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We introduce a method to exactly generate bridge trajectories for discrete-time random walks, with arbitrary
jump distributions, that are constrained to initially start at the origin and return to the origin after a fixed time.
The method is based on an effective jump distribution that implicitly accounts for the bridge constraint. It is
illustrated on various jump distributions and is shown to be very efficient in practice. In addition, we show how
to generalize the method to other types of constrained random walks such as generalized bridges, excursions,

and meanders.
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I. INTRODUCTION

Brownian motion lies at the heart of numerous applica-
tions in science. In its simplest form, the evolution of a
one-dimensional free Brownian motion x(t) is governed by
the Langevin equation

x(1) =~2Dn(), (D

where D is the diffusion coefficient and 7n(z) is a Gaussian
white noise with zero mean (n(¢)) =0 and a §-correlator
(n(t)n(t")y = 8(t —t’). Simulating a free Brownian motion is
easy: one just discretizes the time with increments Af in the
Langevin equation (1), which gives

x(t + At) = x(t) + V2D 5(t) At. 2)

One then draws independently, at each step, a jump length
V2Dn(t)At distributed as a Gaussian with zero mean and
variance 2DAt. This simple procedure, however, does not
work when the Brownian motion is constrained. Examples
of constrained Brownian motions are abundant. For instance,
there have been several studies on Brownian bridges, Brow-
nian excursions, Brownian meanders, reflected Brownian
motion, etc. [1-5]. These constrained Brownian motions ap-
pear naturally in many applications, ranging from ecology to
finance and statistics [6—13]. For example, in the ecological
context, animals foraging for food typically start from their
nest and come back to the nest at the end of a fixed period ¢
[14,15]. If their motion is described by Brownian motion, the
trajectory of such a walk is called a “bridge,” i.e., the walk is
constrained to come back to the same starting point. A more
general bridge configuration corresponds to the case in which
the final position at time ¢ is fixed, but not necessarily the
same as the starting point x(0).

A natural question then arises: what is an efficient algo-
rithm to generate numerically constrained trajectories with
the correct statistical weight? This is part of a more gen-
eral question: how do we efficiently sample atypical rare
trajectories with a given statistical weight, which is typically
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very small? In general, rare trajectories are important as they
capture specific information about the system that cannot be
seen in the typical trajectories where observables concentrate
around their mean. For instance, in the context of glasses,
rare trajectories are key to understanding the slow structural
relaxation dynamics close to the glass transition where fluc-
tuations are important [16]. Because the analytical study of
rare trajectories is usually intractable in practice, numerical
methods to sample them are of primary interest, and sev-
eral methods have been developed for both equilibrium and
out-of-equilibrium systems [17-21]. Recently, reinforcement
learning approaches were devised and have been shown to be
particularly efficient [22-24].

In the context of constrained Brownian motions that we
discuss in this paper, a simple example of such a rare trajec-
tory is a bridge where the walker comes back to the starting
point after a fixed time #;. The probability of such a trajectory
is small, as it decays as 172 for large t;. How do we generate
such a Brownian bridgei; A naive algorithm would be to gen-
erate all possible free Brownian trajectories x(¢) of duration
ty, starting at x(0) = 0, and retain only those that come back
to the close vicinity of the origin at ¢ = ¢;. Such a naive algo-
rithm is of course rather wasteful and inefficient. Fortunately,
for the one-dimensional Brownian bridge, a simpler way to
generate a trajectory is to consider the process X (¢),

X(t) = x(t) — éx(tf), 1 €10, 1], 3)

where x(¢) is a free Brownian motion starting at the origin
x(0) = 0. Note that the bridge condition X(t) = X(0) =0
is manifestly satisfied by the construction (3). It is easy to
show that the trajectories X (¢), generated via Eq. (3), have
the correct statistical weight for a Brownian bridge, which is
simply a Gaussian process. However, this construction is very
specific for the continuous-time Brownian bridge and cannot
be easily generalized to generate other constrained Brownian
motions. It would then be nice to have a general method

©2021 American Physical Society


https://orcid.org/0000-0003-3931-9193
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.024117&domain=pdf&date_stamp=2021-08-16
https://doi.org/10.1103/PhysRevE.104.024117

DE BRUYNE, MAJUMDAR, AND SCHEHR

PHYSICAL REVIEW E 104, 024117 (2021)

to generate constrained Brownian motions that are not spe-
cific to a particular type of constraint. Indeed, in probability
theory, there exist the well-known Doob transforms [25,26]
that provide a prescription to construct constrained Markov
trajectories [22,27]. However, this method is not always com-
pletely explicit. For numerical purposes, one would like to
write explicitly an effective Langevin equation that generates
constrained Brownian motions (such as the bridge) with the
correct statistical weight [27,28].

Recently, for continuous-time Markov processes, such an
explicit effective Langevin equation was derived such that it
automatically takes into account the constraints by adding an
effective force in the Langevin equation [27,29]. For instance,
a Brownian bridge with X (0) = X (¢7) = 0 is generated by the
effective Langevin equation [27,29]

X(t) = —tfi)t +V2D (), )
where n(t), as before, is a Gaussian white noise with zero
mean and which is §-correlated. In Eq. (4), the first term
is an effective constraint-force that drives the particle to the
final position x(f7) = 0 at time #;. This trajectory can then be
easily generated by time-discretizing the effective Langevin
equation (4) as in the case of the free Brownian motion in
Eq. (2). This construction of an effective Langevin equation
is rather versatile and can be extended to other constrained
continuous-time Markov processes [27,29,30], such as Brow-
nian excursions, Brownian meanders, Ornstein-Uhlenbeck
bridges, and more recently to nonintersecting Brownian mo-
tions [31].

This construction of an effective Langevin equation works
very nicely for continuous-time Markov processes. However,
in many practical situations, stochastic processes are discrete
in time and can be described by random walks evolving ac-
cording to a discrete-time Markov rule,

X1 = X + Nims (5)

starting from xy = 0, where 7,,’s are i.i.d. random variables
drawn from a distribution f(n). Note that the jump distri-
bution f(n) may not have a finite second moment, such
as in Lévy flights where f(n) ~ |n|~'~* for large |n|, with
0 < n < 2 denoting the Lévy index. Generically, we refer
to these discrete-time Markov jump processes as ‘“‘random
walks.” Simulating a free discrete-time random walk (5) is
rather straightforward, as in the discretized version of the
free Brownian motion in Eq. (2). However, as in the case of
continuous-time Brownian motion, many natural phenomena
are described by constrained discrete-time random walks. For
example, bridge random walks appear in many applications
ranging from computer science to graph theory [2,32-39].
Discrete-time bridge random walks also appear frequently in
physics problems such as in fluctuating interfaces [40—47],
record statistics in time series [48,49], or in anomalous diffu-
sion of cold atoms [50,51]. Furthermore, bridge random walks
also play an important role in behavioral ecology [52-54]
where the trajectories of foraging animals are tracked at dis-
crete times using GPS. Moreover, the animals typically come
back to their nests after a certain amount of time, which im-
poses the bridge constraint on the trajectories. In the context
of mathematical finance, discrete-time bridge random-walk

position

steps

FIG. 1. A bridge random walk of n steps is a random walk that
is constrained to start at the origin and return at the origin after n
steps. Due to the Markov property, a bridge random walk can be
decomposed into two independent parts: a left part over the interval
[0, m], where it propagates from O to X,,, and a right part over the
interval [m, n], where it propagates from X,, to 0.

models have been used to understand how Monte Carlo meth-
ods can be used in the valuation of mortgage-backed security
portfolios [55]. A bridge random walk X, is a discrete-time
process that evolves locally as in Eq. (5), but is constrained to
return to the origin after a fixed number of steps n (see Fig. 1):

X, = X, = 0. (©6)

In many applications, it is often necessary to gener-
ate bridge trajectories numerically. Interestingly, generating
bridge random walks is a challenging problem since a general
prescription is not known for arbitrary jump distribution f(n)
in Eq. (5). In the special case when the jump distribution
is a pure Gaussian, i.e., f(n) = e’"z/z/m, one can still
generate bridge trajectories by using the discrete-time analog
of Eq. (3), namely

m
Xm =Xm — —Xn- (7)
n

However, this prescription does not work when f(n) is not
Gaussian. Another example where one can easily gener-
ate a bridge configuration corresponds to the +1 random
walk, where the jump distribution is f(n) = (1/2)6(n + 1) +
(1/2)6(n — 1) [22,56]. It is therefore important to develop an
algorithm that does not depend on the specific form of the
jump distribution. One possibility is to perform Markov chain
Monte Carlo simulations, which consist in sampling the full
joint jumps distribution {ny, ..., n,—1} with the global bridge
constraint that the total sum of the jumps is ), _ 10 N =0
[38]. This Monte Carlo method can also be computationally
costly and require advanced techniques to probe the tails of
distributions as the Monte Carlo algorithm sometimes strug-
gles to equilibrate the system. Given this absence of generic
and efficient methods to generate constrained random walks,
it is then highly desirable to derive an effective discrete-time
jump process valid for arbitrary jump distributions f(n), anal-
ogously to the effective Langevin equation in Eq. (4), which
is only valid for a continuous-time Brownian bridge.

In this paper, we derive exactly an effective discrete-time
jump process, valid for arbitrary jump distributions f(n), to
generate bridge random walks. As in the continuous-time
Brownian bridge, we show that discrete-time bridges can be
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generated by an effective Markov jump process as in Eq. (5),
but the jumps 7, have to be drawn from an effective distri-
bution that depends on the bare jump distribution f(n) and
that effectively accounts for the bridge constraint. This general
method is valid for arbitrary f(n) and, via illustrations, we
show how to compute explicitly the effective jump distribution
in some examples. In certain cases, where the effective jump
distribution is hard to sample directly, we provide an exact
algorithm, based on the acceptance-rejection sampling (ARS)
method, to sample these effective jump distributions (the code
is available as a Python notebook in [57]). Finally, we show
that our method can be extended to other types of constrained
discrete-time random walks, such as the “generalized bridge,”
the excursion, and the meander.

The rest of the paper is organized as follows. In Sec. II,
we outline the derivation of the effective jump distribution
for bridge random walks with an arbitrary jump distribu-
tion f(n), and we discuss the ARS method to draw samples
from this effective jump distribution. In Sec. III, we discuss
several examples to illustrate how the method works in prac-
tice. In Sec. IV, we generalize our method to other types
of constrained processes such as the generalized bridge, the
excursion, and the meander. Finally, we conclude in Sec. V
with a summary and perspectives.

II. GENERATING BRIDGES FOR DISCRETE
RANDOM WALKS

We start with the discrete-time random-walk process x,,
in Eq. (5) with an arbitrary jump distribution f(n). We then
show how to construct a random-walk bridge process X, of
duration n steps, satisfying the bridge constraint X,, = Xy = 0.
In Sec. IT A, we show how to generate X, via a Markov jump
process with an effective jump distribution, valid for arbitrary
f(n). Subsequently, in Sec. II B, we discuss a general practical
algorithm, based on the ARS method, to draw a jump length
from this effective jump distribution.

A. Effective jump length distribution

The derivation of the effective jump process for discrete-
time random-walk bridges follows closely the approach
used for the continuous-time Brownian bridge developed in
Ref. [29]. The main idea is to first compute the probability
distribution Pyrigee (X, m | n) of the position of the walker for
a random-walk bridge at an intermediate time m, where 0 <
m < n. This can be easily computed using the Markov prop-
erty of the free random-walk process in Eq. (5). Consequently,
we derive an integral equation for Pygge (X, m | n) from which
we can read off the effective jump distribution.

Consider a bridge random-walk trajectory in Fig. 1 where
the walk starts at the origin, returns to the origin after n steps,
and arrives at X at an intermediate time m. Using the Markov
property, this trajectory can be decomposed into a left part
over the interval [0, m] and a right part over the interval [m, n].
Clearly the probability density Ppidee(X, m|n) can then be
written as

Poridge (X, m [n) = N P(X, m|0,0) P(0, n|X, m), ~ (8)

where P(X, m|Xy, mg) is the forward propagator of a “free”
random walk (without the bridge constraint) indicating the
probability density to reach the position X at step m, starting
at Xp at step mg, and A is a normalization constant that is
fixed as follows. Integrating (8) over X and setting it to 1, as
required by the normalization of the probability density, we
get

oo
lzN/ P(X, m|0,0) PO, n|X, m)dX
—00

= NP(0, n|0,0), ©))

where we have used the standard Chapman-Kolmogorov
property of the transition probability (free propagator). This
then gives

P(X,ml|0,0)P(0, n|X, m)

Pbridge(X’mln) = PO n|0 0) . (10

The two terms in the numerator in Eq. (10) refer, respectively,
to the left and right parts of the trajectories around step m.
We start with the left part of the trajectory characterized by
P(X, m|0, 0). This satisfies the forward Kolmogorov equation

o0

P(X,m|0,0)=f dYPY,m—1/0,0) f(X =), (11)

with the initial condition P(X, 0|0, 0) = §(X). This Eq. (11) is
obtained by considering the transition from step m — 1 (where
the particle is at Y) to step m (where the particle is at X)
and then integrating over all possible values of Y. For the
right part, it is convenient to write the backward Kolmogorov
equation

oo
P(O,n|X,m):/ dY P(O,nlY, m+ 1)f(Y — X)
-0
forn >m+1, (12)

with the condition P(0, n|X, n) = §(X). This Eq. (12) is ob-
tained by considering the transition from the initial step m
(where the particle is at X) to step m + 1 (where the particle
arrives at Y) and then integrating over all possible values of
Y. Note that, unlike in the forward Kolmogorov case, where
one varies the “final position,” in the backward Kolmogorov
case one varies the initial position. Note that both Egs. (11)
and (12) are valid even when the jump distribution f(n) is
nonsymmetric.

Using the time translational invariance of the free propaga-
tor, these two Eqgs. (11) and (12) can be simplified further. For
this, we will use the following shorthand notations (here and
in the rest of the paper):

P(X7m|070)EP(X7m)a P(Oan|Xam)EQ(Xvn_m)’

P(0, n|0,0) = P(0, n), (13)
where we have used the fact that the propagator of a free
random walk depends only on the time difference between the

final and the initial time. In terms of these shorthand notations
(13), Eq. (11) reads

P(X,m):/oodYP(Y,m—l)f(X—Y), (14)

[ee]
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starting from the initial condition P(X, 0) = §(X). Similarly,
Eq. (12) reads

Q(X,n—m):/oodYQ(Y,n—m—l)f(Y—X)
forn >m+1, (15)

starting from Q(X, 0) = §(X). Replacing n — m by m, this can
also be written in the standard backward form

o0
oX,m)= f dYQ¥,m—1)f¥ —X)form > 1, (16)
starting from the initial condition Q(X, 0) = 6(X). Finally, in
terms of these short-hand notations, Eq. (10) reads
P(X,m)Q(X,n—m)

Porigge (X, m [n) = PO, ) . a7

Note that Eq. (17) has the following interpretation: out of all
possible free paths that start from the origin and reach the
origin at time n, the right-hand side of Eq. (17) counts the
fraction of such paths that pass through the point X at time m.

Our goal now is to write a forward Kolmogorov-type
equation for the bridge propagator Pigee(X, m |n). For this
purpose, we start with Eq. (17). Replacing P(X, m) in the
right-hand side of Eq. (17) by the right-hand side of Eq. (14),
we get

© p,m—1)0X,n—m)

Py e(X,m|n):f dy
bridg - P(X =0, n)

x f(X —Y). (18)

Next we write Eq. (17) at time m — 1 upon replacing X by Y.
This reads
PY,m—-—1)0¥,n—m+1)
Poridge (Y, m — 1 = . (19
brdge( m |n) PX =0, n) (19)
We then replace the ratio P(Y,m — 1)/P(X = 0,n) on the
right-hand side in Eq. (18) by its expression in Eq. (19). This
gives us an integral equation for Pygidge (X, m|n)

[0}

Pbridge(Xs m|n) = / dY Pbridge(Yv m—1]|n)
o

x fX =Y |Y,m—1,n), (20)

where the effective jump distribution f X -=-Y|Y,m,n) at
time m of the bridge of length n is given by

~ oY +n,n—m—1)

J 1Y, m,n)=f(n) OVn—m) 2D
The effective distribution is therefore the free distribution that
is modified in such a way that steps that take the walker closer
to its final destination (here the origin) are more likely to hap-
pen. Note that this effective distribution is parametrized by the
current position Y of the bridge and moreover is nonstationary,
i.e., it depends on the current time m and also the total duration
n. By using the equation for the backward propagator (16), we
can check that the effective distribution f(5|Y, m, n) is nor-
malized to unity, i.e., ffooo dn f(n | Y, m, n) =1, irrespective
of Y, m, and n. Note that Eq. (21) can be viewed as an explicit

representation of the generalized Doob transform, which has
been used previously [22,27].

To evaluate the effective jump distribution (5 |Y, m, n) in
Eq. (21), where Y is the position of the bridge at time m, we
need to evaluate the backward propagator Q(x, m) of the free
walk. This can be explicitly computed from Eq. (16) by taking
the Fourier transform with respect to x and using the initial
condition Q(x, 0) = §(x). This gives the backward propagator

*dk » m ikx
O(x, m) = = [f)]" ™, (22)
oo 2T
where f (k) is the Fourier transform of the jump distribution

Fmic.
o) = / dn f(n) e, 23)

oo

For certain specific jump distributions (), it is possible to
compute f(n|Y,m,n) explicitly and sample directly from
it—we give several examples in Sec. IIl. For such cases in
which one has an explicit expression for f(1|Y, m, n) along
with a direct sampling method, one can easily draw a random
number 7 from this distribution to generate the bridge config-
uration numerically. However, in some cases, in which such
an explicit expression is difficult to obtain or when no direct
sampling methods exist, how does one generate a random
number from this distribution? In the next subsection, we
show that in most cases, one can use an efficient and powerful
numerical method to generate a random number distributed
via f(n|Y, m, n).

B. Acceptance-rejection sampling

Consider the effective jump distribution f(n|Y, m,n)
parametrized by Y, m, and n. We would like to draw a random
number 7 from this distribution. In this section, we discuss
a powerful method that can generate such a random number
efficiently. This method is based on ‘“acceptance-rejection
sampling” (see, e.g., [58]). For this method to work, we need
one crucial condition, namely that

Fm1Y,mn) < cun¥) f(m), Vo, (24)

where ¢,, ,(Y) > 1 is independent of 7, such that the effective
distribution f(1|Y, m, n) is uniformly bounded by the free
distribution f(n) (see Fig. 2). Assuming this condition is satis-
fied, and that we can estimate this constant ¢, ,(Y) explicitly,
the algorithm proceeds in three steps:

(i) Draw a candidate random number n’ from the free
distribution f(n’).

(i) Accept the candidate 7
paccept(n,a Y, m, n) given by

/

with  probability

Fo' 1Y, m,n)
emn(¥) f(7)

(iii) Reject the candidate otherwise and look for another
candidate from step (i).

Note that paccepc(17, Y, m, 1) is just a number between 0O
and 1 which depends on 1/, Y, m, and n, but it should not
be interpreted as a probability density function of n’. This
algorithm indeed generates a random number from the dis-
tribution f(n|Y, m, n). To show this, let us first compute the

Paceept(n', Y, m, n) = (25)
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8 f(n]
Paccept (,Y,m,n) = %

Cann (OIOT)

t~‘( n[Y,m,n)

Tl’

FIG. 2. Illustration of the ARS method. To draw a sample from
the effective jump distribution f(5 | Y, m, n) (blue curve), we draw a
sample n’ from the free distribution f(n’) (red curve) and accept it
with probability pccep (', ¥, m, n) = LRI where c,,,(Y) is a
constant such that the effective distribution (blue curve) is uniformly
bounded by the free distribution (red curve). If the candidate is not

accepted, we try again and look for another candidate.

cumulative distribution of the accepted candidate. Our goal
would be to show that this coincides with the target cumulative
distribution, namely f_”oo dn' f(n' | Y, m, n). For the candidate
random number 7’ to be less than 5, it must first be accepted,
which occurs with probability paccepi(n’, Y, m, n), and more-
over its value must be less than . Hence

fjoo dn/f(n/) paCCept(n/7 Ya m, n)
I, dn £ Paccept (', Y, m, )’

where th~e denominator ensures the normalization, i.e.,
lim,_, o F(n|Y, m, n) = 1. Inserting the acceptance probabil-
ity from Eq. (25), we find

F(nlY,m,n): (26)

[ dn' f(n' 1Y, m,n)

F Y, m,n) = =
) = s (7o)

n ~
= / dn'f(n'|Y,m, n), 27
—00

which thus coincides with the target cumulative distribution.
Finally, we note that the average acceptance probability of
the random number 7’ is simply given by

/ dn' (') paccept(n’, Y, m, n) = (28)

o0 Cma(Y) '
which follows from the definition of the acceptance prob-
ability in Eq. (25) and the normalization of f 'Y, m,n),
ie., ffooo dn' f(n'|Y, m,n) = 1. Since the left-hand side of
this equation is always less than 1, we need ¢, ,(Y) > 1.
However, to make the algorithm efficient, we should maxi-
mize the average acceptance probability, i.e., we should try
to use the smallest ¢, ,(Y) > 1 that satisfies the inequality in
Eq. (24). In the next section, we show how this algorithm can
be successfully used for various jump distributions f ().

III. EXAMPLES

A. Lattice random walk

We consider a lattice bridge random walk of n steps. The
free jump distribution is

f)y =138 —1D+1s(m+1). (29)

The backward propagator Q(y, m) in this case is well known
and can be easily computed as follows. Let n, and n_ de-

note the number of positive and negative jumps, respectively,
that bring the walker from the initial position Y to O in
m steps. Clearly ny +n_ =m and ny —n_ = —Y. Conse-
quently ny = (m —Y)/2 and n_ = (m+Y)/2. Note that ¥
has to be such that both n; and n_ are integers. The probabil-
ity that n_ out of m steps are negative is simply given by the
binomial distribution P(n_|m) = (" )27"™. Hence, replacing
n_ by (m +Y)/2 gives the backward propagator

m
oY, m) = <m+y> 27" (30)

2

where (m + Y) is even [otherwise Q(Y, m) vanishes]. We now
substitute Eq. (30) in Eq. (21). The first point to note is that,
since n = =1, the backward propagator appearing in both
the numerator and the denominator on the right-hand side
of Eq. (21) is nonzero if and only if Y +n —m is an even
number. This condition is actually automatically satisfied for
a lattice bridge in the sense that for the walker to be at ¥
at an intermediate time m, one must necessarily satisfy that
Y 4+ n — m is even. Given this condition, the right-hand side
of Eq. (21) can now be explicitly computed, giving

. 1 Y
fm|Y,m,n)= §<1 ——)8(n—1)
n—m

1

+—<1+L>8(n+1). 3D
2 n—m

In this special case, it turns out that the ARS method is
not needed, and we can directly sample the jumps from the
effective jump distribution in Eq. (31) to generate bridge tra-
jectories (see the left panel in Fig. 3). In the right panel in
Fig. 3, we computed numerically the probability distribution
of the position at some intermediate time by generating bridge
trajectories from Eq. (31). This is compared to the theoreti-
cal position distribution for the bridge, which can be easily
computed by substituting the free propagators P(X,m) =

% )27 and Q(X, m) from Eq. (30) in Eq. (17), which gives

m n—m
m+X n—m+X

Pbridge(X, min) = — (32)

(2)

which is nonzero only if (m + X') as well as n are both even
numbers. As can be seen in the right panel in Fig. 3, the
agreement is perfect.

B. Gaussian random walk

We consider a Gaussian bridge random walk of 7 steps. In
this case, the free jump distribution is

fan) = et (33)

1
V2w o2
In this particular case, the bridge configuration can be gener-
ated by the explicit construction in Eq. (7) in terms of a free
Gaussian walk. We show in Appendix A that this construction
generates a Gaussian bridge with the correct statistical weight.
It turns out that in this case one can also compute the effective
jump distribution in Eq. (21) explicitly in terms of the back-
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FIG. 3. Left panel (a): A typical trajectory of a lattice bridge random walk of n = 100 steps generated by the effective jump distribution in
Eq. (31). Right panel (b): Position distribution at m = 75 for a lattice bridge of n = 100 steps. The position distribution Pygee (X, m|n) obtained
numerically by sampling 103 trajectories using the effective distribution (31) is compared with the theoretical prediction in Eq. (32).

ward propagator

1 v2
O, m) = ————¢ 2mo?. (34)
2w mo?
This gives the effective jump distribution (21)
- 1 _ 1=mn)?
FalY,mn) = ——=e i (35)
[2m o2,
where
Y
Mmn = — s (36)
n—m
—m—=1)o?
ol = u_ (37)
' n—m

Interestingly, the effective jump distribution is also a Gaussian
but with a nonzero time-dependent mean (t,, ,, while the bare
jump distribution f(n) in Eq. (33) is a Gaussian with zero
mean. Thus the nonzero drift forces the trajectory to return to
the origin at time n. Note that the effective jump distribution
(35) is simply a rescaled and recentered Gaussian distribution.
Therefore, the effective equation of motion for the bridge
Gaussian walk can be written as

X n—m-—1

Vn—m

Xm-H =X, —

0<m<n.

(38)

O Nm;
n—m

In the continuous-time limit, this equation converges nicely to
the effective Langevin equation in Eq. (4).

Finally, let us remark that for this Gaussian random-walk
model, we again do not need to use the ARS described in
Sec. II B since the effective jump distribution in Eq. (35) is
a Gaussian distribution from which one can sample bridge
trajectories (see the upper left panel in Fig. 4). Nevertheless,
this jump distribution serves as a good illustration of how the
ARS method works. Let us recall that the main ingredient
of the ARS method is to find a constant (independent of
the jump 1) ¢, (Y) = 1 such that Eq. (24) is satisfied. To
find this constant, we consider Eq. (21). First we note the
inequality Q(Y +n,n —m — 1) < Q(0,n —m + 1) for all n,
which simply follows from the fact that Q(X,n —m — 1), as
a function of X, has a peak at X = 0 since it has a Gaussian
shape with zero mean. Using this inequality in Eq. (21), we

get, for m < n,
00,n—m—1)
QY,n—m)

Comparing this to Eq. (24), we see that a natural choice for
cmn(Y)is

f 1Y, mn) < (). (39)

cna() = 222D T i )
' o, n—m) n—m—1

which manifestly satisfies ¢, ,(Y) > 1 for all m < n and all
Y. This yields, from Eq. (25), the following acceptance prob-
ability:

')

paccepl(n/, Y,m,n) =e 20m-D, (41)

One can thus use the ARS method with this acceptance prob-
ability (41) to generate a Gaussian bridge (see the lower left
panel in Fig. 4). In the right panel in Fig. 4, we computed nu-
merically the probability distribution of the position at some
intermediate time by directly sampling the jump distribution
from Eq. (35) (upper right) and by the ARS method with the
acceptance probability in (41) (lower right). This is compared
to the theoretical position distribution for the bridge, which
can be easily computed by 2substituting the free propaga-

tors P(X, m) = ——— ¢ e and Q(X, m) from Eq. (34)

in Eq. (17). Thus the theoretical position distribution is
given by

1 n __nx2
Prrage X i) =~ [ € 5
JTTO -

As can be seen in Fig. 4 (upper and lower right panel), the
agreement is perfect.

(42)

C. Cauchy random walk

Our next example is a Cauchy random walk bridge of n
steps. The normalized free jump distribution is symmetric
with divergent moments

1 1
fn=——""—"7""75.
T A
rr i+ ()]
where y is a parameter that provides the typical scale of the
jumps. Being a stable distribution, the backward propagator is

(43)
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FIG. 4. Upper left panel (a): Typical trajectories of a Gaussian bridge random walk of n = 100 steps generated with a direct sampling of the
effective distribution in Eq. (35). Upper right panel (b): Position distribution at m = 75 for a Gaussian bridge of n = 100 steps generated with
a direct sampling by sampling 10° trajectories using the effective distribution. The position distribution Pyigee (X, m|n) obtained numerically
by sampling the jumps from the effective distribution in Eq. (35) is compared with the theoretical prediction in Eq. (42). Lower left panel
(c): Typical trajectories of a Gaussian bridge random walk of n = 100 steps generated using the ARS method on the effective distribution
in Eq. (35). Lower right panel (d): Position distribution at m = 75 for a Gaussian bridge of n = 100 steps generated using ARS on the
effective distribution. The position distribution Pyigee (X, m|n) obtained numerically by sampling 10° trajectories using the ARS on the effective
distribution in Eq. (35) is compared with the theoretical prediction in Eq. (42).

simply (see, e.g., [59])

1
Y, = .

(44)

The effective step distribution at the mth step (21) is therefore
given by
n—m

- 1
f(ﬂ|Ysm9”)=y—nm

1 1+ (L)Z

% y (n—m)
2 y 27"
[+ 1+ o))

Note that, unlike the free distribution f(n) in Eq. (43), the
effective distribution in Eq. (45) is asymmetric, has a power-
law tail £(n|Y, m, n) &< 1/n* as || — oo, and consequently
has a finite second moment.

Thus in this case, even though the effective jump distribu-
tion in Eq. (45) is explicit, it is not easy to draw a random
number from this distribution. Hence, this is the first example
where the ARS method discussed in Sec. II B becomes handy.
Again, for the ARS to work, we need to find a constant
cmn(Y) 21, independent of 5, that satisfies the inequality
Eq. (24). As in the Gaussian case, the propagator Q(Y, m) is
peaked around Y = 0, and hence in Eq. (21) one can use the
inequality Q(Y +n,n —m — 1) < Q(0,n —m — 1). Hence,
using this inequality in Eq. (21), we see from Eq. (24) that

(45)

a natural choice for ¢, ,(Y) > 1 is
00,n—m—1)
o, n—m)

At PO (R S o P
_n—m—1[+(ym—m0]‘ o

This yields the following acceptance probability, using
Eq' (25)3

Cm,n(Y) =

1
Y4n )2 '
y (n—m)

paccept(ns Yv m, n) = (47)

1+ (

Using the ARS method discussed in Sec. II, we then generate
the Cauchy bridge trajectories (see the left panel in Fig. 5).
In the right panel in Fig. 5, we computed numerically the
probability distribution of the position at some intermediate
time by sampling the jump distribution from Eq. (45) using the
ARS method with the acceptance probability in (47). This is
compared to the theoretical position distribution for the bridge
that can be easily computed by substituting the free propaga-

tors P(X, m) = Vﬁm and Q(X, m) from Eq. (44) in

Eq. (17), which gives

1 n 1 1
ynm(n_m)1+(yx—m)21+(ﬁ)2.
(48)

Pbridge(Xv mln) =

As can be seen in Fig. 5 (right panel), the agreement is perfect.
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FIG. 5. Left panel (a): Typical trajectories of a Cauchy bridge random walk of n = 100 steps generated using the ARS method on the
effective distribution in Eq. (45). Right panel (b): Position distribution at m = 75 for a Cauchy bridge of n = 100 steps generated using ARS
on the effective distribution. The position distribution Pyigee (X, m|n) obtained numerically by sampling 10° trajectories using the ARS on the
effective distribution in Eq. (45) is compared with the theoretical prediction in Eq. (48).

D. Student’s random walk

Our final example is a bridge random walk of n steps where the free jump distribution is given by a Student’s t-distribution
(of parameter 3) [60]

6v/3
fn=——5—3. (49)
7 (n? +3)
The Fourier transform of this jump distribution can be easily computed and is given by
Fy = e VM3l + 1. (50)
The backward propagator, using Eq. (22), then reads
* dk ;
o, m) =/ =2 eV (/Bk | 1Y e Y (51)
oo 2T

While this integral is hard to compute explicitly, it can still be evaluated numerically using the fast Fourier transform [61]. The
effective step distribution at the mth step (21) is therefore given by

Fn1y ) ffooo dk e_("_m_‘)ﬁlk\(ﬁ|k| 4yl k(Y4 63
n ,m,n) = > . ]
Joo dk e==mVIKI(3lk| + Tym eV (p® +3)

(52)

Thus in this case, the effective jump distribution in Eq. (52) is again not explicit and it is therefore not easy to draw a random
number from this distribution. This is another example where the ARS method discussed in Sec. II B becomes handy. As in
the previous examples, the propagator Q(Y, m) is also peaked around Y = 0, and hence in Eq. (21) one can use the inequality
QY +n,n—m—1) < Q(0,n—m— 1). Hence, using this inequality in Eq. (21), we see from Eq. (24) that a natural choice
for cpa(Y) 2 1is

Q(O, n—m— 1) B f_oooo dkef(nfmfl)«/glk\(\/gud + l)nfmfl

ma(Y) = = . 53
Cman(¥) o,n—m) fi’ooo dk ef(nfm)«/glk\(\/glld + 1yn—m e—ikY (33)
This yields the following acceptance probability, using Eq. (25):
[22 dk e mm=DVIR (/B k| A 1yt ek
Paccept(n’ Ya m, }’l) === . (54)

[ dk e mm= DB (3 k| 4 1yt

Using the ARS method discussed in Sec. II, we then generate Student bridge trajectories (see the left panel in Fig. 6). In the
right panel in Fig. 6, we computed numerically the probability distribution of the position at some intermediate time for a bridge
random walk of n = 100 steps by sampling the jump distribution from Eq. (52) using the ARS method with the acceptance
probability in (54). This is compared to the theoretical position distribution for the bridge, which can be easily computed by
substituting the free propagators P(X, m) = [ 4% eV (/3|k| + 1)" e=*X and Q(X, m) from Eq. (51) in Eq. (17). This
gives the theoretical position distribution

[/%, dk e ™3Ik + Dy e [ %5 dke VI3 4 1 e i

Poridee (X, m|n) = = 35)
brldge( | o7 ffooo dk efn«/g|k\(\/§|k| + 1) (

As can be seen in Fig. 6 (right panel), the agreement is perfect.
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FIG. 6. Left panel (a): Typical trajectories of a Student bridge random walk of n = 100 steps generated using the ARS method on the
effective distribution in Eq. (52). Right panel (b): Position distribution at m = 75 for a Student bridge of n = 100 steps generated using ARS
on the effective distribution. The position distribution Pyyigge (X, m|7) obtained numerically by sampling 10° trajectories using the ARS on the
effective distribution in Eq. (52) is compared with the theoretical prediction in Eq. (55).

IV. GENERALIZATION TO OTHER CONSTRAINED
DISCRETE-TIME RANDOM WALKS

In Sec. II, we derived an effective step distribution for
a bridge random walk. In this section, we generalize this
construction to other discrete-time random walks, such as
the “generalized bridge,” the random-walk excursion, and the
random-walk meander.

A. Generalized bridge

For a generalized bridge, the random walk is constrained to
start at the origin and finish at the final position X, not neces-
sarily located at the origin. The random walk is described by
the equation of motion (5) along with the constraint

Xo =0,
X, = X;.

(56a)

(56b)
An analogous reasoning as in Sec. II gives the generaliza-

tion of Eq. (17) for the propagator (see Fig. 7)
PX,m)QX — X¢,n—m)

Pgeneralized bridge X,m|n) = PX = Xf ’fn)

where P(X, m) and Q(X, m) are the forward and backward
free propagators, respectively, defined in Eqgs. (14) and (16).

. (57)

position

X

steps
0 m U n

FIG. 7. A generalized bridge random walk of n steps is a random
walk that is constrained to start at the origin and finish at X, after n
steps. Due to the Markov property, a generalized bridge random walk
can be decomposed into two independent parts: a left part over the
interval [0, m], where it propagates from the O to X,,, and a right part
over the interval [m, n], where it goes from X,, to X;.

The effective step distribution (21) straightforwardly general-
izes to

X —-Xr+nn—m—1)

OX —Xp,n—m) > 58)

f1X, Xp,m,n) = f(n) Q

where, as before, f(n) is the free jump distribution and
f (n1X,Xr, m,n) is the effective jump distribution at time
m given the position X at time m and the final position
Xy at time n. Following the analysis done for the standard
bridge in Sec. III for different jump distributions f(7), one
can also obtain explicit results for different examples, but
we do not repeat the details here. We just mention only
one example, namely the Gaussian jump distribution f(n) =
e 12" 1 /27562, Here, following the steps in Sec. IIIB,
one can compute explicitly the effective jump distribution in
Eq. (58). It turns out to be Gaussian again with a nonzero
mean,

1 _ =)

—— ¢ Wi (59)
V 27[ UH21.I1

FX, Xp,m,n) =

where
X —Xy
Mmn = — ’ (60)
n—m
—m—=1)o?
ol = u’ (61)
' n—m

which recovers the result in Eq. (35) for Xy = 0. In this case,
the discrete Langevin equation analogous to Eq. (38) reads

X, — Xy

n—m

n—m-—1

Vn—m

Xm+1:Xm_ 0§m<n

(62)

O Nm,

In the continuous-time limit, it approaches the Langevin
equation
X(t) =

—’L_txf +V2DEW), 63)

1y —

derived in Ref. [29].
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FIG. 8. An excursion random walk of 7 steps is a bridge random
walk that is constrained to remain above the origin (the absorbing
origin at X = 0 is indicated by the red dashes on the horizontal
axis). Due to the Markov property, an excursion random walk can be
decomposed into two independent parts: a left part over the interval
[0, m], where it propagates from the O to X,, while staying positive,
and a right part over the interval [m, n], where it goes from X,, to 0
while staying positive.

B. Excursion

An excursion is a bridge random walk that is constrained to
stay above the origin. It is described by the equation of motion
(5) along with the constraints

Xp =0, (64a)
Xn == 07 (64b)
)(111207 m=1,...,i’l—1. (64C)

The propagator of an excursion becomes (see Fig. 8)

Pabsorbing (X, m) Qabsorbing X,n—m)
Pabsorbing(x =0,n)

Pexcursion (X» m | n) =

)

(65)

where Pipsorbing (X, 1) and Qapsorbing (X, m) are the forward and
backward propagators in the presence of an absorbing bound-
ary located at the origin. They satisfy the following recursion
relations:

Pabsorbing(Xa m) = / dYPabsorbing(Ys m—1)f(X =Y),
0

(66a)

Qabsorbing(Xa m) = /0 dYQabsnrbing(Ya m—1) f(Y — X),
(66b)

where Pabsorbing(X» 0) = 3(X) and Qabsorbing(Xv O) = §(X).
Note that the integral equations in Eq. (66) are of the
Wiener-Hopf type (where the integrals extend only over the
semi-infinite line) and are notoriously difficult to solve ex-
plicitly for arbitrary jump distribution f(n) [62]. Following
the steps in Sec. II A, the analog of Eq. (21) for the effective
distribution now becomes

Qabsorbing(Y +nn—m—1)

. (67)
Qabsorbing(Yv n—m)

f1Y,mn) = f(n)

where f(n) is the free jump distribution and Qupsorbing (X, m) is
the solution of the Wiener-Hopf equation (66b). In the absence
of an explicit solution for this Wiener-Hopf equation, it is then
hard to compute the effective jump distribution f for general
f(n). There is, however, one exactly solvable case. This cor-
responds to a lattice random walk with jumps n = *£1. In this

case, the lattice excursion trajectories are called Dyck paths,
which have been studied extensively [63,64]. In this case the
propagator Qupsorbing(Y, m) can be computed explicitly using
the method of images, and one gets (see, e.g., [65])

m m
Qabsorbing(Yv m)=2"" <M) -2 <m+y+2> > (68)
2

2

where we recall that (m + Y) is even. In this case, the effective
jump distribution in Eq. (67) can be computed explicitly, and
we get

ﬂmYmm0=lO+n_m_YW+2»Mn—U

T Ty e —m
1 n—m—-—YX +2)
+50_ w+nm—m)%W+”’

(69)

where, again, we have the condition that Y + n — m is even.
We note that this result in Eq. (69) was also derived recently
in Ref. [22] using the approach of the generalized Doob trans-
form. In this special case, the ARS method is not needed,
and we can directly sample the jumps from the effective
jump distribution in Eq. (69) to obtain excursion trajectories
(see the left panel in Fig. 9). In the right panel in Fig. 9,
we computed numerically the probability distribution of the
position at some intermediate time by sampling the jump
distribution from Eq. (69). This is compared to the theoretical
position distribution for the excursion, which can be easily
computed by substituting the propagators Pypsorbing (X, m) =
27" (wix ) = 27" (i ) and Qusorving (X, m) from Eq. (68) in
Eq. (65), which gives

() — (L)1
(0 - (&

=3

n—m
- n—m+X+2
2

)

PexcursionX, m | n)=

~—

[N

(70)

which is nonzero only if (m + X) as well as n are both even
numbers. As can be seen in Fig. 9 (right panel), the agreement
is perfect.

C. Meander

A meander is a random walk that is constrained to stay
above the origin. It is described by the equation of motion (5)
along with the constraints

Xo =0, (71a)
X,=20, m=1,...,n. (71b)
The propagator of a meander becomes (see Fig. 10)
P, rbin, Xa S Xa -
Preander(X, m | n) = bsorb g( m) S, = m) . (72)

S0, n)

Here, Papsorbing (X, m) is the forward propagator in the presence
of an absorbing boundary located at the origin defined in
Eq. (66a). The quantity S(X, m) denotes the survival prob-
ability, i.e., the probability that the walker does not cross
the origin during m steps given that it started at X. This
equation is again understood by splitting a typical trajectory
into two parts as in Fig. 10. On the left part, the trajectory
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FIG. 9. Left panel (a): A typical trajectory of a lattice excursion random walk of n = 100 steps generated by the effective jump distribution
in Eq. (69). Right panel (b): Position distribution at m = 75 for a lattice excursion of n = 100 steps. The position distribution Peycyrsion (X, m|1)
obtained numerically by sampling 103 trajectories using the jumps from the effective distribution (69) is compared with the theoretical

prediction in Eq. (70).

goes from the origin to X after m steps, while staying non-
negative—this occurs with probability Papsorbing (X, 7). On the
right side, the trajectory starts from X and stays non-negative
up to n — m steps—the probability for this event is the survival
probability S(X, n — m). This equation is normalized by the
number of all trajectories that start at the origin and stay
non-negative up to step n. This is proportional to S(0, n). The
numerator on the right-hand side in Eq. (72), when integrated
over X € [0, 400), indeed gives S(0, n), which shows that
Preander (X, m | n) is normalized to unity.

The survival probability S(X,m) satisfies the recursion
relation

SX,m) = /oodYS(Y,m— 1) fY —X), (73)
0

where S(X,0) = ©(X) and ©O(z) is the Heaviside step func-
tion such that ®(z) =1 if z > 0 and ©(z) = 0 otherwise.
Equation (73) is easy to understand: consider a trajectory of
m steps, starting at X and staying non-negative up to step
m. Suppose in the first step the walker moves from X to
Y > 0, which occurs with a probability f(Y — X)dY, and
then, starting at the new initial position Y, the walker stays
positive up to m — 1 steps. The probability for this latter event
is just S(Y,m — 1). Integrating over all possible values of
Y € [0, +00) gives Eq. (73). The integral equation (73) is
of the Wiener-Hopf type and is therefore difficult to solve

position

steps

////m//////////n

FIG. 10. A meander random walk of n steps is a random walk
that is constrained to remain above the origin. Due to the Markov
property, a meander random walk can be decomposed into two inde-
pendent parts: a left part over the interval [0, m], where it propagates
from the 0 to X,, while staying positive, and a right part over the
interval [m, n], where it propagates to any position while staying
positive. The horizontal line with red dashes just indicates that the
origin at X = 0 is absorbing.

explicitly for arbitrary jump distribution f(n) [62]. Following
the steps in Sec. IT A, the analog of Eq. (21) for the effective
distribution now becomes

SX+nn—m—1)

FOr1X.mm) = o) == —

. (74)

where f(n) is the free jump distribution and S(X, m) is the
solution of the Wiener-Hopf equation (73). In the absence of
an explicit solution for this Wiener-Hopf equation, it is then
hard to compute the effective jump distribution f for general
f(n). As in the previous section, there is one exactly solvable
case that is the lattice random walk with jumps n = 1. The
survival probability S(Y, m) can be obtained by summing the
backward propagator over all the possible final positions Xy
(see, e.g., [65]):

2

2

Y+m
o m . m
S, m) = Z 2 <m+x_fy> -2 <m+xf+Y+2>7 (75)
Xp=0

where the summand is nonzero only when (m + Xy —Y) is
even. In this case, the effective jump distribution in Eq. (74)
becomes

SX+1,n—m—1)

fm1X,mn)= ISX.n—m) s(n—1)
SX—-1,n—m-—1)
2SXon—m) s+ 1), (76)

where S(X, m) is given in Eq. (75). Even if there is no explicit
expression for the sum in Eq. (75), it can still be evaluated
numerically straightforwardly. As in the previous section, the
ARS method is not needed and we can directly sample the
jumps from the effective jump distribution in Eq. (76) to
obtain meander trajectories (see the left panel in Fig. 11). In
the right panel in Fig. 11, we computed numerically the prob-
ability distribution of the position at some intermediate time
by sampling the jump distribution from Eq. (76). This is com-
pared to the theoretical position distribution for the meander,
which can be easily computed by substituting the propagator
Pabsorbing(Xv m) =2""( % —27"( @ ) and S(X, m) from
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FIG. 11. Left panel (a): A typical trajectory of a lattice meander random walk of n = 100 steps generated by the effective jump distribution
in Eq. (76). Right panel (b): Position distribution at m = 75 for a lattice meander of n = 100 steps. The position distribution Pyeandger (X, m|n)
obtained numerically by sampling 107 trajectories using the jumps from the effective distribution (76) is compared with the theoretical

prediction in Eq. (77).
Eq. (75) in Eq. (72), which gives
Pmeander(Xv m | n)

m m X+n—m n—m n—m
meX | T | mix+2 X, =0 n=m+Xp =X | — | n—m+Xp+X+2
_ 2 2 = 2 2

- 9

(n —nng)

7
where we used that S(0, n) = 2_"(,,:[” ), where | 5] denotes
the integer part of n/2. Note that the summand in Eq. (77) is
nonzero only when (n — m + Xy — X) is even. As can be seen
in Fig. 11 (right panel), the agreement is perfect.

V. SUMMARY AND OUTLOOK

In this paper, we have studied discrete-time random walk
bridges, where the random walk starts at the origin and is
constrained to return to the origin after a fixed number n of
steps. One of the challenges was to find an effective jump dis-
tribution that is local in time and yet takes into account auto-
matically the global bridge constraint, and is valid for arbitrary
bare jump distributions. We have derived an exact formula for
this effective jump distribution and computed it explicitly in
a few examples of bare jump distributions. Furthermore, our
method provides, for arbitrary jump distributions, an exact and
efficient numerical algorithm to generate random walk bridge
trajectories with the correct statistical weight. We have also
provided a numerical method based on acceptance-rejection
sampling which is versatile and powerful to generate a random
jump from the effective distribution, even when the effective
distribution has a complicated functional form. Going beyond
the simple bridges, we have further extended our method to
other constrained discrete-time random walks, such as “gen-
eralized bridges” (where the end point is different from the
starting point), excursions, and meanders.

One interesting application of our method is in the con-
text of extreme value statistics for constrained discrete-time
random walks [66]. For such walks, there have been a lot of
interesting analytical results that have been derived recently
for arbitrary jump distribution, an example being the expected
maximum of a random walk bridge of n steps [67-71]. An-
other example is the exact distribution of the maximal relative
height of a one-dimensional discrete solid-on-solid model in

the stationary state with periodic boundary condition [44]. In
order to verify such analytical predictions numerically, one
needs to generate efficiently the discrete-time bridge trajecto-
ries with the correct statistical weight. The method presented
in this paper will be useful for this purpose. In a recent work
[22], the generalized Doob’s transform has been used to de-
velop a reinforced learning approach to generate rare atypical
trajectories, with a given statistical weight—we hope that the
method developed in this paper will also be useful in such
applications.

In this paper, we focused on constrained discrete-time
random walks in one dimension. It would be interesting to
generalize our results for the effective jump distribution for
discrete-time bridges in higher dimensions. We note that
discrete-time random walks in d-dimensions are different
from d-independent one-dimensional discrete-time random
walks (a property that holds, however, for continuous-time
Brownian motion). Even for d-dimensional lattice random-
walk bridges, it would be interesting to compute the effective
jump distribution from a given site at a fixed intermediate
time.
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APPENDIX: CORRELATOR OF THE GAUSSIAN BRIDGE
The correlator of the generated bridge in Eq. (7) is

<Xibridge ijridg&) — (Xifree Xjfree) _ é (Xjfree Xﬂfree)

_J/

n

Given that the correlator of the free Gaussian random walk is
(xree X[} = 6> mini, j), (A2)

(Xifreeanree> + ;_-] ([anree]2>.

. (A1)

we find

(A3)

. - l. .
(XibndgeX;)ndge> — 02|:min(l', ]) - _]:| ’
n

which indeed corresponds to the bridge correlator [which one
can compute from the propagator in Eq. (34)].
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