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Sergei Izvekov *

Weapons and Materials Research Directorate, U.S. Army DEVCOM Army Research Laboratory,
Aberdeen Proving Ground, Maryland 21005, USA

(Received 7 April 2021; accepted 20 July 2021; published 16 August 2021)

We present a generalized Langevin equation (GLE) of motion that governs exactly the time evolution
of phase-space observables in finite open systems described by classical Hamiltonians with explicitly time-
dependent potentials. This formalism is based on the Mori-Zwanzig projection operator (PO) method with a
time-independent Zwanzig PO within a Heisenberg (Lagrangian) picture and reduced description of Hamiltonian
systems in terms of canonical relevant and irrelevant coordinates. We demonstrate that, similarly to closed
systems, GLE dynamics in Hamiltonian systems in the presence of time-dependent potentials is determined by
conservative, dissipative memory, and projected force fields, and that the memory functions relate to the projected
force, which is a two-time process, in a way that is reminiscent of the equilibrium second fluctuation-dissipation
relation. We further show that, in the most general case, the memory kernel depends on the relevant momentum
gradients of the (Boltzmann) entropy of the irrelevant subsystem. Using two Zwanzig operators which are,
respectively, functionals of the canonical and generalized canonical probability densities, we then derive what
we call canonical and generalized canonical GLEs. Further, we can formulate the particle-based, coarse-grained
(CG) GLE dynamics by transitioning to Jacobi coordinates which corresponds to a particle set partitioning of the
Hamiltonian system. The obtained canonical CG GLE of motion for the relevant momenta is a generalization of
the CG equation of motion known for closed systems. Also, using a Markovian approximation of the canonical
CG GLE, we can extend the dissipative particle dynamics equation to open systems. A distinctive feature of our
extension is a use of explicitly time-dependent frictions, which reflect the changes in the dissipation rate caused
by time-dependent coupling to an external bath. Our GLE formalism and workflow constitute a general and
viable framework that can be readily used as a starting point to rigorously formulate microscopically informed
CG treatments for a variety of phenomena in externally forced systems far from equilibrium.
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I. INTRODUCTION

The projection operator (PO) formalism [1–14] remains
one of the most powerful tools in statistical physics that pre-
scribes how first-order equations of motion (e.g., Hamiltonian
equations for observables or Liouville equations for proba-
bility densities) can be mapped onto reduced-dimensionality
equations of motion. In statistical physics, the notion of POs
was put forward by Nakajima [1] and then formalized by
Mori and Zwanzig who introduced, in particular, the spe-
cific operators suitable to formulate a reduced description for
classical and quantal systems. For this reason, PO theory is
often referred to as the Mori-Zwanzig (MZ) theory. In gen-
eral, the MZ formalism can be used within a Heisenberg (or
Lagrangian) picture [15,16] to derive the equations of mo-
tion for the observables. These equations commonly appear
in a time-convolution (generalized Langevin) form. Equally,
the MZ method can be used within a Schrödinger (Eule-
rian) picture [9,14] to obtain the equations of motion for the
probability densities (e.g., Fokker-Planck [9] and master [17]
equations).
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The MZ approach is widely used as a rigorous theoret-
ical basis for treating nonequilibrium phenomena in many
fields: transport theories [6,18–20], hydrodynamics and theo-
ries of liquids [15,21–24], theories of glasses [25], response
theories [26,27], theories of nonlinear constitutive relations
[6], damping theory [28], polymer physics [29–31], plasma
physics [32], active matter [33], time-series analysis [34],
classical density-functional theory [35,36], mode-coupling
theory [22–25,37], correlation functions [6,38], relaxation
phenomena [12], (active) probe dynamics [39], theory of
turbulence [40], and the physics of phase transitions [41].
An important, and relatively recent, application of the MZ
formalism is a bottom-up particle-based, coarse-grained (CG)
treatment where microscopic (Hamiltonian) systems are re-
placed with dynamically equivalent systems of CG particles
[42,43] representing particle sets (clusters) in the Hamiltonian
systems. Published applications have demonstrated that the
time evolution of the translational degrees of freedom (d.f.) of
the particle clusters composing a closed Hamiltonian system
can be described by a (CG) generalized Langevin equation
(GLE) of motion [31,44–53]. These works provided clear
microscopic foundations for the dissipative particle dynam-
ics (DPD) method, showing that the DPD equations arise as
a Markovian case of CG GLE dynamics [31,48,51,54,55].
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Applications of the MZ formalism encompass the bottom-up
principles of a variety of particle-based CG models including
hybrid-resolution models [51,56].

Open classical systems are usually understood as small
Hamiltonian systems (i.e., with a finite number of d.f.) in
contact with an external system (bath) [57]. The open clas-
sical systems are permeable to energy and not to matter
and are always in nonequilibrium. The Hamiltonians can be
explicitly time dependent for open systems. Although the
generalizations of the MZ formalism toward systems with
time-dependent Hamiltonians have been topics of much re-
search [58–60], the bottom-up particle-based CG GLE is
not formulated for these systems. This is a consequence of
many challenges faced by the MZ formalism to obtain prac-
tically useful CG equations of motion from time-dependent
Hamiltonians. Those equations, however, are relevant for
many scenarios which include soft-matter systems subjected
to time-dependent external driving forces [39,61], systems
of charged particles in external time-varying electromagnetic
fields [62], and nonlinear response [15,27,63,64]. The for-
mulation of GLE dynamics for open systems is equivalent
to the derivation of the second fluctuation-dissipation rela-
tion (FDR) for these systems [27,38]. The equilibrium FDRs
can be rigorously derived within linear response theory [65].
Their validity in off-equilibrium situations, however, has been
extensively discussed in the literature [66]. Consequently,
the top-down applications of the equilibrium GLE and DPD
models (in which the dissipative and projected forces are ex-
plicitly related via the equilibrium second FDR [67]) to states
beyond equilibrium [68,69] are probing the boundaries of
applicability of linear response theory [27,66]. Furthermore,
the equilibrium GLE has to be properly extended with terms
to deal with the nonequilibrium. For example, the nonequilib-
rium conditions give rise to transport processes driven by the
additional forces (transport terms) [9,50] which are required in
the extended GLE. The constant energy variant of DPD (DPD-
E method) suitable to treat energy transport in systems with a
temperature gradient is an example of a top-down transport
extension of the equilibrium GLE of motion [55,70,71].

In this work, we address the need for a framework to
derive practical CG GLEs that rigorously project dynamics
in the open classical systems with time-dependent Hamilto-
nians far from equilibrium. On the methodological side, the
existence of such a framework is highly valued because (1)
it provides the structure of CG equations of motion which
may be difficult, if not impossible, to guess from top-down
considerations; (2) it clearly indicates the crucial points where
approximations are required and provides the basis to apply
these approximations systematically and consistently; and (3)
it serves as a starting point to develop strategies for systematic
parametrization of CG models which are tailored to study
systems and states of interest. We limit ourselves to open
systems which are described by Hamiltonians in the pres-
ence of a time-dependent potential (i.e., the external force
is the potential force). The reason for such a limitation is
that Hamiltonians with more general system-bath coupling
involving particle momenta give rise to a CG GLE with a
far more complex memory term which cannot be reduced to
a practical form. Our derivation follows the MZ formalism
within a Heisenberg picture, which can be naturally extended

to handle the systems with time-dependent Hamiltonians. The
MZ formalism with time-dependent POs has been applied in
the past to treat open quantal and classical systems far from
equilibrium [38,59,60], as well as non-Hamiltonian systems
[72]. In this paper, we show that GLE for the open Hamil-
tonian systems can be formulated using a time-independent
Zwanzig PO, which simplifies the calculus and allows us
to take the formalism to the point of obtaining practical,
important CG equations of motion. In the reminder of the
Introduction, we review the necessary preliminaries of the PO
and MZ methods for classical systems.

The general problem addressed by the PO method in a
Heisenberg picture for the open systems of interest is as fol-
lows. We consider an n-particle system with a phase space
� = {r, p}, where the coordinates r = {ri}n

i=1, p = {pi}n
i=1 are

the particle positions and momenta, respectively, and the fol-
lowing explicitly time-dependent Hamiltonian,

H (�, t ) =
∑

i

p2
i

2mi
+ u(r, t ), (1)

where mi is the ith particle mass. The term u(r, t ) = uint (r) +
uext (r, t ) includes the interparticle interaction potential uint (r)
and the external time-dependent potential uext (r, t ) which de-
scribes the coupling to external (potential) fields Fext (t ) =
−∇ruext (r, t ). The systems with coordinates p, r coupled to
external fields can be described by the Hamiltonian with a
more general potential term uext (�, t ) when the correspond-
ing external forces are momentum dependent [9,15,28] (e.g.,
forces experienced by charged particles in a magnetic field).
These systems are beyond the scope of the present work.
We consider a sufficiently broad class of observables {B(�)}
which are functions of � with no explicit time dependence
(the Hamiltonian obviously does not belong to this class,
but the coordinates of the centers of mass of particle sets,
for example, do). The flow of the observables, B(�t ), along
the system’s phase space trajectory �t = {rt , pt } initiated at
t = 0 in the state �0 is determined by the Liouville equation
[15,16,73]:

d

dt
B = iL(�t , t )B, (2)

with the p-Liouvillian operator iL(�, t )· = {·, H (�,t )}� ,
where {·, ·}� are Poisson brackets in the � coordinates. We
consider then the L2 Hilbert space of the observables, O =
{B(�0)}, equipped with the inner product

〈G; F 〉ρ ≡ 〈GF 〉ρ =
∫

d�0ρ(�0, 0)G(�0)F (�0), (3)

where the phase space volume element is d� = (h3ng)−1drd p
(g is the degeneracy of the microstates), and the weighting
function is the specified probability density ρ(�0, t ) at t = 0,
which, in general, can be nonstationary. A reduced description
of the system dynamics is achieved by introducing a relevant
set of independent observables: A0 = {AI (�0)}N

I=1, A0 ∈ O,
N � n. The space OA = {BA(A0)} of the L2 functions defined
on A0 is a subspace of the relevant observables in O: OA ∈ O.
The PO method in a Heisenberg picture prescribes how to
decompose the Hamiltonian vector field iL(�t , t )B [Eq. (2)]
into the relevant iLA(t )B ∈ OA and orthogonal (projected)
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BQ(t )⊥OA contributions:

d

dt
B = iLA(t )B + BQ(t ). (4)

In terms of the inner product, the orthogonality property ren-
ders to

〈BQ(t ); BA〉ρ = 0 (5)

for ∀BA ∈ OA, which can be interpreted as a lack of linear
correlation between the projected force BQ(t ) and the relevant
dynamics in the ρ ensemble. This fact constitutes one of the
major motivations to finding the decomposition in Eq. (4), as
the BQ(t ) term can be treated statistically with an equivalent
stochastic process, which has a vanishing linear correlation
with the relevant dynamics. An assumption that the A coor-
dinates are “slow” is often made [9,13]; however, it is not
a necessary prerequisite for the orthogonality condition in
Eq. (5). For the slow A, the relevant and irrelevant dynamics
decorrelate on characteristic timescales of the A dynamics,
which is advantageous when transitioning to a stochastic treat-
ment of the projected force [31].

The PO P0, P02 = P0, is defined on O with the image in
OA. Using a Heisenberg picture, we consider the projection
P0Bt of the flow Bt = B(�t ), which belongs to OA. The op-
erator P0 has a representation in a certain projection (though
not necessarily complete) basis {ψi} in OA [5,9,74]:

P0Bt =
∑

i

〈Bt ; ψ̃i〉ρψi(A
0), (6)

where {ψ̃i} is the dual basis: 〈ψ̃i; ψ j〉ρ = δi j . The PO P0 in
Eq. (6) has no explicit time dependence if the basis {ψi} and
hence {ψ̃i} are stationary. In this case, the time evolution of
the projection is carried out solely by Bt [48,50]. In fact,
the difference between the POs (in a Heisenberg picture),
which have been introduced in the past, can be expressed in
terms of the different basis sets used in the representation
in Eq. (6) [38]. Furthermore, for a similar reason, not all
POs are equivalent and, in particular, not all operators can be
used to obtain the exact equations of motion for an arbitrary
observable B(�), as per Eq. (4). For example, the Mori oper-
ator [4] has a representation in the basis {ψi} = A0, which is
incomplete in OA and results in iLA(t )B being a linear func-
tional of A (the so-called a-linear GLE [5]). Other operators
are explicitly time dependent (e.g., from Robertson [10–12],
Kawasaki and Gunton [6], Ochiai [75], Willis and Picard [76],
Grabert [7,13], McPhie et al. [59], Koide [19], Latz [77],
Xing and Kim [72], and Meyer et al. [38]), as those operators
can be represented effectively in an explicitly time-dependent
basis {ψi} [59], which somewhat complicates the resulting
formalism. In this light, the Zwanzig PO (cf. Eq. (9.46) in
Ref. [9]) seems to offer several important advantages. For the
Zwanzig projection, the basis {ψi} in Eq. (6) is complete in OA

[74]; consequently, the reduced equations of motion in Eq. (4)
are an exact representation of the Hamiltonian equations of
motion in Eq. (2) [9,74,78]. For open and nonstationary sys-
tems inclusively, the Zwanzig PO can be made formally time
independent by using a representation with a stationary basis
{ψi} [Eq. (6); also see Eq. (21)] [50]. Finally, the application
of the Zwanzig PO is facilitated if A0 are chosen to be a subset

of the new canonical coordinates {A0, ξ 0} with a curvilinear
mapping �0 = g(A0, ξ 0) where ξ 0 is a canonical complement
[48,50,51].

In this paper, we follow the previously described formalism
to obtain the GLE for open CG systems. We start in Sec. II
by discussing the Liouville propagator for open systems and
introduce particle-based coarse graining using the Jacobi co-
ordinates. In Sec. III, following the formal PO calculus used
in Refs. [13,20,49,79–82], which is more transparent for open
systems compared to the Dyson decomposition [15,74] or
Kawasaki identity [5], we obtain the time-convolution decom-
position of the dynamics in open Hamiltonian systems. In
Sec. IV, we describe an explicitly time-independent Zwanzig
PO in a Heisenberg picture. In Sec. V, we pursue this de-
velopment using the general canonical coordinates, a subset
of which is considered the relevant observables, and the
Zwanzig PO. We derive the most general GLE governing the
nonequilibrium time evolution of the microscopic observables
in open far-from-equilibrium systems. In our GLE, the dis-
sipative term is related to the projected term by the second
FDR. Additionally, the dissipative term is determined by the
relevant momentum gradients of the Boltzmann entropy of
the irrelevant subsystem. Finally in this section, utilizing two
Zwanzig operators which are, respectively, functionals of the
canonical and generalized canonical probability densities, we
derive what we refer to as canonical and generalized canonical
GLEs. In Sec. VI, we formulate CG GLE that describes the
particle-based CG dynamics in the Jacobi coordinates, which,
for the canonical Zwanzig PO and closed systems, lead to
known CG equations of motion. The Markovian approxima-
tion allows us to derive a DPD-type equation of motion for
open systems. Finally, the conclusions and outlook are given
in Sec. VII.

II. LIOUVILLE PROPAGATOR FOR OPEN SYSTEMS
AND PARTICLE-BASED COARSE GRAINING

The solution to the Liouville Eq. (2) can be written for-
mally as [15,16,63,73,83]

B(�t ) = UR(0, t )B(�0). (7)

The Liouville p-propagator, UR(0, t ), which we need to deter-
mine, satisfies the following operator equation [16]:

∂

∂t
UR(0, t ) = UR(0, t )iL(�0, t ). (8)

Indeed, applying Eq. (8) to B(�0), we recover the Liouville
equation in Eq. (2) as

d

dt
B(�t ) = UR(0, t )iL(�0, t )B(�0) = iL(�t , t )B(�t ). (9)

The formal iterative solution of Eq. (8) is the right time-
ordered exponential (eR):

UR(0, t ) = 1 +
∞∑

n=1

∫ t

0
ds1

∫ s1

0
ds2 . . .

∫ sn−1

0
dsniL(�0, sn) · · ·

× iL(�0, s2)iL(�0, s1) ≡ eR

∫ t
0 dsiL(�0,s), (10)

where t > s1 > s2 > · · · > sn. Provided the p-Liouvillian is
explicitly time independent, iL(�0, t ) = iL(�0) (e.g., the
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system is closed), we have

UR(0, t ) = eiL(�0 )t . (11)

We transition to a reduced description by combining the
canonical relevant (CG) coordinates A = {R, P} and their
canonical irrelevant complement ξ = {rξ , pξ } with, in gen-
eral, a curvilinear coordinate mapping � = g(A, ξ ). A specific
choice of coordinates {A, ξ } is prescribed by particle-based
coarse graining [42,43] when the system is partitioned into
N non-overlapping particle clusters with masses {MI}N

I=1,
MI = ∑

i∈I mi and the coordinates R = {RI}N
I=1, P = {PI}N

I=1
describe translational d.f. of the clusters. A most common
and convenient choice of {R, P} is the center of mass (c.m.)
positions of the clusters and their translational momenta,
respectively:

RI (r) =
∑

i∈I miri

MI
, PI (p) =

∑
i∈I

pi. (12)

The generalized forces F = {FI}N
I=1,

FI (r, t ) = ṖI =
∑
i∈I

fi, (13)

which are explicitly time dependent, are easily computable
linear mappings of the particle forces fi = ṗi. The canonical
coordinates, of which the c.m. coordinates are a subset, are the
Jacobi coordinates, which for the Ith set are

rξ,ik =
∑

i�ik |i∈I miri∑
i�ik |i∈I mi

− rik+1 , ik, ik+1 ∈ I, k < |I|,

rξ,i|I| = RI . (14)

(|I| denotes here a cardinality of set I). Therefore, rξ =
{rξ I}N

I=1, where rξ I = {rξ,ik |ik ∈ I, k < |I|} can be chosen as
the irrelevant canonical coordinates. Particle-based coarse
graining using the Jacobi coordinates is an example of the
point transformation [84] (when the new position coordinates
are functions of the old position coordinates only). The point
transformation R(r), rξ (r) can always be inverted as r(R, rξ ).
For the point transformation, the complete set of conjugate
momenta {P, pξ } is [84] {P, pξ } = ‖∂ (R, rξ )/∂r‖−1 p. Further-
more, the Jacobi transformation {R(r), rξ (r)} is linear and
hence the transformation to the Jacobi momenta {P(p), pξ (p)}
is also linear. For a canonical transformation, the Jacobian
|∂�/∂ (A, ξ )| = 1 and hence the volume measure is invariant:

d� = dAdξ (15)

where dA = (�h
A)−1dRdP, dξ = (�h

ξ )−1drξ d pξ are volume
elements of, respectively, relevant and irrelevant phase sub-
spaces, and �h

A, �h
ξ are normalizing factors, �h

A�h
ξ = h3ng

(e.g. for identical CG particles and the Jacobi coordinates
�h

A = h3N N!, �h
ξ = h3(n−N )gξ where gξ is the degeneracy of

irrelevant d.f., gξ = gN!−1).
For linear R(r), rξ (r) such as the Jacobi coordinates, the

mass matrix of the system in the new coordinates is not a
function of the old coordinates. If we assume that, addition-
ally, the mass matrix associated with the relevant coordinates
is diagonal, M̂ = [MIδIJ ], which is true for the Jacobi coordi-
nates, then the Hamiltonian in Eq. (1) in the new coordinates

becomes

H (A, ξ , t ) =
∑

I

P2
I

2MI
+ 1

2
pT

ξ m̂−1
ξ pξ + u(R, rξ , t ), (16)

where m̂ξ is the irrelevant mass matrix and u(R, rξ , t ) ≡
u[r(R, rξ ), t]. This H (A, ξ , t ) is the canonical Hamiltonian
which can be interpreted as describing the evolution of the
c.m. coordinates of the particle clusters immersed into a sea
of irrelevant d.f. in an external potential field. The H (A, ξ , t )
does not contain terms coupling the P and ξ coordinates.
As we discuss, this property leads to far simpler and more
standard GLEs.

III. TIME-CONVOLUTION DECOMPOSITION OF THE
LIOUVILLE PROPAGATOR

Using the PO formalism, the Liouville dynamics [Eq. (7)]
can be cast exactly into the reduced-dimensionality dynamics
[Eq. (4)], in which the term iLA(t )B has time-convolution
memory integrals [78]. This is achieved in two steps. First,
Eq. (9) is transformed to a time-convolution equation (TCE),
which retains the same mathematical structure for any (includ-
ing time-dependent) PO P0 and the complementary projector
Q0 = I − P0 defined on O = {B(�0)}. To obtain a general
TCE, we use the formal operator approach [20,49,79–82] to
perform a time-convolution decomposition of the dynamics
in a Heisenberg picture. This approach works for generic
(including time-dependent) POs and time-dependent Hamil-
tonians [79], so, for open systems, it seems advantageous
compared to a Dyson decomposition or Kawasaki identity [5].
We begin with the two identities derived from Eq. (8):

∂

∂t
UR(0, t ) = UR(0, t )(P0 + Q0)iL(�0, t ),

∂

∂t
UR(0, t )Q0 = UR(0, t )(P0 + Q0)iL(�0, t )Q0. (17)

The second line, which is obtained by operating on the first
line with Q0 on the right and hence describes the irrelevant
(projected) dynamics, is a nonhomogeneous linear operator
equation with respect to UR(0, t )Q0. Substituting its formal
solution

UR(0, t )Q0 = eR

∫ t
0 dsQ0iL(�0,s)Q0 +

∫ t

0
dτUR(0, τ )

× P0iL(�0, τ )eR

∫ t−τ

0 dsQ0iL(�0,s)Q0 (18)

into the first line of Eq. (17), while transforming

Q0e
∫ t

0 dsiL(�0,s)Q0

R = e
∫ t

0 dsQ0iL(�0,s)
R Q0 and then applying the

resultant equation on B(�0), we obtain the following TCE:

d

dt
B(�t ) = UR(0, t )P0iL(�0, t )B(�0) +

∫ t

0
dτUR(0, t − τ )

× P0iL(�0, t − τ )BQ(τ, t ) + BQ(t, t ). (19)

In this equation, the first term on the right-hand side is the
conservative force BC (t ), the second term is the dissipative
force BD(t ), and the projected force is

BQ(τ, t ) = e
∫ τ

0 dsQ0iL(�0,s)
R Q0iL(�0, t )B(�0). (20)
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Note that, in addition to being a function of the past time τ ,
the force BQ(τ, t ) is an explicit function of the present time t
as a result of the explicit time dependence of iL(�0, t ). The
force BQ(τ, t ) can be interpreted as the projected force of
the system in the configuration (�τ , t ), that is, the system in
the (past) state �τ but where the external force is taken at the
(present) time moment t (cf. Sec. 7.7 in [15]). Finally we note
that the TCE in Eq. (19) holds for the time-dependent P0, Q0.
In this case, the time ordering of the projection operations is
taken care of by the exponent eR in Eq. (20).

IV. ZWANZIG PROJECTION OPERATOR

In the second stage of the GLE derivation, we have to
specify the PO. Our theory is based on a Zwanzig PO (cf.
Eq. (9.46) in Ref. [9]) [31,44,47,49–51] in a Heisenberg
picture [15,16,74]. The corresponding Zwanzig projection of
the flow B(�t ) is the following thermodynamic conditional
expectation given an initial A0:

P0B(�t ) ≡ 〈B(�t )〉cond
ρ;A0

=
∫

d�0ρ(�0, 0)δ[A(�0) − A0]B(�t )∫
d�0ρ(�0, 0)δ[A(�0) − A0]

, (21)

with integration over a given probability density ρ(�, t ) taken
at t = 0. The ensemble average is given by the unconditional
thermodynamic expectation,

〈B(�t )〉ρ =
∫

d�0ρ(�0, 0)B(�t ). (22)

It is convenient to work in terms of the conditional proba-
bility density,

ρ(�|A, t ) = ρ(�, t )∫
d�ρ(�, t )δ[A(�) − A]

, (23)

which in coordinates � = g(A, ξ ) is denoted as

ρA(ξ, t ) = ρ[g(A, ξ ), t]∫
dξρ[g(A, ξ ), t]

, (24)

where we use Eq. (15). The Zwanzig projection in Eq. (21)
then becomes

P0B(�t ) =
∫

dξ 0ρA0 (ξ 0, 0)B(�t ). (25)

The PO P0 is explicitly time independent and the time
dependence of the projection is carried out solely by the time
evolution of B(�t ). By expanding the integral in Eq. (25) into
the complete basis set {ψi(A0)}, we can obtain the representa-
tion in Eq. (6). The majority of time-dependent POs that have
been introduced in the past are functionals of ρ(�, t ) which
is allowed to evolve in time [13,17]. Since the projections
are linear functionals of both the observable and ρ(�, t ), the
projection basis {ψi} in Eq. (6), in general, is explicitly time
dependent.

V. GLE FOR A GENERAL ρ(�, t )

A CG GLE for open systems is derived from the TCE
in Eq. (19) using the explicit expression for a Zwanzig PO,

Eqs. (21) and (25). The GLE force field is the sum of the
conservative, dissipative, and projected force field terms:

d

dt
B(�t ) = BC (t ) + BD(t ) + BQ(t ) ≡ iLGLE([ρ], t )B

(
�0

)
.

(26)
The relevant contribution [Eq. (4)] is iLA(t )B = BC (t ) +

BD(t ). In Eq. (26), we introduced the operator functional
iLGLE([ρ], t ) to compactly denote the GLE force field. This
notation reflects that the GLE is obtained for the PO using ρ

and hence the GLE force field is a (linear) functional of ρ.
The identicality of the Liouville and GLE dynamics can then
be formulated as

iLGLE([ρ], t ) = iL(t ). (27)

The mathematical form of the GLE is uniquely determined
by the ρ and hence we may refer to the GLE by the name
of the ensemble which the ρ represents (e.g., “equilibrium
GLE” for equilibrium probability density ρeq). Following
Zwanzig [3], we can use the equivalence of microscopic and
GLE dynamics [Eq. (27)], and hence the independence of the
GLE dynamics on ρ, to derive additional forces (transport
terms) which are introduced to the equilibrium GLE to ac-
count for the transport of the averages of dynamical variables,
〈B(t )〉ρeq . Let us briefly outline this approach: We represent
the quasiequilibrium ρ as ρ = ρeq + δρ where δρ is a small
perturbation; we can perturbatively expand the iLGLE as

iLGLE([ρ], t ) = iLGLE([ρeq], t ) +
∫

d�δρ
δ

δρ
iLGLE([ρeq], t )

+ o([δρ]); (28)

it then follows from the equivalence in Eq. (27) that the terms
linear in δρ are the additional forces necessary to add to
iLGLE([ρeq], t ) to account for the transport phenomena in the
quasiequilibrium [39]. The transport equations for 〈B(t )〉ρeq

are then obtained by averaging Eq. (26) over ρeq. This ap-
proach was used in Ref. [41] to derive the constant energy
variant of the GLE.

In the remainder of this section, we derive expressions
defining BC (t ) and BD(t ) in terms of conditional expectations
〈·〉cond

ρ;A and then write down the GLE. The derivation of BD(t )
holds for the canonical transformation � = g(A, ξ ), which
does not lead to the terms in H (A, ξ , t ), which couple P and ξ

[see the discussion of Eq. (16)]. The derivation for a general
H (A, ξ , t ) is possible; however, the resulting GLE ought to
adopt a more complex and less familiar form.

A. Conservative term

The conservative term BC (t ) can be derived easily using the
rule in Eq. (7), which for the relevant projection At ≡ A(�t )
of trajectory �t becomes At = UR(0, t )A0. Thus, we have

BC (t ) = UR(0, t )P0iL(�0, t )B(�0)

= 〈iL(�0, t )B(�0)〉cond
ρ;A0→At , (29)

where, for clarity, in this equation, we use the previous, more
explicit notation iL(�0, t ).

If B(�) = A(�), then the conservative term

AC (t ) = 	̂N 〈∇A0 H (�0, t )〉cond
ρ;A0→At , (30)
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where 	̂N is the 2N × 2N simplectic matrix. For a closed
system in the canonical equilibrium ρ(�, 0) = ρc(�),

ρc(�) = e−H (�)/kBT

Z
, (31)

we obtain

AC (t ) = 	̂N∇At H rel(At ). (32)

Here, the relevant Hamiltonian

H rel(A) = −kBT ln 〈δ[A(�0) − A]〉ρc (33)

is the restricted Helmholtz free energy. Equation (32) justifies
calling the term BC the conservative force. For coarse graining
using the Jacobi coordinates and similar linear point coordi-

nate transformations [see discussion of Eq. (16)], we have

H rel(R, P) =
∑

I

P2
I

2MI
+ WPMF(R) + F irr

id , (34)

where WPMF(R) = −kBT ln V −1
ξ

∫
drξ e−u(R,rξ )/kBT is the all-

particle potential of mean force (PMF) and a constant F irr
id =

−kBT ln h−3(n−N )g−1
ξ Vξ

∫
d pξ e−pT

ξ m̂−1
ξ pξ /(2kBT ) is the ideal gas

contribution from the irrelevant momenta (here, Vξ = ∫
drξ

is the irrelevant volume). For open systems, the term corre-
sponding to WPMF(R) in Eq. (34) cannot be introduced. More
generally, H rel(A, t ), which is used to calculate a conservative
term similar to Eq. (32) for closed systems, cannot be used in
open systems. As we discuss in Sec. V C, for GLE describing
the time evolution of A, the potential H rel(A, 0) can still be
introduced if the GLE is derived using a canonical PO, i.e.,
in which ρ(�, 0) = Z (0)−1e−H (�,0)/kBT . However, in this case,
the potential H rel can be related to AC only at t = 0 and,
additionally, it appears in the dissipative term BD(t ).

B. Dissipative term

The derivation of the dissipative term BD(t ) in the GLE is more cumbersome but essentially follows the derivation for closed
systems in a canonical ensemble [50]. During the course of the derivation, the anti-Hermitian property of iL must be replaced
with

〈iLO; B〉ρ = −〈O; iLB〉ρ − 〈O; BiL ln ρ(0)〉ρ, (35)

ρ(0) ≡ ρ(�, 0), which is obtained from integration by parts. Below, for clarity, we use a vector component notation Bs to
indicate that the observable B = {Bs} may be a set of observables themselves. First, we express the memory term BD(t ) in the
TCE [Eq. (19)] in the following form:

BD(t ) =
∫ t

0
dτUR(0, t − τ )〈iL(t − τ )BQ(τ, t )〉cond

ρ;A0 , (36)

where following the definition of P0 in Eq. (21), we express the projection P0iL(t−τ )BQ as the conditional expectation. We
expand

〈iL(t − τ )BQ(τ, t )〉cond
ρ;A0 =

∑
i

bQi (τ, t )ψi(A
0) (37)

using the functional basis {ψi(A0)}∞i=1, which is orthonormal,

〈ψi(A
0)ψ j (A

0)〉ρ = δi j, (38)

and complete [see Eq. (6)]. The expansion coefficients are

bQi (τ, t ) = 〈〈iL(t − τ )BQ(τ, t )〉cond
ρ;A0 ψi(A

0)〉ρ = 〈iL(t − τ )BQ(τ, t ); ψi(A
0)〉ρ. (39)

Integrating by parts in the thermodynamic average on the right-hand side of Eq. (39) [see Eq. (35)], we obtain

bQi (τ, t ) = −〈BQ(τ, t )iL(t − τ )ψi〉ρ − 〈BQ(τ, t )ψiiL(t − τ ) ln ρ(0)〉ρ (40)

(for clarity, we have eliminated the notation of the explicit dependence on A0 in the averaging). For an equilibrium ρ, the last
term in Eqs. (35) and (40) vanishes and hence iL(t ) is anti-Hermitian. We recall that in the canonical coordinates {A, ξ}, the
canonical form of iL(t ) is preserved:

iL(t )ψi = {ψi, H (�0, t )}�0 = −∇R0 H (�0, t ) · ∇P0ψi + ∇P0 H (�0, t ) · ∇R0ψi. (41)

If we assume that H (�, t ) does not contain terms coupling P to the ξ coordinates [see discussion of Eqs. (1) and (16)], then the
second term in Eq. (41) is the CG phase space observable and thus is orthogonal to BQ(τ, t ):

〈BQ(τ, t )∇P0 H (�0, t − τ ) · ∇R0ψi(A
0)〉ρ ≡ 0. (42)
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Therefore, we are able to transform the expansion in Eq. (37) [with bQi from Eq. (39)] into

〈iL(t − τ )BQ(τ, t )〉cond
ρ;A0 = −

∑
i

{〈BQ(τ, t )[−∇R̃0 H (�̃0, t − τ ) · ∇P̃0 ]ψi(Ã
0)〉ρ + 〈ψi(Ã

0)BQ(τ, t )iL(t − τ ) ln ρ(0)〉ρ
}
ψi(A

0),

(43)
where we assume the averaging is over the tilde coordinates {Ã0, ξ̃ 0}. The basis {ψi} is complete:

∑
i

ψi(Ã
0)ψi(A

0) = δ(Ã0 − A0)

〈δ(Ã0 − A0)〉 ρ

. (44)

We note that ρ(A0) = 〈δ(Ã0 − A0)〉ρ in Eq. (44) is a weighting function for the inner product in the A0 subspace. After we
perform the summation over i in Eq. (43) using Eq. (44), we obtain

〈iL(t − τ )BQ(τ, t )〉cond
ρ;A0 = −〈BQ(τ, t )[−∇R̃0 H (�̃0, t − τ ) · ∇P̃0 ]δ(Ã0 − A0)〉ρ

〈δ(Ã0 − A0)〉ρ
− 〈δ(Ã0 − A0)BQ(τ, t )iL(t − τ ) ln ρ(0)〉ρ

〈δ(Ã0 − A0)〉ρ
.

(45)
Next, in the first term of Eq. (45), making use of the known properties BQ(τ, t ) ≡ Q0BQ(τ, t ), ∇P̃0δ(Ã0 − A0) =
−∇P0δ(Ã0 − A0), and the Hermicity of Q0, 〈Q0BQ; B〉ρ = 〈BQ;Q0B〉ρ , we transform the transpose of Eq. (45) as

〈iL(t − τ )BQ(τ, t )〉cond
ρ;A0

T = ∇T
P0〈δ(Ã0 − A0)BQ(τ, t ) ⊗ Q0[−∇R̃0 H (�̃0, t − τ )]〉T

ρ

〈δ(Ã0 − A0)〉ρ
− 〈δ(Ã0 − A0)BQ(τ, t )iL(t − τ ) ln ρ(0)〉T

ρ

〈δ(Ã0 − A0)〉ρ

= ∇T
P0〈δ(Ã0 − A0)〉ρ〈δ(Ã0 − A0)BQ(τ, t ) ⊗ Q0[−∇R̃0 H (�̃0, t − τ )]〉T

ρ

〈δ(Ã0 − A0)〉2
ρ

+ ∇T
P0

〈δ(Ã0 − A0)BQ(τ, t ) ⊗ Q0[−∇R̃0 H (�̃0, t − τ )]〉T
ρ

〈δ(Ã0 − A0)〉ρ
− 〈δ(Ã0−A0)BQ(τ, t )iL(t − τ ) ln ρ(0)〉T

ρ

〈δ(Ã0−A0)〉ρ
,

(46)

where the symbol ⊗ denotes the outer product. Finally, in the vector component notation B = {Bs}, we introduce the memory
tensor functions,

γ̂sJ (τ, t, A0) = 1

kB

〈
δ(Ã0 − A0)BQ

s (τ, t ) ⊗ Q0[−∇R̃0
J
H (�̃0, t − τ )]

〉
ρ

〈δ(Ã0 − A0)〉ρ
= 1

kB

〈
BQ

s (τ, t ) ⊗ [−Q0∇R̃0
J
H (�̃0, t − τ )]

〉cond

ρ;A0
. (47)

We observe that in this equation, the force −Q0∇RJ H (�, t ) is the projected force from Eq. (20) for B(�0) = P0 [when
iL(�0, t )P0 = −∇R0 H] :

FQ
J (τ, t ) = −eR

∫ τ

0 dsQ0iL(�0,s)Q0∇R0
J
H (�0, t ), (48)

taken at τ = 0. The memory function in Eq. (47) then adopts a more familiar form:

γ̂sJ (τ, t, A0) = 1

kB

〈
BQ

s (τ, t ) ⊗ FQ
J (0, t − τ )

〉cond

ρ;A0 . (49)

This equation is analogous to the equilibrium second FDR, but it holds for arbitrary out-of-equilibrium states [38]. In terms of
the memory function in Eq. (49) and the vector component notation, Eq. (46) becomes〈

iL(t − τ )BQ
s (τ, t )

〉cond

ρ;A0 = −
∑

J

{
γ̂sJ (τ, t, A0)∇P0

J
SB(A0) − kB

[∇T
P0

J
γ̂ T

sJ (τ, t, A0)
]T } − 〈

BQ
s (τ, t )iL(t − τ ) ln ρ(0)

〉cond

ρ;A0 . (50)

Here, the potential

SB(A) = −kB ln 〈δ[A(�0) − A]〉ρ = −kB ln
∫

d�0ρ(�0, 0)δ[A(�0) − A] (51)

is the Boltzmann entropy of the irrelevant subsystem [31]. This interpretation follows from the equality 〈δ[A(�0) − A]〉ρ =
�h

A/�0
A where �0

A is the volume of the microscopic phase space �0 associated with the macrostate A and from the fact that the
corresponding number of irrelevant microstates is WA = �0

A/�h
A. Therefore, SB(A) = kB ln WA. Substituting Eq. (50) into Eq. (36),

we finally obtain the general expression for the dissipative term:

BD
s (t ) = −

∫ t

0
dτ

(∑
J

{
γ̂sJ (t − τ, t, Aτ )∇Pτ

J
SB(Aτ ) − kB

[∇T
Pτ

J
γ̂ T

sJ (t − τ, t, Aτ )
]T } + 〈

BQ
s (t − τ, t )iL(τ ) ln ρ(0)

〉cond

ρ;Aτ

)
. (52)
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C. GLE and canonical GLE

Putting Eqs. (29) and (52) into vector component notation, we obtain the following GLE:

d

dt
Bs(�

t ) = 〈iL(t )Bs(�
0)〉cond

ρ;A0→At

−
∫ t

0
dτ

(∑
J

{
γ̂sJ (t − τ, t, Aτ )∇Pτ

J
SB(Aτ ) − kB

[∇T
Pτ

J
γ̂ T

sJ (t − τ, t, Aτ )
]T } + 〈

BQ
s (t − τ, t )iL(τ ) ln ρ(0)

〉cond

ρ;Aτ

)

+ BQ
s (t, t ), (53)

where the memory functions are given by Eq. (47) and the projected force BQ
s (τ, t ) is given by Eq. (20) [see also Eq. (48)].

The less general but perhaps more practically useful GLE is obtained for B ≡ A, and choosing the ρ(0) to be of the canonical
form [compare to Eq. (31)],

ρc(�, 0) = e−H (�,0)/kBT

Z (0)
. (54)

From the definition of SB in Eq. (51) and the definition of H rel in Eq. (33) where ρc(�, 0) is used, we have the following relation:

∇P0 SB(A0) = 1

T
∇P0 H rel(A0, 0). (55)

Furthermore, the last term in the dissipative force [Eqs. (52) and (53)] vanishes. This leads to the following (canonical) CG GLE:

d

dt
As(�

t ) = êss	̂N 〈∇A0 H (�0, t )〉cond
ρc;A0→At

−
∫ t

0
dτ

∑
J

{
γ̂sJ (t − τ, t, Aτ )∇Pτ

J
H rel(Aτ , 0) − kBT

[∇T
Pτ

J
γ̂ T

sJ (t − τ, t, Aτ )
]T } + AQ

s (t, t ) (56)

(êss is the 2N × 2N single-entry matrix) with the memory tensor being scaled down by T :

γ̂sJ (τ, t, A0) = 1

kBT

〈
AQ

s (τ, t ) ⊗ FQ
J (0, t − τ )

〉cond

ρc;A0 . (57)

It is interesting that although the system can be out of equilibrium, the notion for temperature can be still naturally introduced to
the GLE. However, the use of temperature in Eq. (57) (which resembles the equilibrium second FDR) is rather superfluous and,
in principle, can be eliminated: The canonical GLE dynamics is an exact map of the deterministic Hamiltonian dynamics and
therefore does not rely on the notion of temperature.

For systems weakly influenced by external fields or which are in quasiequilibrium where there is a set {X rel
l (�)} of

relevant variables which evolve slowly, it is more appropriate to use the probability density of generalized canonical
form ρgc(�, t ) = e−k−1

B �(t )−∑
l βl (t )X rel

l (�) [14], where �(t ) = kB ln
∫

d�e− ∑
l βl (t )X rel

l (�) is the Massieu-Planck function. The ρgc

maximizes the Gibbs entropy functional SG[ρ] = −kB
∫

d�ρ(�, t ) lnρ(�, t ). The Gibbs entropy then is SG(t ) = �(t ) +
kB

∑
l βl (t )xrel

l (t ), where xrel
l (t ) = ∫

d�ρgc(�, t )X rel
l (�). The conditional probability density is obtained following Eqs. (23) and

(24): ρgc;A(ξ, t ) = e−k−1
B �(A,t )−∑

l βrel
l (t )X rel

l (�) with the conditional Massieu-Planck function �(A, t ) = kB ln
∫

dξe− ∑
l βrel

l (t )X rel
l (�).

The thermodynamic state of the irrelevant subsystem is described by the variables xrel
l (A, t ) = ∫

dξρgc;A(ξ, t )X rel
l (�), xrel

l (A, t ) =
−k−1

B δ�(A, t )/δβl (t ), and their conjugates βl (t ) = k−1
B δSG(A, t )/δxrel

l (A, t ) where the conditional Gibbs entropy is SG(A, t ) =
�(A, t ) + kB

∑
l βl (t )xrel

l (A, t ). From Eq. (51), it follows that

∇P0 SB(A0) = kB

∑
l

βl (0)∇P0 xrel
l (A0, 0) − ∇P0 SB(A0)

∑
l

βl (0)xrel
l (A0, 0), (58)

from which we can find ∇P0 SB(A0). The generalized canonical GLE can then be straightforwardly obtained from Eq. (53). In
many applications, it is convenient and justifiable to choose {X rel

l (�)} = B if the B are slow variables.

VI. PARTICLE-BASED CANONICAL CG DYNAMICS
AND MARKOVIAN ASSUMPTION

The particle-based canonical CG equations of motion are
obtained from Eq. (56) in which A = {R, P} are the Jacobi
coordinates [Eqs. (12) and (14)]. Formally, the GLE can
be written for the R coordinates; however, this GLE must
be equivalent to dRI/dt = ∇PI H

rel = M−1
I PI , I = 1, . . . , N ,

where the Hamiltonian H rel is given in Eq. (34). Therefore, in
the GLE for R, the memory and projected terms must vanish.
The nontrivial GLE is obtained for the momenta P. From
Eq. (55), we have

∇P0 SB(A0) = 1

T

{
P0

I

MI

}N

I=1

. (59)

024121-8



MORI-ZWANZIG PROJECTION OPERATOR FORMALISM: … PHYSICAL REVIEW E 104, 024121 (2021)

From Eqs. (56) and (1), we then obtain the following canoni-
cal CG GLE:

d

dt
Pt

I = −〈∇R0
I
u(r0, t )

〉cond

R0→Rt

−
∫ t

0
dτ

∑
J

{
γ̂IJ (t − τ, t, Rτ , Pτ )

Pτ
J

MJ

− kBT
[∇T

Pτ
J
γ̂ T

IJ (t − τ, t, Rτ , Pτ )
]T

}
+ FQ

I (t, t ),

(60)

with

γ̂IJ (τ, t, R0, P0) = 1

kBT

〈
FQ

I (τ, t ) ⊗ FQ
J (0, t − τ )

〉cond

R0,P0 ,

(61)

where we dropped ρc in the expectation notation. The pro-
jected force is orthogonal to the P as〈

Pt
I,iF

Q
J, j (τ, t )

〉 = 0, t � τ � 0, ∀I, J, i, j = 1, 2, 3, (62)

where i, j indicate the vector components. Equations (49) and
(61) are both second FDR which is already known to hold
for microscopic Hamiltonian systems in nonequilibrium states
[27]. Equations (49) and (61) prescribe a consistent procedure
for generalization of the equilibrium second FDR (which can
be derived within linear response theory) to open systems.

A generalized Markovian approximation can be introduced
for open systems [60]. For CG dynamics in closed systems
in equilibrium, a Markovian approximation is a major as-
sumption, leading to the DPD equations of motion. We show
that while a Markovian approximation can be introduced for
open systems, the friction tensors approximating the memory
functions become explicitly time dependent, which reflects a
change in the strength of the dissipative interactions caused by
time variations in the strength of the coupling of the irrelevant
subsystem to the external field. Using a Markovian approxi-
mation amounts to neglecting the memory effects in Eq. (60)
and is justified when there is a strong separation between char-
acteristic timescales for the slow relevant and fast irrelevant
dynamics. In this scenario, the scale for the decay in τ of the
memory functions γ̂IJ (τ, t, R0, P0) in Eq. (61) becomes short
compared to the characteristic scale for the A(τ ) trajectory
evolution and we can use the following approximation,

γ̂IJ (τ, t, R0, P0) ≈ δ(τ )2 ˆ̄γIJ (t, R0, P0), (63)

where

ˆ̄γIJ (t, R0, P0) = 1

kBT

∫ ∞

0
dτ

〈
FQ

I (τ, t ) ⊗ FQ
J (0, t − τ )

〉cond

R0,P0

(64)
are friction tensors expressed in the Green-Kubo form [31].
The next standard approximation we use is an assumption
that ˆ̄γIJ is not an explicit function of {R0, P0}. In this ap-
proximation, the conditional expectation 〈·〉cond

R0,P0 in Eq. (64)
can be replaced with unconditional averaging 〈·〉 while the
gradient term ∇T

PJ
ˆ̄γ T
IJ vanishes [see Eq. (60)] [47–50]. An

additional observation of DPD is that the dissipative and
projected forces are momentum conserving:

∑
J FQ

J (0, t ) = 0
and thus ˆ̄γII (t ) = −∑

J �=I
ˆ̄γ IJ (t ). These approximations lead

to the following DPD equation for open systems:

d

dt
Pt

I = − 〈∇R0
I
u(r0, t )

〉cond

R0→Rt +
∑
J �=I

ˆ̄γ IJ (t )

(
Pt

I

MI
− Pt

J

MJ

)

+ FQ
I (t, t ), (65)

where the friction tensors ˆ̄γIJ and the projected forces FQ
I are

related by the following second FDR:〈
FQ

I (τ, t ) ⊗ FQ
J (0, t

〉 = δ(τ )2kBT ˆ̄γIJ (t ), t � τ � 0, I �= J.

(66)
Note here that the friction tensors ˆ̄γIJ are negative defi-
nite which is a result of a sign convention on the average
in Eq. (64) that has been adopted in the literature [31,85].
The FDR in Eq. (66) is internally consistent with describ-
ing τ evolution of the FQ(τ, t ) by additive white noise
F S (τ ) = {F S

I (τ )}N
I=1 (e.g., superposition of Gaussian white

noises [67]). Furthermore, Eq. (66) implies that the τ and t
scales are also separated (e.g., the characteristic timescale for
the variation of the external forces is much longer compared
to the characteristic scale for the intrinsic irrelevant dynam-
ics). Therefore, when transitioning to a DPD description, we
can go further and represent the projected force FQ(t, t ) in
Eq. (65) by the following linear combination of Gaussian
white noises [67,86]: F S

I (t ) = ∑
J BIJ (t )dWJ (t )/dt , where

WJ (t ) are Wiener processes [17,28] and BIJ (t ) are determin-
istic processes satisfying

∑
K BIK (t )BJK (t ) = 2kBT ˆ̄γIJ (t ). We

are then able to satisfy the DPD FDR in Eq. (66) as〈
F S

I (t ) ⊗ F S
J (t ′)

〉 = δ(t − t ′)2kBT ˆ̄γIJ (t ), t � t ′, (67)

where we used the stationarity of F S
I (t ).

Applying the DPD framework to open systems [Eqs. (65)
and (67)] is complicated by the fact that the friction tensors,
and consequently the FDR, are explicitly time dependent. The
frictions and the respective stochastic process designed to
model the projected force must reflect the effect of the external
force on the irrelevant dynamics. To assess our assumption
that the CG dynamics in a microscopic system are Markovian,
we compare the decay time of the autocorrelations CF (t ) =
〈F (rt , t )F (r0, 0)〉 of the generalized forces [Eq. (13)] with the
characteristic scale of the CG dynamics as commonly deter-
mined by the decay time of the P autocorrelations, CP(t ) =
〈Pt P0〉 [31,86]. CF (t ) decaying faster than CF (t ) would in-
dicate that FQ(t, t ) can be treated stochastically within the
FDR in Eq. (67). This, in turn, requires that the characteristic
timescale of the external force may be large compared to the
characteristic scale of the CG dynamics. This disparity in the
characteristic timescales is a hallmark of Markovian behavior
[31,86].

VII. SUMMARY AND OUTLOOK

We have shown that for classic Hamiltonian systems which
are influenced by the external explicitly time-dependent po-
tentials (we refer to such systems as open systems) and
are far from equilibrium, the MZ formalism with a time-
independent Zwanzig PO P0[ρ] in a Heisenberg picture
[Eq. (21)] can perform an exact time-convolution decom-
position of the dynamics into relevant (CG) and irrelevant
parts [Eq. (19)]. To develop our formalism, we required that
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together the CG and irrelevant coordinates form a canonical
set. At this stage, we kept the formalism very general and
obtained the GLE [Eq. (53)], which describes exactly the
Hamiltonian time evolution [Eqs. (2) and (4)] of the mi-
croscopic observables without explicit time dependence. The
dynamics was determined by a GLE with time-reversible con-
servative [Eq. (29)], time-irreversible dissipative [Eq. (52)],
and projected [Eq. (20)] force terms. The projected force
[Eq. (20)] can be viewed as a two-time process with the first
timescale determined by the phase trajectories �τ and the
second timescale determined by the explicit time dependence
of the Hamiltonian [Eq. (1)]. The dissipative force takes a
time-convolution form and can be expressed through mem-
ory tensor functions related to the projected force through
the second FDR [Eqs. (49), (57), and (61)]. Furthermore, in
general, the dissipative force depends linearly on the gradients
of the (Boltzmann) entropy SB(A) of the irrelevant subsys-
tem [Eq. (51)]. For closed systems and canonical Zwanzig
P0[ρ] (i.e., which corresponds to the canonical ρ), the SB(A)
can be related to the relevant (CG) Helmholtz free energy
[Eq. (33)]. Our framework using the canonical P0[ρ] leads
to a CG GLE [Eq. (56)] that is an extension of the known
CG GLE, but to open systems. The further generalization
of the canonical CG GLE is obtained by using the ρ of the
generalized canonical form. The main application we seek
for our formalism is particle-based coarse graining of open
Hamiltonian systems, which is accomplished by transitioning
to the Jacobi coordinates [Eqs. (12) and (14)] considering the
c.m. coordinates [Eq. (12)] of the particle clusters as the CG
coordinates. This is followed by the derivation of the particle-
based CG GLE, which governs exactly the time evolution of
the CG coordinates (the relevant Jacobi momenta) in open
classical systems [Eq. (60)]. The obtained expressions for the
particle-based CG GLE memory tensors through the projected
force correlations [Eq. (61)] can be viewed as an open-system
generalization of the second FDR known for closed systems
in the equilibrium. This extension has not been previously
reported.

We have also shown that in the Markovian limit, the
particle-based CG GLE is a memoryless equation of mo-
tion of the DPD type with frictions that are explicitly time
dependent. The time dependence of the frictions reflects a
time-variable dissipation rate caused by coupling of the irrele-
vant subsystems to an external time-dependent bath. We have
formulated criteria to determine whether the CG dynamics in
open systems can be considered Markovian, and hence can use
the stochastic differential equation (SDE) approach, where
the projected force is modeled using additive Gaussian white
noise.

Regardless of the ρ(�, 0) which determines the P0[ρ], the
presented CG GLE time evolution must be an exact map of
the microscopic Liouville evolution and, as such, can serve
as a starting point when considering CG dynamics in various
approximations including those for transport equations [see
Eq. (28)], response theories, and DPD and its variants, the
nonequilibrium statistical operator method [17]. An impor-
tant application envisaged is the internal energy transport in
open molecular systems. Energy transport processes can be
described by the coupled set of GLEs governing the evolution
of the position, momentum, and internal energy of thermal
blobs representing entire complex molecules at the CG level
[50,87]. Considering that the Jacobi conjugate momenta can
be calculated analytically, the present generalizations of the
CG GLE theory emerge as a tractable framework to study
a range of other transport processes. Potential applications
include bottom-up formulations of more complex coupled CG
dynamics to describe the evolution of various properties of mi-
croscopic systems and in various ensembles. It is not feasible
to calculate many of these properties from the CG trajectories
alone due to loss of information upon coarse graining.
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