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Attraction and condensation of driven tracers in a narrow channel
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Emergent bath-mediated attraction and condensation arise when multiple particles are simultaneously driven
through an equilibrated bath under geometric constraints. While such scenarios are observed in a variety of
nonequilibrium phenomena with an abundance of experimental and numerical evidence, little quantitative
understanding of how these interactions arise is currently available. Here we approach the problem by studying
the behavior of two driven “tracer” particles, propagating through a bath in a 1D lattice with excluded-volume
interactions. We apply the mean-field approximation to analytically explore the mechanism responsible for the
tracers’ emergent interactions and compute the resulting effective attractive potential. This mechanism is then
numerically shown to extend to a realistic model of hard driven Brownian disks confined to a narrow 2D channel.
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I. INTRODUCTION

The physics governing the motion of a tracer particle,
forcibly driven along a dense medium and confined to a nar-
row channel, has been extensively explored in recent decades.
Besides its immediate relevance to various biological systems
[1–5], complex fluids, polymer solutions and glassy dynamics
[6–14], it also lies at the core of two important technological
applications: active microrheology, where microscopic probes
are driven along a sample to investigate its spatiotemporal
response properties [15–18], and microfluidic devices, where
colloids are manipulated through an intricate array of micro-
scopic channels, carefully engineered to perform various tasks
[19,20].

The ubiquity of driven tracer systems has stimulated vig-
orous theoretical activity aimed at providing understanding
for the collective dynamics induced by a driven tracer in
geometrically confined and strongly interacting many-body
systems [21–34]. While theoretical efforts have mostly fo-
cused on the case of a single driven tracer, the applications
noted above typically involve multiple simultaneously driven
tracers, substantially complicating the picture. Correspond-
ingly, the cooperative behavior of multiple driven tracers has
recently attracted considerable attention [35–39]. Extensive
numerical studies of multiple tracers in 2D and 3D systems
have shown that the surrounding fluid mediates attractive
interactions between the tracers, leading them to cluster and
form a condensate [35,36]. Studies of 1D lattice models whose
single-file dynamics stems from a simple symmetric exclu-
sion process (SSEP), whereby each lattice site may hold one
particle at most, have also demonstrated cooperative aspects
of the tracer dynamics [37,38]. In this setting, though, where
particles cannot overtake each other, the tracers cannot get too
close since the number of bath particles between each pair of
tracers is conserved under the dynamics. In a recent numerical
study involving a finite density of driven tracers, it was shown

that the tracers tend to aggregate and form clusters which, for
a sufficiently narrow channel, could lead to the formation of
a plug [39]. Yet, in spite of the vast attention this problem
has received, there is still no clear quantitative understanding
of the mechanism responsible for the bath-mediated attractive
interactions between multiple tracers, nor their resulting con-
densation.

In this paper we study the mechanism responsible for
the emergent attraction and condensation of multiple driven
tracers in a narrow 2D channel, occupied by disk-shaped
Brownian particles with hard-core interactions (see Fig. 1).
To this end we model the system as a 1D lattice SSEP,
whose dynamics is extended to account for overtaking in the
2D channel. This approach is shown to capture the salient
features of the attraction mechanism and has the advantage
of being amenable to analytical treatment. Studying the 1D
lattice model with two driven tracers, we uncover a phase in
which the driven tracers strongly attract each other, forming a
robust bound pair. This strong attraction can be attributed to
an effective entropic potential between the tracers, shown to
originate from the inhomogeneous bath density profile gen-
erated by the tracers, as seen in their respective comoving
reference frames. It acts to restrict their motion and mediate
their emergent interactions. With this insight, we construct an
effective framework in which the two driven tracers are mod-
eled by independent biased random walkers, whose moving
rates are determined by the local density of the surrounding
bath. Within this framework, we compute the emergent attrac-
tive potential between the tracers and explicitly show how the
bath’s density forces the tracers towards one another, leading
to the formation of a robust bound pair. Extensive numerical
simulations strongly suggest that the same underlying mecha-
nism is at play in the narrow 2D channel (see Figs. 2 and 3).
In particular, emergent tracer attraction and condensation are
accompanied by qualitatively similar bath-density profiles and
mean tracer velocities. Our results are, thus, argued to serve as
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FIG. 1. Top: Schematic illustration of the narrow 2D channel
system, which comprises hard-core, disk-shaped Brownian particles
of diameter d inside a narrow channel of width Ly > 2d . The driven
tracers and bath particles are respectively depicted by checkered red
disks and solid blue disks. Bottom: Schematic illustration of the
corresponding 1D lattice model, explicitly demonstrating the site
labeling appearing in Eqs. (2) and (3).

a rather general mechanism for attraction and condensation in
geometrically constrained systems involving multiple driven
tracers.

The paper is structured as follows: Sec. II provides a de-
tailed account of the 1D lattice model and previous results
that serve as the basis of the current study. It then presents
our first main result, showing that the 1D lattice model fea-
tures a phase in which the probability of finding two driven
tracers at a distance k decays exponentially with k. Section III
elaborates on the narrow 2D channel system and presents our
second main result, showing that this setup exhibits a qualita-
tively similar mechanism for the attraction and condensation
of multiple driven tracers. Section IV concludes the paper.
Additional details and support of our results are provided in
the Appendix.

II. 1D LATTICE MODEL

SSEP is a canonical lattice model for geometrically con-
strained and interacting many-body systems. It describes

FIG. 2. Trajectories of four hard-core, Brownian disk tracers
driven by a force F = 16 through a bath of density ρ̄ = 0.5 along a
2D narrow channel of width Ly = 2.1 and periodic length Lx = 190.
The model and the reduced units in particular are formally introduced
in Sec. III.

FIG. 3. Trajectories of four tracers on a ring of L = 2048 sites
with a bath density of ρ̄ = 0.2 and rates p = 1 and q = p′ = q′ =
0.001.

particles hopping along a 1D lattice with hard-core inter-
actions that prevent particles from overtaking one another
[40]. Yet we would like to consider settings where overtak-
ing is possible, albeit significantly suppressed by geometric
constraints. We thus adopt an extension of the standard
SSEP dynamics, first introduced in [33], that includes driven
“tracer” particles that can also overtake neighboring bath par-
ticles at a finite rate.

Consider a 1D ring of L (even) sites, labeled � = −L/2 +
1, . . . ,−1, 0, 1, . . . , L/2, which are occupied by M driven
tracer particles and N bath particles of mean density ρ =
N/(L − M ). All particles interact via “simple exclusion” [40],
whereby each site may hold one particle at most. Bath par-
ticles symmetrically attempt hops to neighboring right and
left sites with rates 1, whereas the tracers’ hopping rates, p
to the right and q to the left, are generally asymmetric with
p �= q. Particle overtaking is introduced into this dynamics
by allowing a tracer to exchange sites with a bath particle
occupying its neighboring right and left sites with respective
rates p′ and q′ (see Fig. 4).

This model’s phase diagram—presented for ρ̄ = 0.15 in
Fig. 5 after rewriting the dynamical rates according to

FIG. 4. Schematic illustration of the 1D lattice model dynamics.
Bath particles are depicted by empty circles, driven tracers by filled
red circles. Arrows represent the allowed moves with their respective
attempt rates.
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FIG. 5. The phase diagram for the 1D lattice model with a single
driven tracer and average bath density ρ̄ = 0.15. The localized phase
(L) appears in yellow, the extended phase (E) in white. The critical
manifolds are given by δ′I

c = δ(1−ρ̄)
δ−ρ̄

and δ′II
c = − δ(1−ρ̄)

δ+ρ̄
.

p = r(1 + δ), q = r(1 − δ), p′ = r′(1 + δ′), and q′ = r′(1 −
δ′)—was derived for a single driven tracer in Ref. [33]. With
this notation, the single tracer phase diagram is expressed in
terms of only three parameters: δ = p−q

p+q , the hop bias, δ′ =
p′−q′
p′+q′ , the exchange bias, and the average density, ρ̄. The phase

diagram is independent of the other two parameters: r = p+q
2 ,

the hop magnitude, and r′ = p′+q′
2 , the exchange magnitude.

By varying δ, δ′ and ρ̄, two phases were demonstrated:
a “localized” phase, where the driven tracer attains a finite
velocity and generates a localized deviation of the bath den-
sity from ρ̄ (in its comoving frame of reference), and an
“extended” phase, where the tracer’s velocity vanishes as the
inverse system size and the bath density profile extends across
the entire system.

Extensive numerical studies of the narrow 2D channel sys-
tem with a single tracer, described in Sec. III, reveal a clear
correspondence between the characteristic features of the 1D
lattice model’s localized phase and those of the narrow 2D
channel, when it is wide enough to allow particle overtaking.
In particular, it is found that the driven tracer velocity remains
finite for large systems and that the bath density profile is
mostly localized in front of the driven tracer. Here we are
interested in the emergent attraction and condensation that
arise when multiple driven tracers are considered. The corre-
spondence between the 1D model’s localized phase and the
narrow 2D channel for a single driven tracer, suggest that
the behavior of multiple tracers may also be probed within the
1D lattice model’s localized phase. To this end, and as a first
step towards probing the driven tracers’ attraction mechanism,
we consider the 1D lattice model with two driven tracers for
parameters corresponding to the single-tracer localized phase.

The resulting phase diagram in Fig. 6 shows that, in some
domain of its parameter space, the 1D lattice model with two
driven tracers features an “attractive” phase. In this phase the
probability of finding the tracers separated by a distance k
is exponentially decaying. This is manifested in the tracers’
tendency to strongly attract each other and form a condensate.

This phase diagram is obtained within the mean-field ap-
proximation, where the two driven tracers are modeled as

FIG. 6. The 1D lattice model’s phase diagram for two trac-
ers with average density ρ̄ = 0.15 and r/r′ = 100. Repulsion is
predicted in the red region while attraction is expected in the com-
plementary domain. Data from numerical simulations of the model
are illustrated with magenta crosses and blue dots, with the for-
mer depicting repulsion between the tracers and the latter depicting
attraction.

independent biased random walkers, whose moving rates de-
pend on the stationary average bath density in their vicinity.
To this end, we approximate the bath density profile with that
derived in Ref. [33] for a single driven tracer, which is shown
in Fig. 7 to be a fair approximation of the bath density profile
generated by the bound tracer pair. We then demonstrate that,
for strong drive magnitude r and sufficiently small overtaking
magnitude r′ (i.e., r � r′), the bath density acts to “push” the

FIG. 7. The stationary bath density profile ρ� in a lattice of L =
4096 sites with mean bath density ρ̄ = 0.15. The dynamical rates
are p = 1.9, q = 0.1, p′ = 0.0075, and q′ = 0.0125, corresponding
to δ = 0.9, δ′ = −0.25, r = 1, and r′ = 100. The solid blue curve
shows the simulated bath density profile for two driven tracers, the
dashed orange curve shows the simulated profile for a single driven
tracer, and the red dots mark the single tracer mean-field prediction
for the bath density adjacent to the tracers. The deviation of the bath
density near the bound tracer pair from the mean-field prediction for
a single driven tracer (red x’s) is small: at site � = 1 it is ∼0.0507 and
at site � = −1 it is ∼0.0172. The deviation of the simulated single
tracer bath density profile from the mean-field prediction is smaller
still: at site � = 1 it is ∼0.0016 and at site � = −1 it is ∼0.0073.
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tracers towards one another. To quantify this effect, we take
the thermodynamic limit L → ∞ and formulate an equation
for the distribution Pn0,n1 of the number of holes, n0, and of
bath particles, n1, between the two tracers. We then solve Pn0,n1

in the long-time limit and derive the stationary distribution
Q(k) of the distance k = n0 + n1 between the tracers, which
is given by Q(k) = ∑

n0+n1=k Pn0,n1 . Our analysis is concluded
upon showing that Q(k) decays exponentially with k, indicat-
ing that the tracers effectively interact via a linear attractive
potential, which leads to the tracers’ bound state. Additional
validation for the assumption that the bound tracer pair retains
the features of the single-tracer localized phase is provided in
Figs. 17 and 16 in the Appendix.

As a first step in this analysis we consider a large ring,
L � 1, and take n0 and n1 whose sum corresponds to the short
distance between the two tracers: the instantaneous position
of the rightmost “tracer 1” defines the location of site � = 0.
The second tracer, called “tracer 2,” is then located at site � =
−(k + 1) (see Fig. 1). We henceforth refer to tracer moves that
reduce k as “inward” moves, while moves that increase k are
called “outward” moves. The master equation for Pn0,n1 is then

∂t Pn0,n1 = (Rh
+∇n0− + Rh

−∇n0+ )Pn0,n1

+ (Rx
+∇n1− + Rx

−∇n1+ )Pn0,n1 , (1)

where ∇n0± Pn0,n1 ≡ Pn0±1,n1 − Pn0,n1 and ∇n1± Pn0,n1 ≡
Pn0,n1±1 − Pn0,n1 are discrete gradient operators. Equation
(1) is supplemented with the “boundary” condition Pn0,n1 = 0
for n0 < 0 or n1 < 0. The moving rates Rh

+, Rh
−, Rx

+, Rx
−

respectively correspond to moves that introduce a hole
between the tracers by hopping outwards, remove a hole by
hopping inwards, introduce a bath particle by exchanging
outwards, and remove a bath particle by exchanging inwards.
Due to the model’s exclusion interactions and exchange
dynamics, the moving rates Rh,x

± in Eq. (1) naturally depend
on the instantaneous bath particle occupation at the sites
� = ∓1 and � = −(k + 1) ∓ 1, which are adjacent to
the locations of tracers 1 and 2, respectively. Within the
mean-field approximation, we replace the instantaneous
site occupations by their stationary average density. This
completes the reduction of the model’s dynamics to that of
two independent biased random walkers, whose moving rates
are determined by the stationary bath density around them.
These rates are given by

Rh
+ = p(1 − ρ1) + q(1 − ρ−k−2), Rx

+ = p′ρ1 + q′ρ−k−2,

(2)

Rh
− = q(1 − ρ−1) + p(1 − ρ−k ), Rx

− = q′ρ−1 + p′ρ−k, (3)

with ρ� and (1 − ρ�) replacing the respective instantaneous
occupation and vacancy of site �.

With the expressions provided by Eqs. (1)–(3), we proceed
to demonstrate the existence of an attractive phase in which
the two tracers form a robust bound state. This is most easily
understood after gaining some intuition by initially inspecting
the most trivial setup: Let us consider a forward-biased drive
p > q with p ∼ O(1) and note the following trivial observa-
tion: if the two tracers are initially placed at adjacent sites
and no overtaking is allowed, i.e., p′ = q′ = 0, the number
of bath particles between the tracers remains zero at all future

times. The two tracers cannot get too far from each other, as
this would require an unreasonably large fluctuation of the
density of bath particles. Thus, the two tracers form a bound
state. While the existence of a two-tracer bound state is not
very surprising under such geometrically restrictive settings,
its persistence in the presence of finite overtaking rates is far
from obvious.

Let us now introduce small overtaking rates p′, q′ 
 1
(equivalently r/r′ � 1), and analyze the distance distribution
between the two tracers. Determining the tracers’ moving
rates, Rh

±, Rx
± in Eqs. (2) and (3) requires knowledge of the

stationary bath densities near the tracers. Motivated by the
equivalence between the 1D lattice model’s localized phase
and the narrow 2D channel model for a single driven tracer,
we proceed to carry out the analysis in the localized phase
of the 1D lattice model. If the two tracers do form a bound
state, where the typical distance between them is small [of
∼O(1) with respect to L], we may think of this bound pair as
a single “effective” driven tracer. The bath density profile ρ�

obtained in Ref. [33] for a single driven tracer can then be used
to approximate that generated by the bound pair (see Fig. 7).
We thus use the results

ρ1 = ρ
p − (1 − ρ )(q − q′)

pρ + p′(1 − ρ )
(4)

and

ρ−(k+2) = ρ, (5)

obtained in Ref. [33] for the localized phase to determine the
outward moving rates Rh

+ and Rx
+ given in Eq. (2). We are then

left to determine the inwards moving rates Rh
−, Rx

−.
Let us now consider the limit of a large forward drive, p ∼

O(1) and q 
 1, which together with small overtaking rates
p′, q′ 
 1 result in small outward rates Rh

+, Rx
+. On timescales

smaller than the inverse of Rh
+, Rx

+, the distance between the
tracers remains mostly unchanged. The bath particles located
between them, which symmetrically attempt hops to both
sides with rate 1, quickly relax to a stationary state, which
in the case of SSEP in a closed interval is a uniform distri-
bution. We thus approximate the distribution of the particles
between the two tracers by a uniform distribution, implying
ρ−1 = ρ−k = n1

n0+n1
and 1 − ρ−1 = 1 − ρ−k = n0

n0+n1
. For an

(n0, n1) configuration, the inward rates in Eq. (3) are

Rh
−(n0, n1) = (p + q)

n0

n0 + n1
,

Rx
−(n0, n1) = (p′ + q′)

n1

n0 + n1
. (6)

Equations (1)–(6) can now be used to determine the sta-
tionary distribution Pn0,n1 . Verification of the two-tracer bound
state in the absence of overtaking provides a welcome con-
sistency check. Substituting n1 = p′ = q′ = 0 yields Pn0,0 ∝
(Rh

+/(p + q))n0 . Since Rh
+/(p + q) 
 1, the stationary proba-

bility indeed decays exponentially with n0.
We are finally ready to tackle the far more interesting case

of finite exchange rates p′, q′ 
 1. We seek an exponentially
decaying solution which generalizes the above solution in the
absence of overtaking. This motivates the ansatz

Pn0,n1 = An0,n1 an0 bn1 , (7)
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where

a ≡ Rh
+/(p + q), b ≡ Rx

+/(p′ + q′) (8)

and An0,n1 remain to be determined. Inserting the ansatz in
Eq. (7) into Eq. (1) yields

(p + q)
(

An0−1,n1 − n0

n0 + n1
An0,n1

)

+ (p′ + q′)
(

An0,n1−1 − n1

n0 + n1
An0,n1

)

+ Rh
+

(
n1 + 1

n0 + n1 + 1
An0,n1+1 − An0,n1

)

+ Rx
+

(
n0 + 1

n0 + n1 + 1
An0+1,n1 − An0,n1

)
= 0, (9)

for n0, n1 > 0. Each pair of brackets in Eq. (9) individually
vanishes for An0,n1 = A

(n0+n1

n0

)
, with A ≡ A(n0, 0) = A(0, n1)

set by the normalization of Pn0,n1 , giving

Pn0,n1 = (1 − a − b)

(
n0 + n1

n0

)
an0 bn1 . (10)

Having found the distribution of holes, n0, and of bath parti-
cles, n1, between the tracers, we finally carry out the last step
of our analysis. Taking a partial sum of Pn0,n1 while keeping
the distance between the two tracers k ≡ n0 + n1 fixed yields

Q(k) ≡
∑

n0+n1=k

Pn0,n1 = (1 − a − b)(a + b)k . (11)

In analogy with equilibrium statistical mechanics, where
the Boltzmann distribution for a configuration of energy E
is ∼e−βE at inverse temperature β, the exponential decay of
the probability Q(k) with k can be attributed to a strongly
attractive emergent potential

βE = βV (k) = − ln(a + b)k. (12)

The origin of this confining potential, which leads to a
two-tracer bound state whose average distance is 〈k〉 = (a +
b)/(1 − a − b) 
 1, lies in the nonhomogeneous bath density
profile generated by the driven tracers themselves. Equation
(11) clearly relates the bath density profile near the tracers,
which enters via a and b of Eqs. (8), to their emergent at-
tractive interactions and resulting condensation. In Fig. 8 we
compare the theoretical expression for Q(k) in Eq. (11) to
numerical simulation results, showing a very good agreement
for several choices of the dynamical rates.

As is evident from the numerical two-tracer phase dia-
gram presented in Fig. 6, attraction and condensation reach
far beyond the parameter region corresponding to the single-
tracer localized phase and appears to cover the entire extended
phase as well (see Fig. 5). While our analysis was focused
on the 1D lattice model’s localized phase, in hopes of captur-
ing the corresponding physics of a narrow 2D channel, this
analysis is straightforward to apply to the extended phase
too. Carrying out the analysis shows that the empirically
observed attraction in the extended phase agrees with the
results of our theoretical analysis. As in the localized phase,
the analysis holds under the assumption that the bath den-
sity profile generated by the bound two-tracer pair is well
approximated by the profile generated by a single driven

FIG. 8. Histogram Q(k) of the distance k = n0 + n1 between the
two tracers in the 1D lattice ring of L = 4096 sites with mean bath
density ρ̄ = 0.15. Blue dots denote simulation data for p = 1.9, q =
0.1, p′ = 0.0075, and q′ = 0.0125, corresponding to δ = 0.9, δ′ =
−0.25, r = 1, and r′ = 0.01. The dashed red curve is the theoretical
prediction for Q(k) in Eq. (11), with Rh

+ in a and Rx
+ in b have been

determined by using the empirical bath density near the bound tracer
pair. The inset shows a plot of q(k) = log [ Q(k)

1−a−b ]/ log [a + b] versus
k for three different sets of parameters δ and δ′, for fixed r = 1 and
r′ = 0.01. Set 1: δ = 0.9, δ′ = −0.25. Set 2: δ = 0.5, δ′ = −0.31.
Set 3: δ = 0.75, δ′ = −0.65.

tracer in the extended phase. Substituting ρ1 = q′(p−q)
pq′−qp′ and

ρ−(k+2) = q′(p−q)
pq′−qp′ , which were computed for the extended

phase in Ref. [33], inside (a + b)k of Eq. (11) for Q(k)
yields

Q(k) ∝
(

Rh
+

p + q
+ Rx

+
p′ + q′

)k

= (1 + δδ′)k . (13)

Noting that δδ′ < 1 is satisfied throughout the entire extended
phase [33], we confirm that the distance between the two trac-
ers Q(k) ∝ (a + b)k indeed decays exponentially throughout
the extended phase. The linear potential derived for this model
could be compared with the results of previous analysis done
for the single-file case, where no overtaking is allowed. In
[37] the resulting effective potential for that case was found
to be harmonic at short distances and quasilinear at large
distances.

The phase diagram resulting from our analysis is given
in Fig. 6. It displays a phase, in which the two tracers
attract each other for a + b < 1, and a repulsive phase in
the complementary region. The phase diagram is compared
with results obtained by numerical simulations of the model
where the attractive and repulsive regions are indicated by
blue dots and magenta x’s, respectively. It is clearly seen
that our analysis captures well the bulk of the two phases.
Finding the transition line requires a more detailed analysis,
which is beyond the mean-field approximation applied in the
present analysis. Moreover the assumption of a homogeneous
distribution of the bath particles between the two tracers is
expected to work well for a, b 
 1 but should break down
at larger values of these parameters, where the transition is
expected.
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III. 2D NARROW CHANNEL

In this section we provide details regarding the 2D narrow
channel system and discuss its numerical simulation scheme.
We then present numerical evidence showing that this system
exhibits the same qualitative features found in the 1D lattice
model’s localized phase for a single driven tracer. The bath
density profile is localized around the tracer, whose velocity
approaches a finite value at large system sizes. Finally, we
show that this localized phase persists in the case of two
driven tracers, and verify that the distribution of the distance
between the tracers decays exponentially, just as it does in
some regions of the 1D lattice model’s localized phase. This
evidence strongly suggests that the mechanism responsible for
the attraction and condensation of multiple driven tracers in
the narrow 2D channel is the same as that shown analytically
in the 1D lattice model’s localized phase. Namely, that the
inhomogeneous bath density profile generated by the driven
tracers conspires to induce a strong effective attraction be-
tween them.

The narrow 2D channel system consists of N + M disk-
shaped particles of diameter d and unit mass, including N
“bath” disks and M “tracer” disks. The mean bath density
is defined by ρ̄ = N

LxLy
, where Lx is the channel’s length and

2d < Ly 
 Lx its width. The channel is periodic along the x
direction.

The tracers are externally driven by a constant force of
magnitude F along the positive x direction. The disks’ posi-
tions and velocities, respectively denoted by ri = (xi, yi ) and
vi = (vx,i, vy,i ) with i = 1, . . . , N + M, evolve according to
the following Langevin dynamics:

ṙi = vi ; v̇i = −γ vi +
√

2γ kBT ξi + (F ) + {coll}, (14)

where γ denotes the friction coefficient, kB the Boltzmann
constant, T is the temperature, ξi(t ) is a 2D vector whose com-
ponents are Gaussian white noises satisfying 〈ξμ

i (t )ξν
j (t ′)〉 =

δi jδ
μνδ(t − t ′), δi j and δμν are Kronecker delta functions,

i, j = 1, 2, . . . , N + M denote particle indices, μ, ν = 1, 2
denote the two spatial directions, δ(t − t ′) is the Dirac delta
function, and the notation (F ) is used to indicate that the
constant force F = Fx̂ acts only on the M tracers and does
not affect the N bath disks. The last term in Eq. (14) encapsu-
lates two kinds of collisions: elastic particle-particle collisions
and “thermal” particle-wall collisions. In the latter case, the
re-emitted disk’s velocity components parallel and perpen-
dicular to the wall are drawn from two distinct distributions:
the Boltzmann distribution for the parallel component and a
different distribution for the perpendicular one (see [41] for
details). Dimensionless units are used, for which the disk
diameter d and mass m as well as kB and T are all unity. In
addition, γ = 2 is used throughout. The stochastic equations
of motion are solved to first order in the time step 
t = 0.001
according to the Gillespie updating scheme [42,43].

In the following, the linear density profile n(r) will be
required. It may be approximated by covering the channel
with a linear grid of boxes comoving with the frame of one
of the tracers which we refer to as “tracer 1.” The width
of the boxes is Ly, their length 
x. The latter may be cho-
sen as required, 
x ≈ (N + M − 1)/(4Lx ) ≈ 0.25 is a useful
choice. The ≈ sign is required here to ensure that Lx/
x,

FIG. 9. Stationary mean tracer velocity 〈vt,x〉 along the channel
axis as a function of the channel length Lx in the 2D channel. The
violet and red solid points respectively show numerical simulation
data for a single tracer and a bound pair. The corresponding curves
are a fit to the a + b/Lx behavior that is expected in the localized
phase. Canonical parameters, F = 16, ρ̄ = 0.4 and Ly = 2.6, apply.

the number of boxes, is an integer. Let Ni denote the total
number of particles in box i, including the second tracer if
present (not to be confused with the number of bath parti-
cles N). This box is located at position ri = xi − xt,1 (i.e.,
in tracer 1’s frame of reference) where xi = i
x and i =
0, . . . , Lx/
x − 1. We then define the linear density profile
n(ri) = 〈(N + M − 1)Ni/

∑
j Nj
x〉, where 〈. . . 〉 denotes a

time average. Unless noted otherwise, all figures in this sec-
tion are obtained for parameters F = 16, ρ̄ = 0.4 and Ly =
2.6, to which we hereafter refer to as the “canonical” set of
parameters.

A. Single driven tracer

We next demonstrate the qualitative similarities between
the 1D lattice model’s localized phase and the narrow 2D
channel system for the case of a single driven tracer. Extensive
numerical studies for a broad range of the parameters F, ρ̄,
and Ly show that, in the long time limit, the system reaches a
stationary state with the characteristic features of the localized
state: it exhibits a localized density profile, as seen in the
tracer’s reference frame, and the tracer’s velocity reaches a
finite value in the limit of large Lx. This is demonstrated in
Fig. 9, which displays the tracer’s velocity as a function of
Lx, and in Fig. 10, where a data collapse of the bath density
profile, n(r), is shown for several values of Lx. The oscillations
near the origin are a consequence of the crystal-like spatial
arrangement of the dense bath particles that accumulate in
front of the tracer.

B. Multiple driven tracers

We now turn to the case of multiple tracers. Figure 2 shows
typical trajectories of four tracers, clearly demonstrating the
formation of a condensate in the long-time limit. Focusing
on the case of two tracers, we demonstrate in Figs. 9 and
11 that in analogy with the 1D lattice model, the channel
system retains the localized phase’s characteristic features:
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FIG. 10. System size dependence of the density profile for the
2D narrow channel system for the canonical parameters and a single
driven tracer. Four profiles for various Lx (or, equivalently, N) are
shown, demonstrating data collapse for large Lx .

(i) a density profile n(r) that is concentrated near the bound
tracer pair and (ii) a nonvanishing velocity of the bound tracer
pair in the large Lx limit. Analogous plots for the 1D lattice
model are shown in the Appendix, Figs. 16 and 17.

Figure 11 shows a data collapse, for various Lx, of the
stationary density profiles n(r) for two driven tracers. As
commented above for the case of single tracer, the oscillations
near the origin are a consequence of the crystal-like spatial
arrangement of the dense bath particles that accumulate in
front of the tracers. The localized two tracer density profile
is analogous to the one appearing in Fig. 16 for the 1D lattice
model.

The strong attraction between the tracers is demonstrated
in Fig. 12, which displays the x-separation 
1,2 between the
tracers as a function of time. Two different values of the
driving force are shown for channel width Ly = 2.1 and mean
bath density ρ̄ = 0.5. In the top panel, obtained for F = 8,

FIG. 11. System size dependence of the density profile for the
narrow 2D channel system for the canonical parameters and two
driven tracers. Four curves are plotted for different values of Lx (or,
equivalently, N). For the longest channels a data collapse takes place.

FIG. 12. Separation of the two tracers in a narrow channel of
width Ly = 2.1, average density ρ̄ = 0.5 and Lx = 190.5 as a func-
tion of time. Top: F = 8. This field is strong enough to prevent the
particle pair from separating. Bottom: F = 4. This value is close to
the separation threshold of the two tracers.

the distance is shown to remain very small at all times, and
appears to be roughly of ∼O(1). The bottom panel, obtained
for F = 4, demonstrates that this typical distance grows as the
driving force is weakened. Further reducing F beyond some
critical value, or equivalently, increasing the channel width Ly

at fixed F , breaks the tracers’ bound state. Nevertheless, this
bound state is observed to persist for a range of F and Ly.

Figure 13 shows the stationary distribution Q(
1,2) of the
distance 
1,2 between the two tracers. The central domain
of Q(
1,2), i.e., for −1 < 
12 < 1, corresponds to configu-
rations where the two tracers are located one above the other,
overlapping along the x axis. Their distance distribution in this
domain is determined by the specific details of their frequent

FIG. 13. Probability distribution of the tracer separation in the
x direction, 
1,2 = xt,1 − xt,2, for two bound tracers in a narrow
channel of length Lx = 96.2 and width Ly = 2.1. The average bath
density is ρ̄ = 0.5 and the force is F = 16.
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FIG. 14. A closeup of the region 1 < 
1,2 < 2 in Fig. 13 of the
probability distribution Q(
1,2). The violet dots show the simulated
distribution, and the red curve is a fit to exponential decay.

mutual collisions. On the other hand, an exponential decay is
clearly demonstrated for |
12| > 1 in Fig. 14. This qualita-
tively agrees with the exponential behavior of the probability
distribution Q(k), obtained for the 1D lattice model in Eq. (11)
and verified in Fig. 8.

Studying the 2D channel system with two tracers for a
wide range of parameters, we obtain the (ρ̄, F ) phase diagram
presented in Fig. 15. In this figure attractive parameters are
indicated by blue dots and repulsive parameters by orange
crosses. In an attractive state, generated by large-enough driv-
ing, the two tracers are observed to remain in close proximity
to one another, following their initial encounter. If the driv-
ing force F is reduced, the mean tracer separation gradually
increases. When F is lowered below a certain threshold, the
two tracers fail to form a bound state, even after multiple
encounters.

IV. CONCLUSIONS

Tracers driven along a crowded bath have been observed
to display strong effective mutual attraction and condensation
mediated by the bath particles. While this has been numer-

FIG. 15. Driving-force–bath-density section of the phase dia-
gram for a channel of width Ly = 2.2 occupied by a total of 200
particles, including the two tracers. Violet dots indicate parameter
sets that yield attraction, whereas orange crosses indicate parameter
sets for which there is no attraction.

ically demonstrated in a variety of models, a quantitative
analysis of the attraction mechanism and the resulting effec-
tive potential, is not available. In the present paper we have
analyzed the case of two driven tracers moving in a narrow
channel, demonstrating that in the steady state, the tracers
experience a strong confining potential. By introducing an
effective 1D model, constructed to capture the dynamics of the
tracers in the 2D channel, we show that the potential increases
linearly with the distance between the tracers, resulting in
strongly bound tracers.

The model studied in this paper is that of a narrow 2D chan-
nel occupied by a thermal bath composed of N Brownian disks
with hard core interactions and two externally driven “tracer”
disks. Although we explicitly consider a narrow channel, it is
made to be wide enough to allow overtaking to occur. This
implies that all particles, including the driven tracers, are able
to move away from one another.

To analyze the attraction between the tracers, we modeled
the 2D channel dynamics by that of a simple symmetric exclu-
sion process (SSEP), extended to capture particle overtaking
in the channel, on a 1D ring lattice. We have shown that,
in the 1D lattice model, the dynamics of the two tracers
can be regarded as that of two biased random walks whose
moving rates are related to the stationary bath density pro-
file (as seen in the tracers’ reference frame). We found that
in a region of the lattice model’s dynamical parameters, the
tracers become effectively biased to move towards each other
and form a robust bound state. Correspondingly, the distri-
bution function of the two tracer’s distance was shown to
be exponentially decreasing with the distance, suggesting an
effective linear attractive potential between the tracers. This
effective interaction is mediated by the bath particles through
their nonhomogeneous steady-state density profile. Extensive
numerical simulations of the 2D narrow channel model were
then shown to be in excellent qualitative agreement with these
findings. In particular, the bath density profile, the tracer pairs’
velocity, and the two tracers distance distribution were shown
to exhibit the same properties analytically predicted for the
1D lattice model’s localized phase.
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APPENDIX: BOUND STATE OF TWO DRIVEN TRACERS
IN THE 1D LATTICE MODEL

This Appendix provides evidence which validate and sup-
port the claim that, when the two tracers form a bound pair in
the model’s localized phase, one may approximate them by an
effective single tracer that qualitatively behaves as predicted
in Ref. [33].

Figure 7 shows the stationary bath density profile ρ� near
the origin site � = 0 for both one and two driven tracers. In
the case of two driven tracers, the right (i.e., positive) part of
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FIG. 16. Data collapse of the stationary bath density profile ρ�

for two driven tracers and different system sizes L in the 1D lattice
model. The mean bath density is ρ̄ = 0.15, and the dynamical rates
are p = 1.9, q = 0.1, p′ = 0.0075, and q′ = 0.0125, corresponding
to δ = 0.9, δ′ = −0.25, and r/r′ = 100.

the profile is provided in the rightmost tracer’s (i.e., tracer 1)
reference frame while the left (i.e., negative) part is provided
in the leftmost tracer’s (i.e., tracer 2) frame. The figure shows
close agreement of the density profiles near the tracers. A
data collapse of the bath density profiles generated by two
driven tracers is shown in Fig. 16 for different system sizes.
As expected in the localized phase [33], the deviation of the

FIG. 17. The stationary velocity v of the two-tracer bound pair
versus system size L in the 1D lattice model with a mean bath density
of ρ̄ = 0.15 and dynamical rates p = 1.9, q = 0.1, p′ = 0.0075, and
q′ = 0.0125, corresponding to δ = 0.9, δ′ = −0.25 and r/r′ = 100.
Blue dots denote direct simulation results, and the solid red curve is
a fit to c1 + c2/L.

bath density profile from ρ̄ is localized around the origin and
is independent of the system size L as L → ∞.

The velocity of a single driven tracer was also studied in
[33], where it was shown to attain a finite nonzero value as
L → ∞. This appears to agree with Fig. 17, which shows the
stationary two-tracer bound pair velocity versus the system
size L.
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