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Potential-driven random walks on interconnected systems
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Interconnected systems have to route information to function properly: At the lowest scale neural cells
exchange electrochemical signals to communicate, while at larger scales animals and humans move between
distinct spatial patches and machines exchange information via the Internet through communication protocols.
Nontrivial patterns emerge from the analysis of information flows, which are not captured either by broadcasting,
such as in random walks, or by geodesic routing, such as shortest paths. In fact, alternative models between
those extreme protocols are still eluding us. Here we propose a class of stochastic processes, based on biased
random walks, where agents are driven by a physical potential pervading the underlying network topology. By
considering a generalized Coulomb dependence on the distance on destination(s), we show that it is possible to
interpolate between random walk and geodesic routing in a simple and effective way. We demonstrate that it is
not possible to find a one-size-fit-all solution to efficient navigation and that network heterogeneity or modularity
has measurable effects. We illustrate how our framework can describe the movements of animals and humans,
capturing with a stylized model some measurable features of the latter. From a methodological perspective, our
potential-driven random walks open the doors to a broad spectrum of analytical tools, ranging from random-walk
centralities to geometry induced by potential-driven network processes.
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I. INTRODUCTION

Communication, transport, and mobility are just a few
examples of real domains involving the movement of partic-
ular entities—information, commodities, animals, or human
beings—from one place A to another place B. How point B
is reached from A varies according to the routing strategy
adopted by the agents. Notably, routing strategies on net-
works are mostly based on shortest path or random walk
protocols. On the one hand, shortest path protocols assume
global knowledge of the network, driving agents to follow the
routes minimizing a cost function among the available ones.
However, this approach is not always feasible because we lack
either global knowledge about the system or the computa-
tional resources to exploit it, such as for searches in the World
Wide Web. On the other hand, random walk protocols rely
only on local knowledge and, consequently, take a longer time
to reach a destination, therefore providing a misrepresentation
of real-world navigation processes where, for example, it is
rare for an agent to randomly proceed on her journey.

The limits of this dichotomy is manifest if we consider
human navigation, where route choice strategies are, in the
first approximation, driven by the objective of minimizing
time and travel costs [1]. However, route choice can be at same
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time also influenced by other external factors, such as traffic
restrictions, unexpected queuing times due to special events
[2], the application of congestion pricing schemes [3], the
relative pleasantness of routes [4], or other preferences such
as the desire of minimizing the number of turns [5] which
may strongly variate the cost function between individuals.
On the other hand, while being the most efficient way of
proceeding, even when considering possible detours due to
traffic congestion or other user initiatives, following the short-
est path requires a complete knowledge of network topology
[6]. Often such knowledge is not available and only partial
information on network structure can be considered (i.e., the
degree of neighbors). The problem of routing information
within a network without global knowledge about the system
is related to a variety of applications from neuroanatomy and
social sciences to communication and infrastructure engineer-
ing. For instance, it has been shown that the small-world
topology of some systems, characterized by the presence of
long-range links, favors the finding of paths which allow for
the efficient delivery of information towards the destination
[7] (see also [8] for a review), as well as for the efficient
navigation of an interconnected system, the latter being fa-
vored by the presence of a latent metric space [9]. Recently,
the trade-off between information routing through the shortest
path, network entropy, and stability has been pointed out [10].
Even when complete information is available, human naviga-
tion is limited by the cognitive resource that can be assigned
to the task [11], which has as consequences the need for
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heuristics to simplify mental representation of the space [12]
and the over-reliance on habitual routes [13]. The combination
of all these uncontrollable and individual factors yields to the
ensembles of trajectories empirically observed at a high level
of randomness. Regardless of the urban layout, a significant
portion of trajectories within a city does not follow the shortest
path between two specific origin and destination points [14],
but rather prefers some other eligible paths contained in the
ellipse generated from these origin and destination points,
coinciding with the two foci of such an ellipse [15]. As a
consequence, even if it is known that the human routing is
based on cost minimization, for some scenarios of analysis
random walks have also been proposed as suitable alternative
to develop routing strategies on networks [6,16,17].

It is thus clear that real human trajectories over transporta-
tion networks fall between these two opposite paradigms,
shortest path routing and random walks. The same can be said
in other notable cases such as the flow of information across
the brain [18] or animal movements, where the “base” model
is that of random walks and diffusion, but observed paths
often display a high level of correlation at the microscopical
level [19] and are ultimately driven by optimized strategies
reached through evolution [20]. There is therefore a need for
a continuous spectrum of dynamics between shortest path
and random walk routing that can describe paths balancing
efficiency and randomness integrating at the same time local
and global information [18]. Moreover, the need for overcom-
ing deterministic routing strategy and embracing a degree of
randomness is motivated by a realm of ordinary and extraor-
dinary situations where uncertainty eventually proves to be
useful. Avoiding congestion and/or avoiding predictability of
a routing strategy for security purposes are a few common
examples of such an eventuality. This problem is known in the
literature as the randomized shortest path problem (RSP) [21].
As illustrated above, in the field of human mobility, the en-
sembles of trajectories empirically observed exhibit emergent
behaviors that overcame the shortest paths, demonstrating that
humans do not make optimal decisions, but suboptimal ones.
In the human brain, a phenomenon known as neuroplasticity
enables brain neural networks to change, reorganize, and grow
leading to significant implications for healthy development,
learning, memory, adaptation to changing environment, and
recovery from brain damage [22]. This means, for example,
that brain routing strategies are flexible and not fixed to one
optimal path [23]. Due to this flexibility, the pattern of cortical
activation can change over time allowing for new skills and
abilities to be learnt [23]. The behavior of people moving in
a city and the one of neural connections evolving in the brain
due to neuroplasticity could be lively examples of the effect
due to a particular field influencing such a behavior. In the
animal kingdom, a phenomenon known as stigmergy drives
animals to follow some preferential paths according to the
trace left in the environment by other individuals of the same
species. Stigmergy is an example of indirect communication
where individuals communicate with each other by modifying
the surrounding habitat. In this case we could say that a
field emerges from the interaction between animals and their
environment. An extraordinary example of routing strategies
evolving in space based on the availability of resources is
given by the brainless slime mold, whose efficiency to form

networks is comparable to those of real-world infrastructure
networks [24]. This is brilliantly proved in a study where,
arranging food in a scattered pattern such as that of Japanese
cities around Tokyo makes the slime mold build networks of
nutrients which strikingly resemble the layout of the Japanese
rail system [24]. Here we could compare the food resources
to physical particles giving rise to a field and driving the
slime mold towards specific targets. Finally, a system can
benefit from continuous exploration, mostly when considering
nonstationary conditions: For instance, one can think about
the animal foraging in a changing environment, where agents
routing towards the optimal path would miss the opportunity
to encounter new patches to feed on. Exploitation of what is
known and exploration of what is unknown is an ineluctable
trade-off in space, society, and even the human mind [25].
Here we take a step further in modeling this trade-off by
overcoming pure deterministic routing strategies and allowing
for a continuous exploration of the system, embedding our
model with information about preexisting fields or emerging
fields.

To work in this direction, we build upon the most recent
literature about random walks on networks. Two main ap-
proaches of biased random walk have been proposed that
encapsulate any available information on particular network
features. The first approach is the degree-biased random walk
[27–30], where the transition probability from one node to
its neighbors is biased according to the degree of its neigh-
bors. Depending on the sign of the bias parameter, the walker
will explore the network by visiting the hubs or by passing
through poorly connected nodes. The second approach is the
maximal-entropy random walk [31,32], where the step transi-
tions probabilities are defined in such a way that the walker
disperses maximally in the network. Also in this second case,
the transition probabilities from one node to another one are
biased according to some topological features (e.g., degree),
or to any relevant property for the diffusion dynamics (e.g.,
level of congestion), of its nearest nodes. Recently, a memory-
based random walk has been proposed to extend the local
information up to the next-nearest neighbors [33]. Despite
the efforts made to include more and more information about
nodes’ features up to the second-order nearest neighbors, little
is known about routing strategies when the known information
is scattered over the network or when it affects only some
particular nodes.

In the last decade, in parallel to the family of biased ran-
dom walks, a new framework aimed to interpolate between
he shortest path and random walk has emerged, the ran-
domized shortest paths (RSPs) [21,34,35]. The RSPs exploit
a thermodynamic formalism by considering the temperature
distribution over paths. By adjusting such a temperature pa-
rameter the walker mediates between a minimal travel cost
and the maximal exploration of the network. A close proposal,
similar in intent—i.e., interpolating between shortest path and
random walk—yet different in the implementation has been
provided to investigate the routing of neural signals [18]. This
last proposal suggests a possible model for network commu-
nication merging local and global information about topology
and generating an alternative kind of biased random walk. For
each node, the bias is encoded by a degree of knowledge of the
underlying network topology [18]. Specifically, the transition
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probabilities from one node to its neighbors depend on two
factors: The length of the edge connecting the node with its
neighbors (local information) and the degree of knowledge
regarding the distance of such neighbors from the target node
(global information). Nevertheless, the shortest path between
all pairs of nodes is always required to build the transition
matrix of such a random walk [18]. In fact, in all cases ex-
cept for the trivial unbiased random walk, the shortest path
between all pairs of node contributes in defining the degree of
(global) knowledge of the network, properly modulated by a
bias parameter.

In this work, we define a walk, grounded on physics, which
tends to minimize distances (like a shortest path, a global
feature) while keeping some flexibility in random exploration
(like a random walk, a local feature). In particular, we propose
a process, the potential-driven walk, that effectively interpo-
lates between shortest path and random walk routing protocols
due to the presence of a potential field defined on the top of the
network and acting at each node. By combining knowledge of
local features and (partial) global information about network
topology, we propose a type of biased random walk where the
bias is generated by the potential, which in turn can take dif-
ferent functional forms and can be expressed in different ways
depending on background assumptions. The potential-driven
random walk does not require one to control the randomness
of exploration by fixing the entropy spread—or other global
variables—on top of the network or to define a temperature
parameter regulating the free wandering in the system (as
in the case of RSPs), which is a computational advantage
besides being a conceptual shift. In our framework, we do
not fix or constrain any variables a priori (e.g., entropy con-
straint); instead we establish where to put the potential node.
The dynamical process we proposed minimizes the distances
while allowing for some flexibility in the exploration of the
system, by relying on simple and well-known network mea-
sures, properly biased to continuously interpolate between the
random walk and shortest path. Thereby, our walker acts as a
physical particle which moves according to stochastic rules
but potential-driven. Notably, our methodology allows for
embedding the transition matrix with information about pre-
existing fields or emerging fields. Remarkably, our framework
is able to reproduce some salient features regarding animal
and human movements.

II. POTENTIAL-DRIVEN RANDOM WALK

Let us consider a finite connected graph of nodes i =
1, . . . , N whose connectivity is defined by the adjacency ma-
trix A. The element ai, j of A is equal to 1 if a link exists
between node i and node j and 0 otherwise. Now let us
arbitrarily choose a drifting node � and imagine the following
dynamical process: A free wandering walker moving from
node i to node j is subjected to a potential responsible for
drifting the walk towards (or away from) the drifting node
� of the system. The master equation of the potential-driven
random walk reads

p j (t + 1 | �) =
N∑

i=1

Ti j (�)pi(t | �), (1)

where p j (t + 1 | �) is the probability of being in j at time
t + 1 given the presence of � and Ti j (�) is the transition
probability of the potential-driven random walk from node i to
j. Specifically, we proposed a biased transition matrix whose
elements are defined by

Ti j (�) = c j (�)ai j∑N
n=1 cn(�)ain

. (2)

It is to be noticed that the denominator serves as a normal-
ization factor and n is another index indicating the network
nodes. At this point we have to define what is the bias factor
c j (�). As stated before, the bias generated by the potential
can take a different functional form. To define the bias of the
potential-driven random walk, we consider the combination
of two fundamental variables: (1) the topological distance
from the potential d (�) and (2) the node’s degree k. Here we
assume that the potential has a gravitational-like form, and it is
centered in a node � so that a walker in node i will randomly
select a neighbor j while (1) being attracted (repulsed) by �

inversely (directly) proportional to their relative topological
distance and (2) being biased by the presence of network hubs
in its neighborhood. Under these assumptions the bias factor
c j (�) reads

c j (�) = dγ

j�kβ
j , (3)

where d j� is the topological distance between j and the po-
tential � and k j is the degree of node j, and γ and β are
the bias parameters. It is to be noticed that, when there is
no dependence on any other node in the network but only of
the neighbor at most, i.e., when c j (�) = c j , we would have
the classical biased random walk. When, instead c j = const,
it is easy to show that the classical nonbiased random walk
is restored. In Fig. 1 we give an illustrative example of the
so-defined potential-driven random walk. For ease of reading,
only the topological distance from potential is considered in
the bias factor [i.e., c j (�) = dγ

j�], which actually represents the
innovative aspect of this work. By tuning the bias parameters
γ and β we define the dependence of the process on the po-
tential and on node degree. When γ < 0 the walker is drifted
towards the node �, while γ > 0 implies a repulsive poten-
tial from �, and γ = 0 is the classical biased random walk.
Hence, in the case of attractive potential, the target node of a
potential-driven random walk coincides with �. When β < 0
the motion is biased towards poorly connected nodes, while
if β > 0 the walker will favor hub nodes. In the case β = 0
(and γ = 0) the classical random walk is restored. To sum
up: γ defines where the walker is potential-driven, towards
or away from �, and β establishes how the walker is driven,
i.e., towards hubs or poorly connected nodes. By considering
the stochastic process of the potential-driven random walk in
terms of its Markov chain representation we can characterize
the walk through the steady-state distribution p∗ and the mean
first passage time matrix MFPT. In fact, if the Markov chain
is ergodic, i.e., every state of the chain can be reached by
any other state (the graph is connected), then the steady-state
distribution p∗ exists and is unique and

lim
t→∞ T t (�)p(0) = p∗(�) ∀p(0), (4)
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FIG. 1. Interpolating between random walk and shortest path: The potential-driven random walk. Illustrative example of potential-driven
random walk with different values of bias parameter γ on the Zachary’s karate club network [26]. The group of networks on the top half of the
figure [panels (a)–(d)] encode the same concept of the group on the bottom [panels (e)–(h)] but in terms of available amount of information.
Specifically, the random walker in (a) knows (“sees”) nothing about the network topology, while the walkers in (b) and (c) are driven by
the potential in � (stylized by a black dot with waves) and they thus know (“feel”) something about network topology. Finally, the walker in
(d) knows (“measures”) everything about network topology and can therefore take the shortest path. Red nodes and red links encode the path
followed by the potential-driven random walker varying γ . When γ = 0 in (a) and (e) the classic random walk is restored. When γ = −1 in
(b) and (f) and γ = −2 in (c) and (g) we are in the case of an attractive potential-driven random walk. When γ = −∞ in (d) and (h) we are
in the case of the shortest path. Note that the size of the nodes in the case of a potential-driven random walk, i.e., in (b), (c), (f), and (g), is
inversely proportional to the distance from �, which corresponds to the target node (node id = 27).

where p(0) is the distribution of the initial state. Following a
procedure similar to the one presented in [31], below we de-
rive the analytical expression for the steady-state distribution
p∗(�) of the potential-driven random walk.

Let us consider the probability to go from node i to node
j in t time steps Pi→ j (t ). If the network is undirected, then
ai j = a ji∀i, j, and so the relation between the probability of
going from i to j in t time steps and the probability of going
from j to i in the same time can be defined as [31]

biciPi→ j (t ) = b jc jPj→i(t ), (5)

where bi = ∑
j ai, jc j (�). For the steady-state distribution p∗,

the the same relationship applies so that bici p∗
j = b jc j p∗

i , and,
through the detailed balance condition, it can be shown that

p∗
i (�) = bi(�)ci(�)∑

v bv (�)cv (�)
=

∑
j ai, jd

γ

j,�kβ
j ∗ dγ

i,�kβ
i∑

v

∑
j av, jd

γ

j,�kβ
j ∗ dγ

v,�kβ
v

. (6)

Note that, in the case γ and β are equal to 0, the classic
random walk is restored:

p∗
i =

∑
j ai, j∑

v

∑
j av, j

= ki

2m
(7)

with m corresponding to the number of edges in the network.
At this point, we probe the mean first passage time matrix
MFPT of the potential-driven random walk. The MFPT ma-
trix defines the average number of steps required to a walker
starting in node i to reach a specific node j. To obtain the

MFPT matrix we followed the matrix solution proposed by
[36]. Particularly, we make use of the fundamental matrix Z:

Z(�) = (I − T(�) + W(�))−1, (8)

where, in our case, I is the identity matrix, T is the transition
probability matrix of the potential-driven random walk, and
W is a matrix having all rows equal to p∗(�). For an ergodic
Markov chain, the entries mi j (�) of the mean first passage time
matrix MFPT can be obtained from the fundamental matrix
Z(�) as [36]

mi j (�) = z j j (�) − zi j (�)

p∗
j (�)

. (9)

Finally, we can compute the estimated variance numeri-
cally, while its analytical formulation lies outside the purpose
of this current work. For the reader interested in proceeding
with this formulation we refer to [37].

III. ANALYSIS OF SYNTHETIC NETWORKS

We now have defined the key descriptors for the dynamical
process of the potential-driven random walk, i.e., the steady-
state distribution and the mean first passage time matrix. In
this section, we put these indicators into play on different
network topologies. In particular, we show how the station-
ary distribution varies according to the presence of attractive
or repulsive potential(s) in the case of one single poten-
tial (monopole), two potentials (bipole), and more than two
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potentials (multipole) on top of ordered topology networks,
i.e., on lattices. Specifically, in the case of a monopole, a
single node is considered as a source of potential—which
can be either attractive or repulsive—while in the case of
a multipole a scenario with multiple sources of potential
(nodes)—attractive, repulsive, or both—is considered. We
prove as well that our approach is effective for computing
the mean first passage time matrix by comparing analytical
results with simulated results on disordered network topolo-
gies, i.e., on random networks, scale-free and small-world
networks, random geometric graphs, (hierarchical) stochastic
block models, and Lancichinetti-Fortunato-Radicchi (LFR)
networks. Finally, we provide a measure that defines to what
extent the potential-driven random walk deviates from the
shortest path in different topologies according to the value of
bias parameter γ and β. We call this measure the straightness
index on networks, reminiscent of the homonymous index
defined by Batschelet in 1981 [38] to define the tortuosity of
animals’ paths in the physical space.

A. Lattices

Let us suppose the following scenarios. Imagine one is
in a city and the agent has to go, for instance, to the mall.
Which route would she (most likely) follow? What if there
is a more convenient mall around or multiple ones? One can
also imagine the scenario where, in addition to a potential
destination (e.g., a mall), there are also restricted traffic zones
that one should avoid [39]. How does the knowledge of all
this information shape one’s routing strategy? In this section,
we illustrate how the potential-driven random walk provides a
suitable way to model such scenarios in a physically grounded
and elegant way, giving plausible answers to these questions.
Before illustrating the modeling of the aforementioned sce-
narios, we generalize the bias factor and the steady-state
distribution to the case of a multipole, as in following Eq. (10)
and Eq. (11) respectively:

c j (�1, . . . , �L ) = kβ
j

�L∏

�=�1

dγ

j�, (10)

where � are the variables indicating the potential nodes within
the system

p∗
i (�1, . . . , �L ) =

∑
j ai, jk

β
j

∏�L
�=�1

dγ

j�kβ
i

∏�L
�=�1

dγ

i�∑
v

∑
j av, jk

β
j

∏�L
�=�1

dγ

j�kβ
v

∏�L
�=�1

dγ

v�

. (11)

It is to be noticed that the generalization to the multipole
requires the product of the distance from the nearest neighbors
( j) to all potential nodes (�1, . . . , �L).

Let us consider a 9 × 9 regular lattice (81 nodes) and first
pick a drift node � on top of this lattices [as in the first
lattice of Fig. 2(a)]. Now imagine a walker, subjected to the
presence of such a drift node �, i.e., a potential-driven random
walker. According to the nature of this potential—repulsive
or attractive—the dynamical process described by the master
equation (1) will drive the walker respectively far from the
node � or towards node �. This is well described by the value
of the steady-state ( SS) distribution, represented by the node’s
size, in the first lattice of Fig. 2(b)—repulsive potential—and

in the first lattice of Fig. 2(c)—attractive potential. The SS dis-
tribution has been computed by means of Eq. (6) considering
a linear dependence from the distance from � (i.e., γ = ±1).
Dealing with lattices, we neglected the bias on the degree (i.e.,
we put β = 0) in computing the steady state. Curiously, in the
case of repulsive potential [first lattice of Fig. 2(b)] the highest
probability of the steady state is not in the farthest node from
� (id node = 81), which is a node on the border. Instead, the
highest value of the S distribution corresponds to the farthest
node from � of maximum degree (id node = 71). In fact, the
SS distribution of a node i depends on its distance from � but
also on the distance of all its neighbors from � [see Eq. (6)].
Therefore, being in a node i having neighbor nodes far from �

contributes to increase the probability of being in that node i.
The same is true in the case of a repulsive bipole and multipole
[second and third lattices of Fig. 2(b)]. Specifically, in the case
of a bipole the highest probability of the steady state divides
the four nodes of highest degree, which are simultaneously the
farthest nodes from the two repulsive potentials (id nodes = 8,
18, 64, 74). Similarly, in the case of a multipole, the nodes
where the walker is most likely to be when time goes to
infinity are the most distant from the four poles and the ones of
maximum degree simultaneously. The situation is completely
reversed in the case of an attractive potential. As can be seen in
the first lattice of Fig. 2(c), the drift node � generates a basin of
attraction that drives the walker toward the neighbors of � and
� itself. In particular, the probability of being in � when time
goes to infinity is 0.5 (we are in the case of linear dependence
from the distance from �, i.e., γ = −1). The rest of the SS
distribution equally divides between the four nodes nearest to
�. A similar situation appears in the case of an attractive bipole
and multipole [second and third lattices of Fig. 2(c)]. Specif-
ically, in the case of a bipole two basins of attraction arise
around the two potentials , but the steady-state probability
divides unequally around them. In fact, the nearest neighbors
of one pole which are also the nearest to the other pole (the
“internal nodes”) have a greater occupation probability than
the external ones. The same unbalanced configuration arises
in the case of a multipole, where the “internal” nodes have a
greater occupation probability than the “external” ones. It is to
be noticed that the pattern around each pole is the same [see
the second and third lattices of Fig. 2(c)].

We now reveal what happens in the case of a mixed multi-
pole. Let us pick, for example, two attractive potentials and
two repulsive potentials on our lattice [Fig. 2(d)]. Let us
assume also that the two flavors of the potential—repulsive
and attractive—act with different intensity on the lattice, for
example, establishing a linear dependence on the distance
from attractive potentials and a quadratic dependence on the
one from repulsive potentials. The arising pattern of the steady
state is equal—in terms of distribution—and, at the same time,
opposite—in terms of direction—to the one resulting from the
case of an attractive multipole [second lattice in Fig. 2(c)].
In fact, also in this case the two attractive potentials share
half of the occupation probability (i.e., 0.25 each). The second
half of the stationary probability is divided among the nearest
neighbors of these two attractive potentials, but this time the
“external” nodes (id nodes = 12, 20, 62, 70) have a greater
probability than the “internal” nodes (id nodes = 22, 30, 52,
60). The reason why this happens is due to the presence of
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FIG. 2. Probing the potential-driven random walk on lattices. In (a) we indicates the position(s) of the potential(s) (i.e., where the potentials
are) on top of the lattices, represented as a black dot with waves. From left to right we have the case of a monopole, bipole, and multipole
(shown twice), to test distinct scenarios of interest. In (b) we show the values of the steady-state (SS) distribution for each node in the case of
repulsive potential(s), specifically for γ = 1, i.e., what happens if the potentials were repulsive. In (c) we show the values of the SS distribution
for each node in the case of attractive potential(s), specifically for γ = −1, i.e., what happens if the potentials were attractive. In (d) we report
a mixed case where potentials are both attractive—extreme left and extreme right—and repulsive—up and down—i.e., what happens if the
potentials were mixed. In (d) attractive potentials have γ = −1, and repulsive potentials γ = 2. The color of nodes encodes the value of its
steady state, and the color bar applies to all lattices. As well, the size of the node is proportional to the value of the steady state, but it is rescaled
for each lattice; in this way one can better appreciate the direction towards which the walker is driven. The bigger the node, the bigger the
probability to find the walker there at the steady state. Edges’ color encode the probability to drive along that link (Ti j).

repulsive potentials concomitantly with the attractive ones,
which drives the walker towards (one of) the two basins of
attraction generated by the attractive poles while keeping the
walk as far as possible from the repulsive poles within the
basin of attraction, or, more precisely, while preferring nodes
far from repulsive potentials among the nearest neighbors of
the attractive potentials.

B. Disordered topologies

Usually real systems are far from being adequately
modeled by lattices. Brain networks, for example, exhibit
small-world properties [40] such as the Internet [41] or social
interactions [42]. Other examples are protein-protein inter-
actions which besides being small-world are revealed to be
scale-free [43] such as the world airline network [44,45]. Fur-
thermore, some key features of real systems, such as modular
structure or spatial embedding, are properly reproduced when
considering more complex topologies, such as stochastic
block models and random geometric graphs, respectively. For
this reason, in the current section we overcome regular lattices
to consider more disordered topologies. Specifically, we now
investigate the dynamical process of potential-driven random
walks considering eight different models, each one encoding
one specific feature, covering a broad spectrum of the topo-

logical characteristics emerging from real-world networks.
These models are Barabási-Albert (BA) [46], Erdős-Rényi
(ER) [47], Hierarchical Stochastic Block Model [48] with four
dense groups per level (HSBM4), Lancichinetti-Fortunato-
Radicchi (LFR) [49], Stochastic Block Model [50] with four
dense groups (SBM4), Random Geometric Graphs (RGG)
[51], Scale-Free [46] with scaling exponent −2 (SF2), and
Watts-Strogatz (WS) [42]. All networks consist of 256 nodes,
and their parameters are chosen to obtain an average degree
〈k〉 = 12 or, equivalently, to have about 3000 links, on aver-
age.

To prove that our approach is effective for computing the
mean first passage time (MFPT) matrix we run 200 simula-
tions of the potential driven random walk for each topology,
and we compute as well the theoretical values of the MFPT
matrix by means of Eq. (9). It is to be noticed that we can
compute the MFPT matrices only for the values of γ � 0
(and for all values of β). In fact, for values of γ > 0 the
Markov chain would have a transient state coincident with �

(the node where we put the potential). This means that when
starting in � there is a nonzero probability to never return in
�. For this reason, the Markov chain would not be ergodic,
consequently making Eq. (9) nonapplicable. This is the reason
why we compute the MFPT only for γ � 0 (and ∀β), or in
other words, in the case of attractive potential, i.e., when �
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FIG. 3. Theoretical versus simulated mean first passage time from all possible source nodes to the target node on different network topologies.
In the top of (a) we show the values of the simulated mean first passage time versus the theoretical ones for all values of γ � 0 and for β = −2
considering a random geometric graph (RGG) of 256 nodes. Underneath, we display a zoom of the same graph (in cobalt squares) to better
appreciate the values of the mean first passage time for potential-driven random walk (i.e., when γ < 0). In (b) we directly report the zooms for
all the considered network topologies of 256 nodes: Barabási-Albert (BA), Erdős-Rényi (ER), Hierarchical Stochastic Block Model (HSBM4),
Lancichinetti-Fortunato-Radicchi (LFR), Stochastic Block Model (SBM4), Scale-Free (SF2), and Watts-Strogatz (WS). The color of the points
encodes the values of γ , while the size of the node is proportional to the frequency of that sampled values in the simulations.

coincides with the arrival node. In Fig. 3 we report, as an
example, the values of the simulated mean first passage time
versus the theoretical ones, for all γ � 0 and for β = −2. In
particular we plot the value of the mean first passage time
from all the possible source nodes to the target node on the
eight different network topologies. By design, the target node
is the one where we put the (attractive) potential. In each panel
of Fig. 3 the size of the points is proportional to the frequency
of the sampled values in the simulations. As can be noticed,
most of the values lie on the bisector: These values are also the
most frequent in the simulations (bigger points), showing that
the theoretical results are in agreement with the simulations.
At this point, we investigate how the theoretical values of the
MFPT change for different values of bias parameters, with the
results shown in Fig. 4. As can be seen in Fig. 4, the trend
of the theoretical MFPT is qualitatively similar for all the
analyzed topologies, with the values of the MFPT increasing
as γ increases, until the peak in γ = 0, i.e., when the random
walk is restored. Interestingly, for some topologies there are
critical points in γ , i.e., points where increasing β does not
lead to decreased values of the MFPT. This regime shift is
visible in the following topologies: LFR, RGG, and SBM4
and partially visible also in BA and SF2.

Let us now randomly pick a simulated values of the MFPT
matrix from a source node s to a target t . We investigate how
good we are in returning the corresponding values of γ and β,
i.e., in guessing to what extent the process is potential-driven.
The rationale behind the proposed speculation on matching
the right value of γ and β is motivated by the intention to re-
cast a stochastic routing strategy to a potential-driven random
walk. More specifically, we investigate if and when we are
able to infer the values of γ and β given only the information
on (1) estimated mean first passage time and (2) the topology
of the network. Tracing back the value of γ and β would allow
for a more informed definition of a dynamical diffusion pro-
cess, providing information about the direction towards which
and the way a walker reaches a specific destination simply by
measuring the time spent on a given topology. This proposal
has potential broad applications, e.g., in the context of human
and animal mobility to determine if a walker was forced to
avoid a given restricted area and/or to establish if the path
strategy was preferring hubs or poorly connected nodes, given
the values of the mean first passage time (MFPT) from source
node to target node and the network topology. To this end, we
compare a given estimated value of the MFPT to the whole
spectrum of the theoretical MFPT values resulting from all
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FIG. 4. Theoretical mean first passage time for all values of γ and β, for all the considered network topologies: Barabási-Albert (BA), Erdős-
Rényi (ER), Hierarchical Stochastic Block Model (HSBM4), Lancichinetti-Fortunato-Radicchi (LFR), Random Geometric Graph (RGG),
Stochastic Block Model (SBM4), Scale-Free (SF2), and Watts-Strogatz (WS). The color of the line encodes the value of β.

values of γ , in the range [−2, 0], and β in the range [−2, 2].
We compute the absolute value of the difference between the
estimated value of the MFPT and each theoretical value. The
theoretical MFPT giving the minimum of such an absolute
value determines the inferred values of γ and β. On average,
for all the topologies we match the right value of γ 70% of
the time, which is 47% more than what we match for β. This
makes us speculate that the process is more sensitive to the
bias on the distance from the potential (γ ) than to the bias
on the degree (β). Specifically, we are more likely to guess
the values of γ in the case of stochastic block models and hi-
erarchical stochastic block models, followed by Erdős-Rényi
and a random geometric graph. Instead, for what concern
scale-free networks, we match the values of γ only 55% of the
time. However, the theoretical value of the MFPT closest to
the simulated one—in terms of absolute value—always results
to being within one standard deviation.

C. Straightness index on networks

In 1981, E. Batschelet, a mathematician devoted to the
study of animal path orientation, defined a novel indicator to
measure the tortuosity of such animal paths: the straightness
index. In this vein, we provide a similar indicator for the pur-
pose of measuring to what extent the potential-driven random
walk deviates from the shortest path (or how close it gets to the
random walk) in different topologies, according to the value
of bias parameters γ and β. We call this measure straightness
index (SI) on networks and, given a source node s and a target
node t , we define it as follows:

SI = SPL

L(�, γ , β )
, (12)

where SPL is the shortest path length between s and t , while
L(�, γ , β ) is the length of the potential-driven random walk

from s to t , i.e., the path length of a potential-driven random
walk in terms of traversed links to reach target node t from
source node s, given a potential node � and the bias parameters
γ and β. It is to be noticed that a similar formulation was
used to develop the straightness centrality for spatial networks
[52]. The straightness index on networks is bounded between
0 and 1. Specifically, when SI = 0 we are in the case of a
random walk, while SI = 1 corresponds to the shortest path.
For 0 < SI < 1 we are in the case of a potential-driven ran-
dom walk. Figure 5 shows how the value of SI changes on
different network topologies, varying γ and β. In particular,
in Fig. 5(a) we report the values of SI in the eight different
topologies considering γ and β as the axes of the heatmaps.
The color of the tile encodes the values of SI: the closer the
value is to dark blue, the closer the walker behavior is to that of
a random walker. Instead, a color tile close to yellow indicates
a behavior that tends to the shortest path. By design, when
γ < 0 the potential node � coincides with the target node,
while when γ = 0, the position of � does not affect the process
since we are in the case of random walker. As can be seen
from these heatmap, the values of SI closest to the shortest
path are reached in the Erdős-Rényi network topology, in a
random geometric graph, and in the scale-free topology. To
better appreciate how the pattern of SI evolves by varying
γ we refer to Fig. 5(b). For each topology it is evident that
the lower the value of γ , the higher the value of SI, i.e., the
closer the walk to the shortest path. This is because the walker
is potential driven towards the target node, coincident with
the attractive pole �. As γ approaches zero, the value of SI
tends to zero as well, denoting a random walk behavior. At
γ = 0, the walker is no longer affected by the potential, and
the value of SI dramatically goes to zero with an apparently
jump discontinuity in all network topologies. The process at
this point is a random walk. Compared to γ , the value of
β is less critical to determine how the process approaches a
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FIG. 5. Straightness index on networks. In (a) we report the values of SI for all the considered network topologies of 256 nodes: Barabási-
Albert (BA), Erdős-Rényi (ER), Hierarchical Stochastic Block Model (HSBM4) Lancichinetti-Fortunato-Radicchi (LFR), Random Geometric
Graph (RGG), Stochastic Block Model (SBM4), Scale-Free (SF2), and Watts-Strogatz (WS). The values of bias parameter γ and β are the
axes of the heatmap, while tile color encodes the values of SI. In (b) we express the values of SI as a function of γ , and the color line encodes
the value of β.

shortest path behavior rather than a random walk, albeit in
different ways for each topology. Quantitatively, the BA, SF2,
and LFR topologies seem to be more sensitive to the variation
of this bias parameter β, while qualitatively all topologies
exhibit similar behavior. For example, β is crucial in the scale-
free networks and, to some extent also for BA topologies,
to achieve high values of SI, i.e., to be close to the shortest
path. This means that, unsurprisingly, in these topologies a
walker favoring hubs would reach the target node faster. A
slighter dependence from β in determining the values of SI,
concurrently with γ , is also shown in HSBM4, LFR, and ER
topologies. Conversely, in these case there is not the transition
at γ = 0 as in scale-free networks. Finally, RGG, SBM4, and
WS seem not to be affected by the bias on the degree, β, in
reaching the target node, as much as they are by γ .

To sum up, a potential-driven random walk with negative
low values of γ can resemble a shortest path when considering
ER, RGG, and SF2 network topologies. Also for the other
topologies (HSBM4, SBM4, LFR, BA, and WS) the most
efficient path—in terms of path length—can be reached with
lower values of γ , but in this case the path length is, at most,
twice the shortest path. Whether lower values of γ than those
considered in this study would ensure more efficient route
should be investigated in further development of this work.
For what concerns the degree bias β, it mostly affects the SF2
topologies and, in a smaller portion, also the BA topologies,

while the potential-driven random walk on the other networks
seems not to be influenced by this bias in reaching the tar-
get node. In other words, for all the analyzed networks it is
evident that γ is the leading bias parameter in determining
the values of SI. In fact, considering the analyzed range of
γ , the potential-driven random walk spans from very short
paths, sometimes even very close to the shortest path (as in
ER, RGG, and SF2), up to completely different and longer
paths, regardless of the bias on the degree (β) in all network
topologies. This demonstrates that the potential-driven ran-
dom walk is able to effectively interpolate between shortest
path and random walk.

IV. EMPIRICAL 2D TRAJECTORIES

As discussed in the introduction, the movements of both
humans and animals do not strictly follow either the shortest
path or the random walk paradigm, but their routing falls
somewhere in between. In this section, we show that apply-
ing our potential-driven random walks over a very stylized
network allows us to successfully reproduce the very broad
range of characteristics that are observed in empirical human
trajectories.

In most cases, the empirical data collected about human
and animal trajectories are embedded into a bidimensional
space. Note that the analysis presented in this section comes
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FIG. 6. Straightness vs autocorrelation diagrams for walks in a 2D space. Left: Potential-driven walks over a square lattice. We display
the values of SI and MC for a range of values of lattice sizes L (different subplots) and γ (different colors). The trajectories above the plot
illustrate examples of the trajectories generated, the black line identifying the associated values of SI and MC. For each (L, γ ) we generated
1000 trajectories starting from the origin point (green circles in the trajectory examples) and arriving to the destination point (red squares)
where the potential is also placed. In these examples, the shortest path is along a straight vertical line. In the examples, we clearly see how the
trajectory becomes more and more straight as γ approaches −2 (blue; the upper limit of −2 is chosen here because it is rare to observe larger
potential in physical potential fields in nature) and is totally random for γ = 0 (yellow), which corresponds to a pure random walk. Right:
Empirical trajectories of humans, ants, and seabirds. We display the values of SI and MC for three types of empirical trajectories: 600 human
trajectories (blue), captured by anonymized GPS data generated by mobile phone applications; 600 ant trajectories (orange), captured optically
in laboratory conditions around an artificial nest; and 300 seabird trajectories (green), captured by GPS trackers. In these cases, trajectories
are again on a plane, but not limited to follow the lattice topology. Above and below the plot we illustrate two examples of human trajectories
and one example each for ants and seabirds (a Wandering Albatross in particular), again with the black line identifying the associated values
of SI and MC. The ant trajectory is highly auto-correlated although not straight, while the albatross example is at the same time straight and
autocorrelated. The two human examples allow us to show instead a trajectory with negative MC (probably accumulated in the small-scale
movements on the top right of the diagram) and straight but not strongly correlated trajectories.

without any biological or ecological context. In fact, the em-
pirical trajectories here are taken into account for the sole
purpose of verifying the model reliability in reproducing the
diffusion component of both animal and human mobility,
whatever the causes or the contexts. To create walks over a
network reproducing a similar condition, we place our syn-
thetic walkers over networks defined as square lattices having
side L of varying sizes (so that the total number of nodes
is N = L × L). For humans, a lattice can be seen as a null
model for a street network over which the movements are
constrained. On these lattices, similarly to what we have for
other networks in the attractive case γ < 0, we also define
a potential node which coincides with the target node. The
initial position of the walker and the target node are indicated
as green circles and red squares, respectively, in the examples
on the top left of Fig. 6. All networks considered for this
analysis being square lattices, all nodes with the exception of
the borders have the same same degree k = 4; therefore the

effect of a varying β would be here only an effect of attraction
or repulsion at the boundaries. We instead focus on the effect
of varying γ in the attractive range −2 � γ � 0 and the lattice
size L ∈ [9, 13, 17, 21, 25, 29, 33].

This approach clearly interprets animal and human tra-
jectories as goal-oriented trajectories, at the end of which
a attractive site is located. Our model allows a description
where the movements of a living organisms are informed and
directed toward a goal, but this information is incomplete
or noisy. The stronger the potential, the more information
leading towards the goal is readily available. For humans we
would expect this goal-oriented behavior to be strong in recur-
rent mobility, as it is known that the tendency of returning to
previously visited locations [53,54] is a clear driver of this be-
havior. For animals, it will surely depend upon the species, but
several examples of attraction-driven movement are known
[55], and the cause of attraction can be because either the path
is towards one’s nest, the lair is known, or information about
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the attractiveness of particular areas is available through the
organisms’ senses.

To characterize both the synthetic trajectories generated
over the lattices and the empirical trajectories we use the
straightness index SI discussed above as indicator of tortuosity
and the mean cosine MC between the trajectory steps as an
indicator of autocorrelation defined as the average along the
trajectory of the cosine of the turning angle θ between two
subsequent steps [19].

As we can see on the left side of Fig. 6, where we represent
the distribution of SI and MC in our synthetic trajectories
over lattices, for γ = 0, the paths generated are pure random
walks. These random walks are characterized by vanishing
values of both SI and MC as the trajectories wrap around
themselves. For decreasing values of γ , the trajectories be-
come progressively straighter, as they align more and more to
the shortest path, which, given the origin and destination set
on our lattices, is simply a straight line. The values of MC
characterize the tendency for a trajectory over the lattice to
locally deviate from the shortest path or backtracking with
steps inverting the direction with respect to the previously
taken one. Differing from what often happens for most animal
or human trajectories [15,55,56], the potential-driven random
walks we used here allow for backtracking, which is possible,
although progressively more unlikely, for stronger attractive
potentials and decreasing values of γ . Another factor influ-
encing the likelihood of backtracking is here the size L of the
lattice, as the larger is the number of steps made, the more
likely the event of a deviation from the shortest path even for
stronger potentials. For this reason, the synthetic trajectories
with the larger values of SI and MC are found for small
lattices and strong attractive potentials. This can be seen in
our coarser lattices L = (9, 13, 17), where we observe very
broad distribution of values of SI and MC spacing (note that
in our plots both are limited to values of about 0.8 due to the
discrete nature of the trajectories).

On the right side of Fig. 6 we represent the distribution
of SI and MC of three types of empirical trajectories: (1)
privacy-enhanced GPS trajectories describing the movements
of anonymized users of mobile applications who opted in to
location-based services through a GDPR compliant frame-
work, randomly extracted from a database provided us by
Cuebiq (a location intelligence and measurement platform
that collects GPS trajectories from mobile app users who
have opted in to provide access to their aggregated location
data anonymously) covering the Trentino province, an area of
approximately 6000 km2 in northern Italy (blue); (2) optically
tracked trajectories describing the movements of Temnothorax
albipennis ants while exploring a large arena outside of an
artificial nest [57] (orange); and (3) GPS trajectories describ-
ing the movements of three types of seabirds (Wandering
Albatross, Laysan Albatross, and Streaked Shearwater) [58]
over the ocean surface (green). Note that in all three cases
considered, the trajectories have been segmented with the
Infostop library [59], and only the movements between two
stopping points have been analyzed. The distribution of points
in the SI-MC diagram for humans is very broad, and most
trajectories are very far from both a pure random walk and
a straight line. Animals’ trajectories present instead a high
level of autocorrelation, probably due to the fact that the

movements of these animals over the ocean for seabird and in
the arena created for the ants is relatively unconstrained. This
is different for humans whose movements are constrained over
the topology of the street network.

Comparing the diagrams of the synthetic trajectories in
the left panel and empirical ones in the right one, we can
appreciate how our very stylized model, which includes a
single potential source over a square lattice, allows us to
already partially reproduce the very broad range of trajectories
characteristic of human mobility. A clear improvement in this
sense is observed when we used a coarser description of the
movement space (small L), which on one hand possibly better
describes the limited options dictated by the street network,
and on the other hand limits the incurring of backtracking,
which is not expected for humans. The trajectories of ants
and birds appear instead to be largely more autocorrelated to
what we were able to describe with the few ingredients we
introduced here.

The exploration in Fig. 6 is, however, limited by the para-
metric span of γ ∈ [−2, 0]. For this reason, in Fig. 7 we
expand the simulations, again over a 33 × 33 square lat-
tice, to γ ∈ [−12.5, 0] with the goal of covering a broader
range in the straightness-cosine plane by extending towards
the shortest-path area (1,1) our observations. Furthermore,
to show the utility of our model as compared to competing
models of animal movements describing directed paths, we
also simulated 1000 times correlated random walks [19] and
Lévy walks [60].

As can be appreciated in Fig. 7(a), similarly to the L = 33
example in Fig. 6 (left), we use a relatively large square lattice
to generate trajectories embedded into a 2D metric. The origin
and destination nodes lie at distance 2 from the sides of the
square. The shortest path is in this case a straight path across
29 edges, dividing the square in two [Fig. 7(b)]. In Fig. 7(c),
we first can appreciate how the shortest path (purple circle) is
characterized by SI = 1 and MC = 1. Random walks (RWs,
orange dots) are instead distributed around SI = 0 and MC =
0. We further compare with (1) correlated random walks (red
dots) generated via the Poisson process a probability p > 0 of
having a step of the walk on the same direction of the preced-
ing (otherwise, the step is random as in RWs), thus generating
movements constituted by sequences of steps aligned towards
the same direction, forming straight displacements of length
�, where � follows an exponential probability distribution. (2)
Lévy walks (green dots), where the path is again formed by
sequences of steps towards the same direction, but where the
length of the sequences of aligned steps is instead distributed
as a power law p(�) ∝ �−α . Comparing the different model,
we see how the potential-driven random walk successfully
bridges between random walks (0,0) and shortest paths (1,1)
as the potential becomes stronger when the value of −γ

increases from 0 to 12.5. (3) Our potential-driven random
walks (blue dots), with k = 0 and γ ranging here between 0
and −12.5. The same data are presented in Figs. 7(d)–7(f) to
illustrate the dependence over the model’s free parameter. The
correlated random walk is close to a normal random walk for
small p, and then has increasing values of MC as p grows.
Since we have origin and destination nodes aligned over the
network, for large values of p we observe a walk coinciding
with the shortest path. The Lévy walks behave similarly to the
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FIG. 7. Comparison of different walk models on a 33 × 33 lattice. (a) The square lattice over which the trajectories are run from the origin
point (green circle) to the destination (red square). (b) The shortest path, in this case a straight line. (c) The SI-MC diagram describing the
range of characteristic values for trajectories generated with the different models. (d) Same values as (c) for correlated random walks, where
is highlighted the dependency over p. (e) Same values as (c) for Lévy walks, where is highlighted the dependency over α. (f) Same values as
(c) for a potential-driven random walk, where is highlighted the dependency over γ .

correlated random walk, with α mostly driving the value of
MC and with even more likelihood of having some paths close
to the shortest path for large α given the opportunity of making
a long jump towards the destination. In the potential-driven
random walk, as the potential becomes stronger (larger values
of −γ ) we have increasing values of both SI (as the path be-
comes more similar to the shortest path) and MC = 1 (as the
path become more straightly directed towards the destination).

These stylized examples of course can be largely improved
in order to better describe specific types of behaviors. We offer
here three possible directions. First, the network topology
surely can be refined from a simple lattice in order to describe
the real physical constraint faced by the moving individual.
Second, introducing a penalty to backtracking would allow
one to create artificial trajectories closer to the trajectories
observed pushing towards shapes normally described as com-
posite correlated random walks. Third, introducing multiple
potentials activated at specific times, such as, for instance,
after the arrival at an intermediary destination, would permit
us to account for more complex behaviors like round trips or
the chaining of multiple way points in navigating a complex
environment.

V. DISCUSSION

In this work, we have introduced a stochastic process,
the potential-driven random walk, which effectively inter-
polates between shortest path and random walk protocols
on a network by taking into account at the same time a
preference for nodes of high or low degree and the effect
of attraction towards the destination node. This dynamical
process aims at minimizing the distance (as the shortest path)

by considering only partial information about the network,
i.e., the position of a drifting node �, and by maintaining a
certain flexibility in the exploration of the network (as ran-
dom walk). We characterized the process described by the
potential-driven random walk by means of its steady-state
distribution and mean first passage time matrix. We investi-
gated the patterns of these indicators on synthetic networks
considering both ordered topologies (i.e., lattices) and disor-
dered topologies (eight different network models), accounting
for Barabási-Albert (BA), Erdős-Rényi (ER), Hierarchical
Stochastic Block Model (HSBM4), Lancichinetti-Fortunato-
Radicchi (LFR), Stochastic Block Model (SBM4), Random
Geometric Graphs (RGG), Scale-Free (SF2), and Watts-
Strogatz (WS) topologies, providing evidence of agreement
between simulations and theoretical expectations. As well, we
investigated how the theoretical values of the MFPT change
varying the values of bias parameters, pointing out a regime
shift in the MFPT—for the LFR, RGG, SBM4, BA, and SF2
topologies—corresponding with some critical points in γ . By
generating a large number of paths over networks charac-
terized by a disordered topology, we also showed how the
process can be inverted as we were able to successfully infer
most of the time (70% overall) the values of the parameter γ

only on the basis of the observed the mean first passage time.
From a computational point of view, the shortest path scales as
N log(N ) and the potential-driven random walk as N2. Inspired
by ecological studies related to the movement of animals in
physical space, we proposed a metric, the straightness index
on networks, quantifying to what extent the potential-driven
random walk is close to the shortest path (or to the random
walk). Specifically, by tuning the bias parameter related to
the distance from the potential, γ , we can define efficient
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paths—in terms of path length—which in SF2, ER, and RGG
topologies are revealed to be very close to the shortest path
when γ = −2 while stronger potential are necessary in large
lattices. For what concerns the bias parameter on the degree,
i.e., β, it mainly affects SF2 networks and, in smaller portion,
BA topologies. In general, it is evident that γ is the leading
bias parameter in determining the values of the straightness
index on networks, i.e., in directing the process towards a
shortest path or a random walk, in all the analyzed topologies.

The straightness index, together with a measure of trajec-
tory autocorrelation on a 2D space, allowed us to also compare
empirical trajectories of human and animals with walks gener-
ated on a square lattice with a single attractive potential at the
destination node. Even within the strong limitations inherent
with the very stylized model presented here, we were able
to show how our model is able to replicate the broad range
of behaviors typical of real human trajectories better than
alternative models such as correlated random walks or Lévy
walks.

Our results provide a fundamental starting point to build
upon the understanding of the movements of agents and
information over a network in terms grounded on physics
potentials. On the one hand, a more accurate description of
real trajectories will be possible by building upon our model,
which can be possibly extended to include memory effects and
already can account for more complex time-varying potentials
that can combine positive and negative charges to describe
at the same time the attractiveness of certain areas and the
avoidance of others. On the other hand, our framework has a
broad spectrum of methodological applications: For instance,

one can use potential-driven random walks to analytically
define network indicators able to identify the centrality of
nodes in a continuous between the family of random walk
[61] and geodesic [62] centralities, such as a betweenness and
closeness centrality, in both classical and multilayer systems
[63]. Such indicators would allow for a set of applications
in scenarios such as urban mobility [16] or network neuro-
science [18], where human and information flows are known
to lie in the gray area between random and geodesic paths.
We expect, in particular, that alternative perspectives over
these networks will be driven by the fundamental question of
what topological conditions make possible to radically change
the distribution of the random walk centrality when even small
potentials are introduced. Finally, the framework is expected
to open doors for the analysis of functional clusters emerging
from collective phenomena, where diffusion geometry in-
duced by random walk dynamics [64] can be extended to span
from diffusion to geodesic distance, allowing the analysis of
the complex interplay between structure and dynamics from
alternative perspectives.
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