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Response and flux of information in extended nonequilibrium dynamics
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It is well known that entropy production is a proxy to the detection of nonequilibrium, i.e., of the absence of
detailed balance; however, due to the global character of this quantity, its knowledge does not allow to identify
spatial currents or fluxes of information among specific elements of the system under study. In this respect, much
more insight can be gained by studying transfer entropy and response, which allow quantifying the relative
influence of parts of the system and the asymmetry of the fluxes. In order to understand the relation between
the above-mentioned quantities, we investigate spatially asymmetric extended systems. First, we consider a
simplified linear stochastic model, which can be studied analytically; then, we include nonlinear terms in the
dynamics. Extensive numerical investigation shows the relation between entropy production and the above-
introduced degrees of asymmetry. Finally, we apply our approach to the highly nontrivial dynamics generated
by the Lorenz 96 model for Earth oceanic circulation.
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I. INTRODUCTION

From a physical point of view, one of the most relevant as-
pects of out-of-equilibrium systems is the presence of currents
induced by external constraints or fields [1,2]. These currents
have the dual effect of breaking the time-reversal symmetry of
the system and of producing spatial inhomogeneity between
the variables. For instance, an electric field acting on charged
particles induces a mean current, in the same way as imposing
different temperatures at the end of a bar induces a heat flux
ruled by Fourier’s law.

In mathematical terms, a system is out of equilibrium if
the detailed balance does not hold or, equivalently, if the
entropy production � is positive [3]. It is well known that in
the very general context of Markov processes (e.g., Langevin
equations and master equations) an explicit expression for
� can be introduced by comparing the probability of a long
trajectory to that of its time reversal [4]. One may ask whether
and in which sense the lack of time-reversal symmetry mea-
sured by � is related to the presence of currents of physical
observables, i.e., to the breaking of the spatial symmetry
of the dynamics [5]. Let us stress, for instance, that even
low-dimensional systems, as two-dimensional (2D) linear
Langevin equations, can have a nonzero entropy production
and be consistently classified as out of equilibrium; it is quite
obvious, however, that it is misleading to use concepts as
currents and spatial symmetry breaking in these cases because
of the absence of a spatial structure [6].

In this paper, we investigate high-dimensional extended
systems, analyzing both the temporal and spatial aspects of
out-of-equilibrium states. In particular, to characterize the
breaking of the spatial symmetry we adopt two approaches,
namely, the study of transfer entropy (TE), borrowed from in-
formation theory, and the analysis of response functions (RF).

In the former case, the idea is to quantify the amount of
information exchanged between two variables xi and x j of the
system, i.e., roughly speaking, the improvement in our ability
to predict x j once xi is known. The latter approach consists
instead of measuring how the perturbation of a variable xi

influences on average the behavior of x j .
The paper is organized as follows. In Sec. II we discuss

in some detail the observables we will study in the rest of
the paper, namely, �, TE, and RF. In Sec. III we introduce a
system of N linear “oscillators” with asymmetric interactions,
ruled by a Markov dynamics. This exactly solvable system
allows us to study the relation between nonequilibrium and
symmetry breaking. The case with some nonlinear terms in
the interactions is also considered. Section IV is devoted to
the analysis of the so-called Lorenz 96 model, i.e., a simpli-
fied description of the dynamics of representative atmospheric
observables. Despite the apparent simplicity, such a system
contains the main difficulties of turbulence and only numerical
computations are possible. By varying the parameters of the
model (dissipation and external forcing) we give a qualitative
scenario of the crossover from equilibrium to nonequilibrium
situations. Our conclusions are drawn in Sec. V.

II. CHARACTERIZING NONEQUILIBRIUM
AND SPATIAL ASYMMETRY

To understand to what extent a certain system is out of
equilibrium, we need to quantify the asymmetry of its dynam-
ics under time-reversal transformations, i.e., its irreversibility,
due to the breaking of the detailed balance condition. Con-
sider the forward trajectory {x(s)}0<s<t of a time-dependent
variable x(s) from time s = 0 to time s = t ; let us de-
note by P({x(s)}0<s<t ) the probability of {x(s)}0<s<t and by
{Ix(s)}0<s<t the reverse trajectory, which collects the same
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states as the forward trajectory but in the reversed order. As it
is well known, the functional [7,8]

�S(t ) = kB ln
P({x(s)}0<s<t )

P({Ix(s)}0<s<t )
(1)

can be proved to be the cumulative entropy production along
the trajectory. Here kB denotes the Boltzmann constant, which
will be taken equal to 1 in the rest of this paper.

In some particular systems, the quantity in Eq. (1) can
be explicitly written for the single trajectory by evaluating
its probability, according to the path-integral procedure in-
troduced by Onsager and Machlup [9]. To be more specific,
let us focus on the kind of systems we will deal with in the
following sections, which are Markovian stochastic systems
described by an N-dimensional Langevin equation, such as

ẋ = F(x) + Bη, (2)

where F : RN �→ RN is a smooth function, B is the diagonal
matrix with elements Bi j = δi j

√
2Ti, and η represents a white

delta-correlated noise, such that 〈ηi(t )η j (s)〉 = δi jδ(t − s). If
we consider the initial and final states as stationary states, it
is possible to show [7] that the mean entropy production rate
reads as

� =
∑

k

〈Fk (x)ẋk〉
Tk

. (3)

The angular brackets here represent an average over many
repetitions of the experiment. In the systems in which we can
consider Eq. (2) as the motion of a particle in a medium, we
can get a more physical intuition of the above result [10,11].

This paper aims to explore the relation between nonequi-
librium and spatial asymmetry in paradigmatic models. While
a handy tool to measure the lack of equilibrium is naturally
provided by entropy production, finding a suitable way to
characterize spatial asymmetry is a much less obvious task.

The first approach that we shall follow is based on the
assumption that spatial asymmetry in the dynamics is re-
alized when some kind of “effective interaction” between
two variables is no longer symmetric, i.e., when a pertur-
bation of variable xi induces on x j an average effect which
is different from that exerted on xi when perturbing x j . The
physical observable which quantifies this average effect is the
response function, which plays an important role in the study
of both equilibrium and out-of-equilibrium systems. Given an
N-dimensional system x(t ), the response of variable xi to an
instantaneous perturbation δx j (0) of x j at time 0 is defined as

Ri j (t ) = �xi(t )

δx j (0)
, (4)

where �xi(t ) is the difference between the perturbed and
the unperturbed trajectory, and · is an average over a large
number of realizations of the experiment. In what follows, we
shall analyze the breaking of spatial symmetry by measuring
the asymmetry of response functions integrated over time.

The usefulness of response is mainly due to a number of
fluctuation-dissipation theorems establishing analytical rela-
tions between response functions and correlations of suitable
observables when the perturbation is small [12,13]. Under
very general hypotheses, a fluctuation-dissipation theorem

valid also for out-of-equilibrium systems can be formulated
[14]. Denoting by ρ(x) the stationary probability density func-
tion (pdf), such generalized fluctuation-dissipation relation
reads as

Ri j (t ) = −
〈
xi(t )

∂

∂x j
ln[ρ(x(0))]

〉
, (5)

where the angular brackets represent an ensemble average,
which can be actually computed as a time average assuming
ergodicity.

When the stationary solution is a Gaussian, as it happens
for linear models with additive Gaussian noise, the theorem
assumes a particularly simple form and response functions can
be written as a sum of correlations, according to

Ri j (t ) =
∑

k

Cik (t )[σ−1]k j, (6)

where C = 〈x(t )xT (0)〉 is the correlation matrix and σ =
C(t = 0) is the covariance matrix. The above formula can be
thus written in matrix form as the linear regression relation

R(t ) = C(t )σ−1. (7)

A different approach to characterize spatial asymmetry in
the dynamics may be focused on the currents of probability.
Indeed, currents break the spatial equivalence between the
different parts of a system and introduce a preferred direction,
which is the one corresponding to the flux. A quantity that can
be used to study this effect is the transfer entropy (TE), which
is used in information theory to measure the information ex-
changed between time-dependent variables [15–18].

Consider two random variables x and y, and let us indicate
with Pxy(x, y) their joint probability and with Px(x) and Py(y)
the marginal distributions. The Shannon entropy of variable x
is defined as

H (x) ≡ −
∫

dx Px(x) ln Px(x), (8)

while the joint Shannon entropy of x and y reads as

H (x, y) ≡ −
∫

dx dy Pxy(x, y) ln Pxy(x, y). (9)

It follows that if x and y are independent, then H (x, y) =
H (x) + H (y). The conditional entropy of x given y is consis-
tently defined as

H (x|y) ≡ H (x, y) − H (y) (10)

and can be interpreted as the uncertainty about the value
of x once y is known. From what we said, for independent
variables H (x|y) = H (x). The amount of information shared
between x and y is quantified by the mutual information

I (x, y) ≡ H (x) + H (y) − H (x, y). (11)

I (x, y) is always positive, symmetric under the exchange of
its two arguments and it is zero if and only if the variables are
independent. Transfer entropy is a particular time-asymmetric
conditional mutual information; for Markovian systems in
discrete time it is defined as

Ty→x(t ) ≡ I (xt , yt−1|xt−1)

= H (xt |xt−1) − H (xt |xt−1, yt−1). (12)
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For stationary systems, which are the only ones we will deal
with in the following sections, the transfer entropy does not
depend on time, so Ty→x(t ) = Ty→x.

We point out that some attention is needed with
continuous-time systems [19]. The meaningful quantity in
this case is the information transfer rate, i.e., the amount of
information transferred per unit time:

Ty→x(t ) = lim
δt→0

I (x(t ), y(t − δt )|x(t − δt ))
δt

. (13)

For the systems we want to focus on in the following sections,
it can be explicitly seen that this limit is well defined and, if δt
is small enough, the quantity on the right-hand side of Eq. (13)
is almost independent of it (see the Appendix for a discussion
on this point). Let us stress that in numerical simulations, as
well as in real experiments, the value of δt is bounded from
below by the time resolution.

In order to compute TE, from a practical point of view,
one needs to evaluate conditional entropies. This is feasible by
means of explicit calculations when the stationary distribution
is known: a relevant example, which will be considered in the
following section, is that of Gaussian distributions, detailed in
the Appendix. In most cases, however, the stationary distribu-
tion is not known and, hence, we do not have an explicit form
for the conditional entropies. In these cases one has to rely on
numerical estimations of entropy from data, which might not
be a trivial task in the general case.

III. ASYMMETRIC RING MODELS

In this section we focus on ring models, i.e., extended
systems of N variables {xi}i=1,...,N whose dynamics is ruled
by the stochastic process

ẋi = F (xi, xi−1, xi+1) +
√

2Tiηi ∀ i (14)

with

F (x, y, z) = − f (x) − fL(x − y) + fR(z − x), (15)

where f , fL, and fR are smooth real-valued functions,
{Ti}i=1,...,N are positive constants, and {ηi}i=1,...,N represent
N independent Gaussian noises with zero mean satisfying
〈ηi(t )η j (s)〉 = δ(t − s)δi j . Periodic boundary conditions are
assumed, i.e., xN+1 ≡ x1 and x0 ≡ xN .

We shall first consider an exactly solvable case, i.e., model
(14) with linear f , fL, and fR. This can be seen as the over-
damped limit of a system of coupled linear oscillators with
asymmetric interactions. The underdamped version of this
model has been used, for instance, to study the dynamics of
traffic congestion [20]; indeed, it results to be the linear limit
of the so-called backward-looking optimal velocity model
[21,22], in which the asymmetry of interactions is a key el-
ement. See Ref. [20] for a detailed analytical discussion of
correlations and responses in these underdamped models. Af-
ter that, the effect of nonlinearities will be taken into account.

A. Linear cases

If we assume that the drift terms appearing in Eq. (15) are
linear, i.e.,

f (r) = γ r, fL(r) = αr, fR(r) = βr,

for some constants α, β and γ , the model we are interested in
can be written as

ẋ = −Ax + Bη, (16)

where A is the Toepliz matrix whose elements are given by

Ai j = (α + β + γ )δi, j − αδi, j−1 − βδi, j+1 (17)

(periodic boundary conditions are assumed) and

Bi j =
√

2Tiδi j . (18)

It is useful to define the symmetric and antisymmetric part of
the interactions with “neighbor” variables as

k = β + α

2
and ε = β − α

2k
,

respectively.
For this class of linear models, we can exploit exact re-

lations for the computation of � and RFs, as discussed in
the previous section, and also of TEs, as detailed in the
Appendix. Similar studies on systems with asymmetric linear
interactions have been performed, for instance, in Ref. [20].
First we focus on the case in which all noises have equal
amplitudes, i.e.,

Ti = T ∀ i. (19)

In Fig. 1(a) we fix a variable xi and we compute the “cumula-
tive” response

R̃ ji =
∫ ∞

0
dt R ji(t ), (20)

inspired by the Green-Kubo formulas, for several values of the
“oriented distance” ( j − i) between the considered variables.
This can be achieved numerically by comparing the evolution
of an “unperturbed” trajectory with that obtained by imple-
menting the instantaneous transformation

xi(0) → xi(0) + δxi(0). (21)

Here δxi(0) is chosen to be much smaller than the typical
fluctuations of xi, which are O(1) in this case (not shown).

The function R ji(t ) obtained in this way is integrated in the
time interval [0, τ ], where τ is much larger than the typical
characteristic times of the dynamics, given by the inverse of
the spectral radius of A. The results of such numerical sim-
ulations are compared with the analytical relation (5), which
yields of course

R̃ 
 C̃σ−1. (22)

All simulations have been performed using the stochastic
Heun method [23]. The time step �t is much smaller than
the characteristic time of the model.

The experiment is repeated for several values of ε. Sim-
ilarly, in Fig. 1(b) the TE is numerically computed and
compared with the analytical prediction for the linear case.
We point out that, as explained in the Appendix, in this case
transfer entropies can be written in terms of covariances and
correlations. At variance with response functions, TE is triv-
ially zero when j = i [see Eq. (12)].

Both observables show, as expected, a symmetric behavior
when ε, the antisymmetric part of the interaction, is zero; for
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(a)

(b)

FIG. 1. Spatial asymmetry in the linear case with uniform noise.
Cumulative response R̃ ji (a) and transfer entropy Ti→ j (b) are plotted
as functions of the oriented distance ( j − i), for different values of
the parameter ε ruling the asymmetry of the interactions. Circles
represent numerical simulations, dashed lines are theoretical pre-
dictions. Parameters: k = 2.5, γ = 1.5, T = 0.5, N = 20, time step
�t = 10−3. In (a), integration time τ = 5, perturbation δx = 10−3,
average over M = 103 realizations. In (b), time interval for comput-
ing TE δt = 10−3, M = 105.

positive values of ε the RF and the TE from xi to xi+n with
0 < n < N/2 are larger than those from xi to xi−n. However,
it should be noticed that as far as RFs are concerned, varying
ε amounts to a change in the decay length; the effect on TE
is instead only limited to the presence of an overall rescaling
factor, leaving untouched the slope of the RF in the semiloga-
rithm plot in Fig. 1(b).

FIG. 2. Transfer entropy in the linear case with noise gradient
(23). Here Ti→ j is plotted as a function of the oriented distance j − i,
for different values of the parameter ε ruling the asymmetry of the
interactions. All curves are analytical. Parameters: k = 2, γ = 2.5,
T = 5, temperature gradient �T = 10, N = 20.

A slightly different situation is considered in Fig. 2. In this
case the amplitudes of the noise terms are given by a piecewise
linear rule

Ti = T0 + |i|�T, (23)

where i ranges from −N/2 + 1 to N/2 and periodic boundary
conditions are assumed. In this case we fix the variable xi with
i = N/4 and repeat the previous analysis on RFs and TE. Not
surprisingly, the behavior of Ri j (not shown) is identical to
the one previously discussed for the case with homogeneous
noise; this could be guessed by recalling that for linear models
the response is only determined by the interaction matrix A
and is independent of the choice of B. On the contrary, as we
see in Fig. 2, the inhomogeneity in the noise terms makes the
transfer entropies asymmetric even when the interactions be-
tween variables are completely symmetric (ε = 0). Again, this
could be expected since correlations depend also on the noise
matrix B. Let us remark that this qualitative difference also
occurs when using these observables as proxies of causation
relations [24–26].

We now define the observables

A(R)
i =

∑
j<i

R̃ ji −
∑
j>i

R̃ ji (24)

and

A(T )
i =

∑
j<i

Ti→ j −
∑
j>i

Ti→ j, (25)

which quantify the spatial asymmetry of the integrated re-
sponse function and of the transfer entropy, respectively. In
the homogeneous-noise case, summations have to be intended
on j = i − N/2, . . . , i − 1 and i + 1, . . . , i + N/2 (where
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periodic boundary conditions are meant), and they, by symme-
try, do not depend on i; in the case with a temperature gradient
we will limit ourselves to i = N/4, and the summations are in-
tended over j = 0, . . . , N/4 − 1 and j = N/4 + 1, . . . , N/2.
With our choice of the signs, the above quantities are positive
when the integrated RFs or TE from the right to the left (coun-
terclockwise direction) are larger than those in the opposite
verse.

In Fig. 3 such quantities are related to the lack of equi-
librium measured by �, when varying ε. All observables are
rescaled to their values at ε = 1. The meaning of Fig. 3(a)
is quite clear: When the noise amplitudes are all equal, for
ε = 0 the system is at equilibrium and there is no breaking
of spatial symmetry, neither for the RFs nor for TE. This can
be simply understood by recalling that the model can be seen
as the overdamped dynamics of N particles at temperature T
interacting via a quadratic potential, and the stationary state is
represented by an equilibrium distribution. As soon as ε > 0,
the dynamics has a “preferred” direction; as a consequence,
detailed balance fails and � grows. In this case, the failure of
equilibrium is related to the breaking of spatial symmetries,
revealed by the analysis of RF and TE.

A different scenario emerges from the analysis of the
model with different noise amplitudes (23). In this case even
for ε = 0 the system is out of equilibrium, as it is clear
from the fact that � > 0. Response functions and transfer
entropy give qualitatively different information: The former
are symmetric, as a consequence of the symmetry of interac-
tions. The presence of probability currents is instead testified
by the asymmetric behavior of the latter. We can conclude
that, at least in linear systems, an asymmetry in the response
functions can be seen as a genuine indicator of the (spatial)
asymmetry of the dynamics, related to unbalanced internal
interactions; TE, on the other hand, may show an asymmetric
behavior even in presence of symmetric interactions, if the
system is driven out of equilibrium by, e.g., a temperature
gradient. Since in the following we will only consider systems
with homogeneous noise, we expect the two quantities to pro-
vide similar information, and we will only discuss response
functions.

B. Effects of nonlinear terms

To show that RFs are good indicators for the asymmetry
of the dynamics, even in presence of nonlinear terms, in this
paragraph we consider a particular case of the ring model
described by Eq. (14), in which nonlinear terms explicitly
appear in the drift functions (15):

f (r) = γ r, fL(r) = αr + ζ r3, fR(x) = βr + ζ r3. (26)

Defining again ε = (β − α)/(2k), in Fig. 4 we show how RFs
depend on the asymmetry ε.

The results are quite similar to those shown in Fig. 1 for the
linear case, suggesting (although, of course, not proving) that
the presence of nonlinear terms does not hinder the ability of
RFs to catch the privileged direction of the dynamics.

It is also worth noticing that, at least in this case, the RF
can be fairly approximated with the linear combination of
correlation functions suggested by Eq. (7). This result is quite

(a)

(b)

FIG. 3. Comparison between entropy production rate and spa-
tial asymmetry. (a) �, A(R)

i , and A(T )
i for the system with uniform

noise, as functions of the interaction asymmetry ε. All quantities are
rescaled with their values at ε = 1. Here the results are, by symmetry,
independent of the choice of i. (b) Same for the system with noise
gradient (23). Here i = N/4. All curves are analytical. Parameters as
in Figs. 1 and 2.

unexpected since Eq. (7) only holds, in principle, for systems
with linear interactions; when nonlinear drift terms are present
one has to rely on the more general formula (5), which may
lead to nontrivial contributions. However, as discussed for
instance in Ref. [24], it should be noted that the right-hand
side of Eq. (7) is the linear regression between the state of
the system at time 0 and that at time t ; it provides therefore
the drift matrix F of the “best” linear approximation for the

024116-5



SARRA, BALDOVIN, AND VULPIANI PHYSICAL REVIEW E 104, 024116 (2021)

FIG. 4. Ring model with nonlinear terms. Main plot: Asymmetry
A(R) of the cumulative response as a function of the asymmetry in
the interactions. Inset: Two-variables pdf (lines are contour curves)
and comparison with a Gaussian distribution with the same mean
and covariance matrix (in blue). Parameters: k = 2, γ = 2.5, ζ = 10,
T = 0.5, N = 20. For the main plot: Integration time τ = 1.6, rep-
etitions M = 5×104. For the inset: Repetitions M = 5×104. Other
parameters as in Fig. 1.

discrete-time dynamics

xs+t = ft (xs) 
 Ft xs. (27)

The RF associated with this approximated dynamics is exactly
given by the matrix Ft .

IV. LORENZ 96 MODEL

In 1996 Lorenz introduced a model to catch the essential
features of atmospheric circulation, in the context of fluid
dynamics [27]; it consists of a set of N variables which evolve
according to the following equations:

ẋn = Gn(x) − νxn + F, n = 1, . . . , N (28)

where

Gn(x) = xn−1(xn+1 − xn−2) (29)

and periodic boundary conditions xn±N = xn hold. The vari-
ables may represent a scalar meteorological quantity, such
as vorticity or temperature, measured at equally spaced sites
around a latitude circle [28]; the periodic boundary conditions
are therefore natural, if we think of these variables as disposed
on a circle along a parallel of the Earth.

The evolution of each variable is determined by three con-
tributions [29]: (i) the nonlinear quadratic interaction term
Gn(x), which is the only possible source of asymmetry of
the dynamics; (ii) a linear damping term, proportional to −ν,
that represents the mechanical or thermal dissipation and has
the effect of reducing the total energy of the system; (iii) a

constant external force F that prevents the total energy from
decaying to zero and hence the stationary behavior from being
trivial. In the case ν = 0, F = 0, which mimics the Euler’s
equation, there is a quantity conserved by the dynamics

E =
N∑
n

x2
n, (30)

and hence the states of the system live on a (N − 1)-
dimensional surface. If instead ν �= 0 and F �= 0, one has
a chaotic dissipative system. Asymptotically, the motion
evolves on a strange attractor with a fractal structure. For
instance for N = 20, ν = 1, F = 5 the Grassberger-Procaccia
dimension is around 6.6 [30]. For a detailed investigation of
the system (28) in terms of linear response theory, see [31].

Let us notice that the presence of chaos induces a sub-
tle mathematical problem for the study of the generalized
fluctuation-dissipation theorem, i.e., the fact that the invariant
measure of a chaotic system can now be singular, against the
hypotheses of the theorem (see Ref. [14]). We can overcome
this difficulty by adding some stochasticity to the system, in
the form of a Gaussian white noise with zero mean:

ẋn = Gn(x) − νxn + F +
√

2T ηn, n = 1, . . . , N (31)

where 〈ηn(t )ηm(s)〉 = δnmδ(t − s).
Figure 5(a) shows the numerical behavior of the cumulative

response. The computation has been done by numerically inte-
grating over a time interval long enough to allow correlations
to decay to zero. Indicating again by R̃ and C̃ the cumulative
matrices obtained by integrating over time the elements of the
matrices C and R, respectively, we can test the validity of the
linear approximation (22) that we know to hold exactly for
linear systems. The behavior obtained from linear regression
is qualitatively very similar to that obtained by integrating
responses, even if, as in the case of ring models with nonlinear
interactions discussed before, the joint pdf of the consid-
ered variables is not Gaussian. This suggests a handy way
to measure spatial asymmetry even in systems with complex
dynamics, by only measuring suitable linear combinations of
correlation functions.

The above results suggest that the Lorenz 96 dynamics is
spatially asymmetric, namely, the effects of the perturbation
of a variable will have a preferential propagation direction.
It is interesting to study how this asymmetry depends on the
model’s parameters. One can introduce a constant k, inspired
by Einstein’s relation, such that

ν = kν0, T = kT0. (32)

It is worth noticing that in the limit k → ∞ the nonlinear
terms have a poor role, and this case corresponds therefore to
a “small Reynolds number” fluid, whereas k → 0 represents
a “large Reynolds number” situation.

In Fig. 6 we show the behavior of the asymmetry of cumu-
lative RFs and of the production of entropy � as functions of
k. We notice that in the large-k limit, both quantities tend to
zero, suggesting that the variables are becoming independent
and the dynamics less asymmetric.
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(a)

(b)

FIG. 5. Lorenz 96 system in the turbulent regime. (a) Compari-
son between the actual cumulative responses of the system (squares)
and the linear relation exactly holding for Gaussian systems (circles),
as in Eq. (22). Lines are guides for the eye. (b) Joint pdf of two
variables at distance d = 1 (lines are contour curves) and the compar-
ison with a Gaussian distribution with the same mean and covariance
matrix (in blue). Parameters: F = 5, N = 20, ν = 1, T = 2, τ = 3.
Other parameters as in Fig. 1.

V. CONCLUSIONS

Whether and how the lack of equilibrium in a multidi-
mensional system can be related to the presence of currents
of measurable quantities, i.e., to a lack of spatial symmetry
for the dynamics, is a wide and general problem of out-of-
equilibrium statistical mechanics. Here we investigated the

FIG. 6. Entropy production and response asymmetry in Lorenz
96 model, as functions of parameter k defined in Eq. (32). Both
quantities are rescaled with their values for k = 1. The statistical
error is negligible with respect to the size of the points. Lines are
guides for the eye. Parameters: T0 = ν0 = 2, F = 5, N = 20, τ = 6,
M = 103. Other parameters as in Fig. 1.

case of extended systems with one-dimensional periodic ge-
ometry, where spatial asymmetry can be simply characterized
by measuring suitable dynamical observables such as RFs
and TE, while the entropy production rate can be adopted, as
usual, as a measure of the deviation from equilibrium.

We first tried to get some insight into their relation by
looking at the behavior of linear ring models: in these systems
nonequilibrium can be induced, for instance, by imposing
asymmetric interaction terms or a “temperature” gradient, i.e.,
a spatial-dependent modulation of the amplitudes of the noise.
In both cases we observe that the nonvanishing entropy pro-
duction leads to an entropy current testified by the asymmetry
of the TE; if the nonequilibrium is due to an asymmetry
between interactions, also an analysis of RFs can reveal it,
and the qualitative scenario does not change by including
nonlinear terms.

The same kind of analysis has been performed on more
complex systems, leading to similar conclusions. We con-
sidered the Lorenz 96 model in its “turbulent” version: By
varying a parameter which allows to switch from large to
small Reynolds numbers, we observe a transition from an
out-of-equilibrium regime characterized by high asymmetry
in the RFs to a limit in which both time-reversal and spatial
symmetries are restored. In this case we have not considered
the TE: The nonlinear character of the dynamics does not
allow to use known analytical relations, and the presence
of a large number of degrees of freedom makes difficult to
compute it numerically since this operation would involve a
discretization of the phase space. We leave this interesting line
of research to future projects.
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Our results suggest the possibility to detect the ab-
sence of equilibrium in a generic system by studying the
asymmetry of suitable observables such as transfer entropy
and, more importantly, response functions, which are much
simpler to measure; this possibility opens interesting perspec-
tives and deserves for sure further numerical and analytical
investigation.
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APPENDIX: TRANSFER ENTROPY
FOR LINEAR SYSTEMS

Transfer entropy can be written explicitly only when the
stationary distribution is known. We are particularly interested
in the Gaussian case, for which we report here the explicit
results (see, e.g., [32] for a wider discussion).

Let us consider an N-variable system characterized by a
multivariate Gaussian distribution, and let us denote by x and
y two of its variables. We know the following:

(1) The conditional probability of a Gaussian distribution
is still a Gaussian with covariance matrix

�x|y = �x − �x,y�
−1
y �T

x,y. (A1)

(2) The entropy of an N-dimensional Gaussian distribu-
tion with covariance matrix � is given by

H = 1

2
ln |�| + N

2
ln 2πe, (A2)

where |�| means the determinant of the matrix �.
Starting from Eq. (12), in the main text we are interested in

the case in which xt ≡ x(t )
i and yt ≡ x(t )

j , so

T (t )
j→i = H

(
x(t )

i

∣∣x(t−1)
i

) − H
(
x(t )

i

∣∣x(t−1)
i , x(t−1)

j

)
. (A3)

Using Eq. (A2) we can write

T (t )
j→i = 1

2
ln

( ∣∣�x(t )
i |x(t−1)

i

∣∣∣∣�x(t )
i |x(t−1)

i ,x(t−1)
j

∣∣
)

. (A4)

Given the stationarity of the system and using Eq. (A1), we
can write the numerator and the denominator as combinations
of correlations at the same time (σ ) and after one time step
(C), as

σx(t )
i |x(t−1)

i
= σii − Ciiσ

−1
ii CT

ii (A5)

and

σx(t )
i |x(t−1)

i ,x(t−1)
j

= σii − (Cii Ci j )

(
σii σi j

σi j σ j j

)−1 (
Cii

Ci j

)
. (A6)

We get

T j→i = 1

2
ln

⎛
⎜⎜⎜⎝

σii − C2
ii

σii

σii − (Cii Ci j )

(
σii σi j

σi j σ j j

)−1 (
Cii

Ci j

)
⎞
⎟⎟⎟⎠

FIG. 7. Convergence of transfer entropy in the δt → 0 limit. For
different values of ε, the right-hand side of Eq. (A9) is plotted as a
function of δt . Other parameters as in Fig. 1.

= 1

2
ln

⎛
⎜⎝ σii − C2

ii
σii

σii − σ j jC2
ii−σi jCi jCii−σi jCiiCi j+σiiC2

i j

σiiσ j j−σ 2
i j

⎞
⎟⎠

= 1

2
ln

(
1 + αi j

βi j − αi j

)
, (A7)

with

{
αi j = (σiiCi j − Ciiσi j )2,

βi j = (
σ 2

ii − C2
ii

)(
σiiσ j j − σ 2

i j

)
.

(A8)

Finally, if we want the expression for continuous-time sys-
tems, by following Eq. (13), we have

T j→i = lim
δt→0

1

2δt
ln

(
1 + αi j (δt )

βi j (δt ) − αi j (δt )

)
, (A9)

with

{
αi j (δt ) = [σiiCi j (δt ) − σi jCii(δt )]2

,

βi j (δt ) = [
σ 2

ii − Cii(δt )2
](

σiiσ j j − σ 2
i j

)
,

which is the expression we used in our numerical study. In
Fig. 7 we show numerically the convergence of the limit in
Eq. (A9), by computing its right-hand side for different values
of δt . A clear convergence already emerges for δt 
 25�t .
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[17] K. Hlaváčková-Schindler, M. Paluš, M. Vejmelka, and J.

Bhattacharya, Phys. Rep. 441, 1 (2007).

[18] L. Barnett, A. B. Barrett, and A. K. Seth, Phys. Rev. Lett. 103,
238701 (2009).

[19] T. Bossomaier, L. Barnett, M. Harré, and J. T. Lizier, An
Introduction to Transfer Entropy: Information Flow in Complex
Systems (Springer, Berlin, 2016).

[20] R. Ishiwata, R. Yaguchi, and Y. Sugiyama, Phys. Rev. E 102,
012150 (2020).

[21] M. Bando, K. Hasebe, A. Nakayama, A. Shibata, and Y.
Sugiyama, Phys. Rev. E 51, 1035 (1995).

[22] A. Nakayama, Y. Sugiyama, and K. Hasebe, Phys. Rev. E 65,
016112 (2001).

[23] A. Greiner, W. Strittmatter, and J. Honerkamp, J. Stat. Phys. 51,
95 (1988).

[24] M. Baldovin, F. Cecconi, and A. Vulpiani, Phys. Rev. Res. 2,
043436 (2020).

[25] A. Auconi, B. M. Friedrich, and A. Giansanti,
arXiv:2102.06839.

[26] P. Manshour, G. Balasis, G. Consolini, C. Papadimitriou, and
M. Paluš, Entropy 23, 390 (2021).

[27] E. Lorenz, in Seminar on Predictability, ECMWF (ECMWF,
Shinfield Park, Reading, 1995), Vol. 1, pp. 1–18.

[28] A. Karimi and M. Paul, Chaos: Interdiscip. J. Nonlin. Sci. 20,
043105 (2010).

[29] E. Lorenz and K. A. Emanuel, J. Atmos. Sci. 55, 399 (1998).
[30] F. Cecconi, M. Cencini, M. Falcioni, and A. Vulpiani, Am. J.

Phys. 80, 1001 (2012).
[31] V. Lucarini, J. Stat. Phys. 173, 1698 (2018).
[32] J. Sun, D. Taylor, and E. M. Bollt, SIAM J. Appl. Dyn. Syst.

14, 73 (2015).

024116-9

https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1103/PhysRevLett.74.2694
https://doi.org/10.1088/1367-2630/abcc1e
https://doi.org/10.1103/PhysRevE.85.061127
https://doi.org/10.1023/A:1004589714161
https://doi.org/10.1063/1.4986600
https://doi.org/10.1103/PhysRev.91.1505
https://doi.org/10.1103/PhysRevLett.95.040602
https://doi.org/10.1088/1742-5468/2007/07/P07020
https://doi.org/10.1088/0034-4885/29/1/306
https://doi.org/10.1016/j.physrep.2008.02.002
https://doi.org/10.1063/1.5110262
https://doi.org/10.1103/PhysRevLett.85.461
https://doi.org/10.1016/j.physd.2007.04.002
https://doi.org/10.1016/j.physrep.2006.12.004
https://doi.org/10.1103/PhysRevLett.103.238701
https://doi.org/10.1103/PhysRevE.102.012150
https://doi.org/10.1103/PhysRevE.51.1035
https://doi.org/10.1103/PhysRevE.65.016112
https://doi.org/10.1007/BF01015322
https://doi.org/10.1103/PhysRevResearch.2.043436
http://arxiv.org/abs/arXiv:2102.06839
https://doi.org/10.3390/e23040390
https://doi.org/10.1063/1.3496397
https://doi.org/10.1175/1520-0469(1998)055<0399:OSFSWO>2.0.CO;2
https://doi.org/10.1119/1.4746070
https://doi.org/10.1007/s10955-018-2151-5
https://doi.org/10.1137/140956166

