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Tensor network simulation for the frustrated J1-J2 Ising model on the square lattice
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By using extensive tensor network calculations, we map out the phase diagram of the frustrated J1-J2 Ising
model on the square lattice. In particular, we focus on the cases with controversy in the phase diagram, especially
the stripe transition in the regime g = |J2/J1| > 1

2 (J2 > 0, J1 < 0). While recent studies claimed that the phase
transition is of first order when 1

2 < g < g∗ (with the smallest g∗ being 0.67), our simulations suggest that if
there is such a first-order region, it is smaller than those found in earlier studies by other methods. Combining
with the analysis of critical properties, we provide evidence that the classical J1-J2 model evolves continuously
from two decoupled Ising models (g → ∞ with central charge c = 1) to a point belonging to the tricritical Ising
universality class (with c = 0.7) as g decreases to g∗ � 0.54.
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I. INTRODUCTION

Onsager provided the rigorous solution of the two-
dimensional classical Ising model [1], which greatly deepened
and enriched the understanding of phase transitions. As a
natural generalization of this model, the next-nearest-neighbor
interaction J2 can be added, whose phase diagram and nature
of the phase transition are however still under debate [2–30].
There is an intuitive physical picture as follows: For the frus-
trated J1-J2 Ising model at low temperature, the system lies
in the ferromagnetically ordered phase when g = J2/|J1| < 1

2 ,
corresponding to Z2 symmetry breaking; for g > 1

2 , the sys-
tem enters the stripe antiferromagnetic (SAFM) phase, also
called the collinear antiferromagnetic phase with Z4 symmetry
breaking.

Compared to the corresponding quantum model, the-
oretical analysis and numerical simulations are easier in
the classical case, which nevertheless sheds light on some
common properties of frustrated systems. In particular, the
SAFM phase is of great interest, since a moderate ex-
ternal field induces an adjacent nematic phase [31,32]. In
its quantum counterpart, such a nematic phase might be
useful for understanding the mechanism of the high-Tc

superconductor [33–35].
Some earlier works show that the phase transition between

two ordered phases and the paramagnetic phase (above a
threshold temperature) is of continuous type. It is commonly
believed that the phase transition belongs to the Ising uni-
versality class in the case of g < 1

2 , while it fits the weak
universality in the case of g > 1

2 [2–9]. For example, some
critical exponents depend on the strength of interaction and
therefore vary with the coupling parameters [36]. In confor-
mal field theory (CFT), a phase transition with varying critical
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exponents is possible for a central charge c � 1. Extensive
numerical calculations, based on the cluster-variation method
(CVM) and Monte Carlo (MC) simulations, have shown that
for 1

2 < g < g∗ (g∗ � 1), the phase transition is of first order
[10–16], while other simulations for some given g < g∗ tend
toward the conclusion of weakly universal continuous phase
transition [17–20].

The upper limit g∗ keeps decreasing with improved numer-
ical simulations. For smaller g above 1

2 , the bigger system size
is needed for a reliable MC simulation. The g∗ varied from
0.9 [21] to 0.67 [22,24], where the J1-J2 Ising model was
numerically mapped to the Ashkin-Teller (AT) model, which
also exhibits Z4 symmetry breaking. Jin et al. found a weak
first-order phase transition at g < g∗ and pseudo-first-order
behavior at g � g∗ [22,24]. Monte Carlo simulations with
larger system sizes strengthened their conclusion [23] and
the recent cluster mean-field (CMF) method [26] also men-
tioned consistent results. Recently, a numerical transfer matrix
study was carried out for extensive frustrated lattice models
[27]. In Table I we summarize previous results of g > 1

2 in
the literature.

Reaching the conclusion of both a weak first-order phase
transition and a continuous phase transition with pseudo-
first-order behaviors, the finite-size effect is a notorious issue
which MC and CVM simulations cannot avoid. In contrast,
tensor network algorithms allow us to approach the ther-
modynamic limit. Recently, tensor network methods were
applied to the J1-J2 Ising model [37] and pin down the
Berezinskii-Kosterlitz-Thouless phase transition in the clas-
sical clock model [38]. Levin and Nave proposed the tensor
renormalization group (TRG) approach [39]. The TRG ap-
proach also performs well in the spin-glass model [40].
Combining the TRG and higher-order singular value decom-
position (HOTRG) [41], the phase transition temperature of
the three-dimensional Ising model was determined to the sev-
enth decimal place [42].
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TABLE I. Comparison of results in previous works.

References Methods Results

g > 1
2 with weak universality

[2] renormalization
[3] MC renormalization group
[4] high-temperature series
[5–7] MC
[8] low-temperature series expansion

[17] short-time MC
[18] MC no first-order transition at g = 1
[19,20] partition function zeros and MC

1
2 < g < g∗ with first-order transition

[10] CVM g∗ = 1.144
[11] CVM g∗ = 1.045
[12] mean field g∗ = 1.2
[13] CVM and MC g∗ = 1.14 (CVM) and g∗ = 1.35 (MC)
[14] effective-field theory g∗ = 0.95
[15,16] MC g∗ ∼ 1
[21] MC and field-theoretic methods g∗ = 0.9
[22,24] MC, CMF, and transfer-matrix methods g∗ = 0.67
[23] MC vanishing of first-order signals at g = 0.8
[25] effective-field theory g∗ ∼ 1
[26] CMF g∗ = 0.66
[27] numerical transfer matrix first-order signals at g = 0.55, 0.6

In this article, combining infinite time-evolving block dec-
imation (iTEBD) [43,44] and the HOTRG, we make an effort
to map out the full phase diagram and discuss the nature of the
phase transition. We find that the line of the first-order phase
transition may not exist or lie in a much narrower region than
those claimed in earlier studies when g > 1

2 . As g goes down
to about 1

2 , the central charge of the model decreases from
1 (two decoupled Ising models) to about 0.7, which corre-
sponds to the tricritical Ising (TCI) universality class [45].
This result is further strengthened by the calculation of the
Klein bottle (KB) entropy [46].

The rest of this paper is organized as follows. In Sec. II
we introduce the model and the related formulation based
on iTEBD and the HOTRG. We employ iTEBD to calcu-
late the physical quantities. The HOTRG helps us extract
the conformal data from the fixed-point tensor during the
renormalization group (RG) flow. In addition, we extract the
information of critical theories by using the Klein bottle
entropy [46]. In Sec. III we demonstrate and discuss our
numerical results, including the phase diagram and the critical
properties. We summarize our results in Sec. IV.

II. MODEL AND METHODS

The Hamiltonian of the J1-J2 Ising model is written as

H = J1

∑
〈i j〉

σiσ j + J2

∑
〈〈i j〉〉

σiσ j, (1)

where the spin variables take the values σ = ±1, and J1 and
J2 are coupling constants, corresponding to ferromagnetic
(J1 < 0) nearest-neighbor interactions denoted by 〈i j〉 and
antiferromagnetic (J2 > 0) next-nearest-neighbor interactions

denoted by 〈〈i j〉〉, respectively. For convenience, we set J1 =
−1 and J2 = g hereafter.

A. Calculation of physical quantities

On the square lattice, the partition function of the model
(1) can be cast into a tensor network form [47]

Z =
∑
{σ }

e−βH{σ } = Tr(T ST S . . .), (2)

with the two types of tensor, T and S, shown in Fig. 1(a): T is
defined on the center of the square unit and S is defined on the
lattice site; T and S both hold the reflection symmetry in the
x and y directions, whose explicit forms are given by

Tlrud = e(β/2)(σl σu+σuσr+σrσd +σd σl )−βg(σl σr+σuσd ),

Slrud = δlrud =
{

1 for l = r = u = d
0 otherwise.

(3)

T
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T

T
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SSS

SSS

S S S
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u r

l d

(a) (b)

FIG. 1. (a) Definition of tensors T and S with four indices l ,
r, u, and d . (b) Demonstration of coarse graining, where T0 forms
the single-site unit from the original 2×2 unit cell (enclosed by the
dashed line).
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Here σl,r,u,d refers to the four spin variables (left, right, up,
and down) as the tensor indices emitting from T . As a con-
sequence, we obtain a tensor network with a four-site unit
cell [see Figs. 1(a) and 1(b)]; then, by coarse graining, T0

is formulated as the single-site tensor shown in Fig. 1(b).
Compared to the original lattice, the tensor network formed
by T0 is rotated by an angle π/4.

For the calculation of a local physical quantity O, we adopt
the impurity site method [47], in which only a single tensor
T encodes the operator O (labeled T O) and other tensors are
unchanged. In this scheme, the internal energy U , the magne-

tization m, and the stripe magnetization ms =
√

m2
x + m2

y are

defined as follows:

T U
lrud = − 1

2 [(σlσu + σuσr + σrσd + σdσl )

+ g(σlσr + σuσd )] × Tlrud,

T m
lrud = 1

4 (σl + σr + σu + σd ) × Tlrud,

T
my

lrud = 1
4 (σl − σr − σu + σd ) × Tlrud,

T mx
lrud = 1

4 (σl − σr + σu − σd ) × Tlrud. (4)

The key point of iTEBD lies on the row-by-row projection
based on the power method. The final result is a converged
matrix product state (MPS). The entanglement entropy of
the converged MPS provides a useful way to locate phase
transition points. By using the normalized entanglement spec-
trum {λ1, λ2, . . . , λ j, . . .}, with

∑
j λ

2
j = 1, the entanglement

entropy reads

SE = −
∑

j

λ2
j ln

(
λ2

j

)
. (5)

Meanwhile, the correlation length can be calculated from the
largest and the second largest eigenvalues ε1 and ε2 of the
transfer matrix corresponding to the MPS as follows:

ξ = − 1

ln|ε2/ε1| . (6)

B. Extraction of critical properties

In the framework of the HOTRG [41], coarse graining is
a renormalization group process, during which CFT informa-
tion is encoded in the fixed-point tensor T ∗ (=T (i)/

∑
lu T (i)

lluu),
where T (i) is the tensor unit in the ith RG step and T ∗ is
unchanged under the RG process [48]. Then we get Mu,d =∑

l T ∗
llud, with the eigenvalues 	0,	1, . . . , 	m, . . . (in de-

scending order), from which the central charge c and scaling
dimensions hm can be read [48]:

c = 6

π
ln	0,

hm = − 1

2π
ln(	m/	0). (7)

There is also an alternative way to obtain the central charge
c from the partition functions [46,49,50]. When the system is
defined on the torus and the Klein bottle, the logarithms of the
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FIG. 2. Phase diagram in the parameter space of the temperature
and the relative coupling g. There are three phases, the ferromagnetic
phase (FM), the stripe antiferromagnetic phase (SAFM), and the
paramagnetic phase (PM), with phase boundaries indicated by solid
lines. The blue squares are data points.

partition partitions are given by

lnZT � − f0LxLy + πc

6Ly
Lx,

lnZK � − f0LxLy + πc

24Ly
Lx + SKB, (8)

where Lx and Ly are the system sizes, f0 is a nonuniversal
constant, and SKB is known as the Klein bottle entropy [51],
which is universal. We note that the validity of Eq. (8) requires
Lx 	 Ly. The iTEBD method allows us to calculate both torus
and Klein bottle partition functions, so that the Klein bottle
entropy SKB and the central charge c can be extracted as well.

III. NUMERICAL RESULTS

A. Phase diagram and physical quantities

By combining the entanglement entropy with the magne-
tization obtained from iTEBD, the phase diagram is obtained
in Fig. 2. It is worth mentioning that the data point at g = 0.5
is absent. Here g = 0.5 renders the high degeneracy of the
ground state, which invalidates the power method. Thus, we
choose the HOTRG for the calculation. However, the physical
quantities do not converge with an increasing bond dimension
D. There were several works claiming that the point at g =
0.5 has a finite-temperature phase transition [28–30], while
other works claimed that the critical temperature is suppressed
down to zero due to the high degeneracy, very much like the
one-dimensional classical Ising model [4,6,10,15,16,19,27].

As shown in Fig. 2, there are three phases. In the
neighborhood of g = 0.5, the numerical results converge well.
Our extensive numerical simulations have been performed
for two points g = 0.46 and 0.55 on both sides of g = 0.5;
g = 0.55 was claimed to be in the region of weak first-order
phase transition in Refs. [22,24]. As for g = 0.46, it had been
commonly believed that the phase transition in the whole pa-
rameter region of g < 1

2 is continuous and belongs to the Ising
universality class [9,11,16,19,20]; however, the analyses from
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FIG. 3. Physical quantities as a function of the temperature at
g = 0.46: (a) internal energy U , (b) magnetization m, (c) entangle-
ment entropy SE , and (d) correlation length ξ . The chosen bond
dimension D is 60,80,100,120,130 in our iTEBD calculations in the
framework of the impurity method.

the CMF method [24], effective-field theory [25], and numer-
ical transfer matrix study [27] suggest that the model may
also have a first-order transition line slightly below g = 1

2 .
As shown in Fig. 3, we compare the results with different

bond dimensions with a temperature interval of 10−3. It seems
that there is a jump in the temperature range (0.584,0.585),
in which we have used finer data with a temperature interval
of 10−5 at fixed bond dimension D = 100. Then the jump
in the magnetization curve becomes smaller and there is no
discontinuity in the internal energy. As a consequence, the
phase transition at g = 0.46 is of continuous type and be-
longs to the Ising universality class which we will illustrate
below. The recent work using the CMF arrives at the same
conclusion [26].

Now we move to the case of g = 0.55. A similar calcu-
lation is done, as is shown in Fig. 4. The order parameter
is the stripe magnetization ms with Z4 symmetry breaking.
The refined data (the smallest temperature interval is 10−6)
are obtained with bond dimension D = 120. The MPS entan-
glement spectrum converges up to 10−13 at almost all selected
temperature points and up to 10−8 for only three temperature
points, which are extremely close to the transition point. The
curves of internal energy U and magnetization ms are very
steep around the critical temperature, which become more
prominent in comparison with Fig. 3. However, the discon-
tinuity gradually disappears when denser temperature points
are taken. Similar behavior holds at g = 0.55. The numerical
results suggest that it is also a continuous phase transition.
The transition temperature can be read out from the loca-
tion of the sharp peak in the entanglement entropy and the
correlation length.

In particular, we have tested a large bond dimension up to
D = 160 for the convergence check in the case of g = 0.55.
Discerning the phase transition type, especially in between
the weak first-order and the continuous types, demands a high
precision in numerics. The conclusion that the weak first-order
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FIG. 4. Physical quantities as a function of the temperature at
g = 0.55: (a) internal energy U , (b) stripe magnetization ms, (c) en-
tanglement entropy SE , and (d) correlation length ξ . The bond
dimension D is chosen as 80,100,120,140,160 in our iTEBD calcu-
lations in the framework of the impurity method.

phase transition in the narrow region 1
2 < g < g∗ might be a

consequence of indistinguishable continuous change is indi-
cated in physical quantities near the phase transition.

B. Criticality and universality

In the scheme of the HOTRG, the critical theory is ex-
tracted from the fixed-point tensor in the RG flow. The central
charge c and the scaling dimension h1 are obtained by Eq. (7).
During the tensor contraction, the size of the system decreases
to 1

2 after one coarse-graining step. After the nth RG iteration,
the effective system size in both directions is L = 2n. Corre-
spondingly, the perturbation introduced by the truncation error
will gradually destroy the fixed-point tensor when n increases.
As a result, c and h1 diverge quickly, as shown in Fig. 5. We
observe that the central charge c decreases from about 1 (the
decoupled Ising limit) to 0.7 and h1 changes to 0.075 (TCI uni-
versality class) as g approaches g∗ before complete instability.

The TCI Hamiltonian [45] can be written as

H = −
∑
〈i j〉

tit j (K + δσiσ j ) − μ
∑

i

ti. (9)

Here ti = σ 2
i . There are three options for σi: 0,±1. For the

two spin states σi = ±1, K is the coupling constant of a pair
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FIG. 5. Plot of (a) c and (b) h1 varying with n (RG step) from
HOTRG with D = 100. For reference, three types of universality
classes are shown: Ising (c = 0.5 and h1 = 0.125), TCI (c = 0.7 and
h1 = 0.075), and AT (c = 1 and h1 = 0.125).
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TABLE II. The central charge is obtained by fitting ln Z/LxLy ∼ π/6L2
y for selected Ly.

g c g c g c

0.46 0.499 0.57 0.736 0.70 0.925
0.53 0.631 0.58 0.760 0.80 0.933
0.55 0.690 0.60 0.802 1.00 0.978
0.56 0.708 0.64 0.864 2.00 1.004

with different spin states and K + 1 that of a pair with the
same spin states. In addition, μ is the chemical potential for
adjusting the average occupation number. Due to one more
option of vacancy, there exists a tricritical point belonging to
the TCI universality class where the central charge is given by
c = 0.7 [45].

It can be observed that as g deviates from 1, the curves of c
and h1 varying with RG step become more and more uneven,
and the closer g approaches 1

2 , the faster they diverge. This
agrees with the discussion above, where the phase transition
is accompanied by a significant change in U and ms when g is
close to 1

2 . Thus, it is rather difficult to fix the phase boundary
and the fixed-point tensor in the RG flow.

Besides the preceding RG scenario, we also choose a mod-
erate way to contract the tensor network as a cross-check.
The alternative way to extract the critical properties is from
Eq. (8). We set Lx → ∞, with finite Ly ensuring that the
requirement Lx 	 Ly in Eq. (8) holds. The linear fitting of
lnZ/LxLy versus π/6L2

y works very well in the list of Table II,
which also indicates a continuous phase transition described
by CFT.

The fitted central charge c decreases with decreasing g
(> 1

2 ), consistent with the result of the HOTRG as demon-
strated above. The monotonic behaviors also conform to the
c theorem of two-dimensional renormalizable field theory
[52]. However, the calculation [21] in the scenario of the trans-
fer matrix does not seem to conform to the c theorem, where
c increases when g decreases.

Concerning the consistency with the c theorem in our sim-
ulations, two comments are in order. On one hand, starting
from decoupled Ising limit, the lattice should be considered in
a rotated direction of π/4, with J1 being treated as a perturba-
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FIG. 6. Klein bottle entropy obtained by fitting with different Ly

when g takes values in the region 0.5 < g � 2. The black reference
line Ising ×2 is covered by the curve with g = 2.00.

tion. We thus use T0 in Fig. 1 as the initial tensor. On the other
hand, the usage of very small Ly does not suffice to obtain
the conformal data, although there is no truncation error in
the numerical simulation. Thus, we adopt the iTEBD scheme
to deal with relatively large Ly. Then we calculate the Klein
bottle entropy by fitting with Lx = 100–200, using Eq. (8). In
Fig. 6 there are two reference lines [45,51]:

SKB = 2× ln

(
1 +

√
2

2

)
≈ 1.0696 (Ising×2),

SKB = ln

⎡
⎣ (2 + √

2)(s1 + s2)

2
√

s2
1 + s2

2

⎤
⎦ ≈ 0.8543 (TCI).

Here s1 = sin(2π/5) and s2 = sin(4π/5). In the case of g= 2,
the calculated SKB matches the theoretical value of the two
decoupled Ising models. In the regime 0.5 < g < 2, the curves
of SKB separate into two bundles. As g decreases from 2,
the curves gradually deviate from the Ising×2 line but still
remain very even. When g � 0.64, a drop in SKB arises for
small Ly; then the curve stabilizes at a value for larger Ly.
Thereafter, SKB decreases as g decreases to about 1

2 and
reaches approximately the value of the TCI universality class
at g∗ ≈ 0.54. The combination of the HOTRG and KB entropy
suggests the following picture: the J1-J2 Ising model evolves
continuously from two decoupled Ising models (with c = 1
and h1 = 0.125) to a point described by the TCI universality
class (with c = 0.7 and h1 = 0.075) as g decreases to g∗.

IV. CONCLUSION

In summary, we have exploited extensive tensor-network
calculations to determine the phase diagram and analyze the
critical properties of the classical J1-J2 Ising model. For the
cases under debate, we performed detailed simulations. Our
numerical results clearly show that the phase transition be-
tween ferromagnetic and paramagnetic phases is of the Ising
universality class when g < 1

2 . For the phase transition be-
tween the SAFM and paramagnetic phases, the results from
MC simulations [22–24] and the CVM [26] indicate that the
phase transition is of the continuous type only when g � g∗
(�0.67). Our calculation shows that at least in the range of
g � 0.54, the phase transition is continuous, and g∗ � 0.54
corresponds to the universal class of TCI type.

The TCI model usually describes the critical region at the
tricritical point, at which the continuous Ising phase transition
ends. To this point, it could be that the phase transition is of
first order in the parameter region 0.5 < g � 0.54. Although
tensor network simulations can reach the thermodynamic
limit, higher precision is difficult to achieve due to the short-
range entanglement near or at criticality in the perspective
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of the tensor RG flow [53]. In the regime close to g = 1
2

demonstrating the criticality, there exist sharp variations in
physical quantities, which make it a rather challenging case
for the numerical simulations.

Nevertheless, there is another possibility that for all the
cases with g > 1

2 , the phase transitions are all continuous. It is
generally believed that there is no phase transition at g = 0.5
[4,6,10,15,16,19,27]. From g = 0.5 the model might evolve
continuously to two decoupled Ising models (g → ∞) with
c = 1. Due to the limited bond dimension D and subsequent
lack of precision, our simulations become unstable [54] in the
close neighborhood of g = 0.5, giving rise to the absence of
a convincing conclusion. The exploration for the stability and
convergence with larger bond dimension is ongoing.
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