quantities being just single
site quantities. The interested reader could, however, convince
himself easily that it holds for any local quantity, as long as
the linear extent of that quantity is considerably smaller than
the correlation length.

B. Close to the transition

Close to transition, where the correlation length, ξ , is close
to the linear size of the system, L, the number of independent
variables in the system, K/Kξ , tends to unity. Given that, the
central limit theorem, and therefore Eq. (9), do not apply any
longer. In that case, one cannot assume, using Eq. (9), that
necessarily δx/σx tends to unity, nor use Eq. (11) to obtain
ξ . The question arising now is how to proceed from here to
obtain the correlation length critical exponent, ν. The possible
difficulties and a practical strategy for performing that task are
outlined in the following paragraphs.

C. Regarding the infinite system

An obvious but important observation, regarding the infi-
nite system, is that for any temperature above Tc, no matter
how close it is to Tc, the correlation length is finite and there-
fore infinitely small compared to the size of the system. It
means that, regarding the infinite system, Eq. (11) holds for
any temperature T , above Tc. It is also clear that for finite
systems, there should always be a region of temperatures,
above Tc, where ξ is only weakly dependent on L. Therefore,
for that region, one can use fx(T, L), of that finite system, to
describe ξ of the infinite system. It also means that the validity
of that description extends to temperatures closer and closer
to Tc as the system size is increased accordingly. In Eq. (11)
the temperature dependence of ξ enters via the temperature
dependence of δ and σ . It may be expected, therefore, that
for a set of finite sizes, {Li} all the functions of temperature,
fx(T, Li ), will merge with ξ (T,∞) for temperatures away
from Tc. For temperatures closer to Tc, however, these func-
tions are expected to depart from one another and from the
infinite system correlation length according to system size.

The asymptotic behavior of ξ (T ) near the transition tem-
perature, Tc, defines the critical exponent ν, by

ξ (T ) ≈ A|T − Tc|−ν, (12)

where A is a constant. Very close to Tc, it is clearly impossible
for ξ to be described by Eq. (11), as the central limit theorem,
on which Eq. (11) is based, does not apply. It becomes possi-
ble somewhat away from Tc, provided the size of the system
is large enough. What is needed is a range of temperatures for
which Eqs. (11) and (12) will both hold. In that range, which

is possible to find in principle by increasing the size of the
system, one can equate ξ (T ) of Eq. (11) with that of Eq. (12)
to obtain

ln

[(
δx(T )

σx(T )

)2/d

L

]
≈ −ν ln |T − Tc| + ln A. (13)

This is not to be confused with finite-size scaling, as the
method described here does not make use of the behavior
of ξ as a function of L. The larger the system is, the bet-
ter the accuracy of the method is, so that only the largest
size to be numerically realistic should be used. It may seem
unclear, though, whether systems large enough are actually
practical. There is a reason to believe, however, that indeed,
such temperature regions where both Eqs. (11) and (12) hold
simultaneously, exist. Prior experience with RFIM [13] sug-
gests that large enough systems are numerically accessible.
Although the technique of obtaining the correlation length
there is less efficient than the technique presented here, the
task of obtaining the critical exponent, ν, faces the same
difficulties.

III. A DEMONSTRATION OF THE METHOD

Consider the random field Ising Hamiltonian,

H = −J
∑
〈i, j〉

sis j −
∑

i

hisi, (14)

where the pair 〈i j〉 denotes a nn pair on a cubic lattice with pe-
riodic boundary conditions. The hi’s are random uncorrelated
fields, distributed around zero,

hi = 0, hih j = h2δi j, (15)

where δi j is the Kronecker δ. The bar denotes ensemble av-
erage and the random fields are distributed according to a
Gaussian distribution,

P{h} =
∏

i

Pi{hi} = 1

(h
√

2π )K
exp

(
− 1

2h2

∑
i

hi
2

)
. (16)

Before we proceed, it should be emphasized that what follows
is only a demonstration of the feasibility of the method. More
accurate results may be achieved by considering, numerically,
larger systems, or by using more elaborate and more precise
RG approaches, as well as other methods, not related at all to
RG (such as high temperature expansion or large simulations),
for calculating the variances, σ and δ.

Take the local quantity,

Xi = si

h2

K∑
j=1

h j . (17)

I chose to multiply the local dynamical variable si by
(
∑K

j=1 h j )/h2, because its thermal and ensemble average has
a very interesting meaning, namely,

〈Xi〉 = β

K∑
j=1

〈sis j〉 − 〈si〉〈s j〉. (18)

Since 〈Xi〉 does not depend on i, it is easy to show [13,20,21]
that it is exactly the ensemble averaged susceptibility. [Note
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FIG. 2. The function fx (T, L), is plotted vs temperature. Also
shown is a fit of the asymptotic behavior of ξ (T ) to fx (T, L) of the
largest L = 64 system. It is clearly seen how the lines of the finite
systems depart from ξ (T ) depending on system size.

that the form of the distribution Eq. (16) is essential in deriv-
ing the exact relation Eq. (18).]

Both δx(T ) and σx(T ) were calculated for xi = 〈Xi〉, using
their definitions given by Eqs. (6) and (7). The procedure
I use here for obtaining xi numerically, is based on the
Casher-Schwartz RSRG [12,13,20,22]. As other real-space
techniques, the Casher-Schwartz RSRG provides simple, one
step, recursion relations for the fields and couplings con-
stants. As other RSRG techniques on regular lattices, such
as the Migdal-Kadanoff RSRG, it cannot be expected to be
exact, of course. A set of V = L3 Ising spins, with L = 2n,
situated on a three-dimensional cubic lattice with periodic
boundary conditions, is considered. First a realization of the
distribution Eq. (16) is generated. Then the Casher-Schwartz
procedure is applied n − 1 times. This results in a cubic
system of the 2 × 2 × 2 spins surviving the procedure. The
smallness of the system allows brute force calculation of
the remaining 8 〈si〉’s. The “sites translation” method [13] is
used to enable the calculation of the thermal average of all
the spins in the original lattice. The actual ensemble aver-
ages were performed by repeating the calculations for 10 000
realizations of the randomness. The averages obtained for
each realization are distributed with the variance δx as de-
fined by Eq. (6), while the local quantity itself is distributed
over the entire system (including all realizations) with the
variance σx as defined by Eq. (7). Finally, the numerical pro-
cedure described above is repeated for different temperatures,
while setting h = kT/2. The largest system considered here
is L = 64 = 26.

In Fig. 2 the function fx(T, L) is plotted versus temper-
ature. All quantities presented in Fig. 2 are dimensionless.
Length is measured in units of lattice constant. Taking the
spin variables to be dimensionless, makes the parameters
h and J in the Hamiltonian Eq. (14) have the dimensions
of energy. To use in the figure dimensionless quantities, h
and T , are rescaled: h/J → h and kT/J → T . Under that,

0.1 1

10

100
 L = 64

 L = 16

fit

II

FIG. 3. A log-log plot of Fig. 2. The temperature range, II, used
for the fit is the one where ln[(δx/σx )2/3L] is approximately linear
with ln|T − Tc|. For the sake of clarity only two system sizes are
presented. The slope is obviously −ν.

the setting of h = kT/2 is replaced by h = T/2. For L =
64, three temperature regions can be observed in the figure:
(I) far from Tc, where (δx/σx )2/3L = ξ is not expected to
behave as (T − Tc)−ν ; (II) the temperature range used for the
fit, where (δx/σx )2/3L = ξ ∝ (T − Tc)−ν ; (III) too close to Tc,
where ξ ∝ (T − Tc)−ν , yet (δx/σx )2/3L �= ξ . To establish the
critical temperature, Tc, of the infinite system, along with the
critical exponent, ν, the asymptotic behavior of ξ (T ), as given
by Eq. (12), was fitted to the (δx/σx )2/3L line of the largest
L = 64 system, using only the range of temperatures, denoted
as II in the figure. The proper temperature range II was chosen
as the one giving the best goodness of the fit. The resulting fit
is also shown in Fig. 2.

The resulting fit parameters are as follows:
Tc = 2.778(2.715, 2.84) = 2.778 ± 0.063,
ν = 1.178(1.098, 1.258) = 1.178 ± 0.080,
A = 10.67(9.836, 11.5) = 10.67 ± 0.834,

with goodness parameters:
Adjusted R-squared: 0.9999,
RMSE: 0.03876.
In Fig. 3, a log-log plot of Fig. 2 is presented. This is to

demonstrate that the temperature range used for the fit is the
one where ln[(δx/σx )2/3L] is indeed approximately linear with
ln|T − Tc|.

The temperature range of region II, used here for the fit,
is 3.4 � T � 4.6. The mid temperature is thus TM = 4, while
the region extends to 
T = ±0.6. In Fig. 4, it is demonstrated
that changing the size of region II, particularly expanding
it, only reduces the goodness of the fit, as expressed by the
adjusted R-squared. In the upper left plot, the highest tem-
perature of region II, TH = 4.6, is kept constant while the
region is mainly expanded to lower temperatures. In the upper
right plot, the lowest temperature of region II, TL = 3.4, is
kept constant while the region is mainly expanded to higher
temperatures. Finally, In the lower plot, the mid temperature
of region II, TM = 4, is kept constant while 
T is mainly
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FIG. 4. The goodness of the fit, as expressed by the adjusted R-
squared, is plotted vs three different attempts to mainly broaden the
temperature range used for the fit. It is demonstrated that changing
the size of region II, particularly expanding it, reduces the goodness
of the fit. In the upper left plot, the highest temperature of region II,
TH = 4.6, is kept constant while the region is mainly expanded to
lower temperatures. In the upper right plot, the lowest temperature
of region II, TL = 3.4, is kept constant while the region is mainly
expanded to higher temperatures. Finally, in the lower plot, the mid
temperature of region II, TM = 4, is kept constant while 
T is mainly
extended on both sides of TM . In all plots, the dotted vertical line
indicates the value on the horizontal axis used for the fit.

extended. In all plots, the dotted vertical line indicates the
value on the horizontal axis used for the fit.

The resulting ν = 1.178 ± 0.080 obviously agrees with
part of the previous results cited at the onset of this
paper (exact ground state: ν = 1.32 ± 0.07 [2], domain
wall renormalization group simulations: ν = 1.05 − 1.25
[4], Monte Carlo simulations: ν = 1.4 ± 0.2 [6], ν = 1.1 ±
0.2 [7], and experiments: ν = 1 ± 0.15 [15], ν = 1.5 ± 0.3
[17]). Being a totally independent and direct determina-
tion, the present result gives credence to those results over
others.

IV. SUMMARY

I have presented an alternative and quite general ap-
proach for calculating the correlation length of rather
general quenched random systems, on regular lattices, as
a function of temperature, using noise-to-noise ratios. It
is also outlined how the attained dependence of the cor-
relation length on temperature can be cautiously used
to obtain the correlation length critical exponent ν. The
applicability of the method has been demonstrated on the
random field Ising model. This should not obscure the gen-
erality of the method, as it may be applied to any quenched
random system, under various types of randomness. Also,
variances of any local physical quantity, obtained by any
numerical method, may be used. I expect to apply it to
other systems in the near future. Hopefully, the present ar-
ticle will enable others, who may use other techniques for
numerical study of quenched random systems, to obtain the
critical correlation length exponent by using noise-to-noise
ratios.
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