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Zeroth-order phase transition in the Blume-Emery-Griffiths model without
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We study the simplified Blume-Emery-Griffiths model without bilinear exchange coupling both in the micro-
canonical ensemble and in the canonical ensemble. This model can exhibit a zeroth-order phase transition in the
microcanonical ensemble accompanied by a finite entropy jump. However, this singularity in entropy cannot be
observed in the canonical ensemble, which illustrates the ensemble inequivalence. Moreover, the global phase
diagram of this model is given in both ensembles.
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I. INTRODUCTION

Phase transitions (PTs) are quite common in nature, such
as the freezing of water near 0 ◦C under one standard at-
mosphere. A PT is the phenomenon that the macroscopic
properties of a thermodynamic system change drastically as
the parameters of the system (such as the energy and tem-
perature) are varied [1–4]. PTs can be theoretically described
by the nonanalyticities in the functions characterizing ther-
modynamic quantities. Moreover, the classification of PTs
also relies on the degree of nonanalyticity in thermodynamic
quantities. For instance, the type of PT of an isolated system
is characterized by the discontinuity in the derivatives of its
entropy s with respect to the energy ε [5]. Thus, a first-order
PT in the microcanonical ensemble is usually accompanied by
a temperature singularity (jump, cusp, or divergence) based on
the usual thermodynamic relation

∂s

∂ε
= 1

T
. (1)

And a singularity in the specific heat capacity C emerges
during a microcanonical second-order PT since ∂2s/∂ε2 =
−T −2C−1. Singularities in temperature and specific heat at
transition points have been extensively reported in previous
literature [6–27].

Compared with the first-order and higher-order PTs, the
zeroth-order PTs are much less studied. In the microcanonical
ensemble, a transition with a discontinuity in the entropy s
itself is of zeroth order. In most cases, the zeroth-order PTs
are studied in the black-hole systems [28–39]. The zeroth-
order PT in a common spin system was presented by us very
recently [40]. By assuming the dynamics of the spin system is
defined by its local flipping, we have shown that the spin sys-
tem with mean-field interactions can exhibit the zeroth-order
PT due to the ergodicity breaking [40]. Whether an ergodic
spin system which is not restricted to the local-dynamics as-
sumption can exhibit PTs of zeroth order has not been clear up
to now. In this paper we are going to illustrate that the Blume-

*jxhou@seu.edu.cn

Emery-Griffiths (BEG) model can exhibit the microcanonical
zeroth-order PT without the local-dynamics assumption.

The BEG model was introduced to study the superfluid
PT and phase separation in the He3-He4 mixture [41]. This
spin model has become a paradigmatic model and its ther-
modynamic properties have been extensively studied in many
different parameter ranges [6–10,42]. In this paper, we study
a simplified version of the BEG model by ignoring its bilinear
exchange coupling. The BEG with this simple parameter set
can exhibit a microcanonical zeroth-order PT and show very
complex phase diagrams which are different in the canonical
and microcanonical ensembles.

The paper is arranged as follows. In the next section, the
simplified BEG model and its exact canonical solution are
briefly described. In Sec. III, the microcanonical solution to
this model is presented in detail. The microcanonical zeroth-
order PT exhibited by this model is analyzed in Sec. IV, and
the microcanonical phase diagram is also given in this section
together with the corresponding canonical phase diagram. Fi-
nally, our summary is given in the last section.

II. THE SIMPLIFIED BEG MODEL AND ITS CANONICAL
SOLUTION

The Hamiltonian of the BEG model describes N identical
particles of spin 1 with long-range interactions [8–10]:

H = �

N∑
i=1

S2
i − J

2N

(
N∑

i=1

Si

)2

− K

2N

(
N∑

i=1

S2
i

)2

, (2)

where Si represents the spin located at the ith lattice site and
can only take one of the values {−1, 0, 1}. The coupling � is
the crystal-field interaction controlling the energy difference
between the nonmagnetic (S = 0) and magnetic (S = ±1)
states. J and K are the bilinear exchange interaction and the
biquadratic coupling, respectively, and they are both long-
range interactions [14–25,43]. By adopting the prescription of
Kac et al., J and K are rescaled by 1/N in order to ensure the
extensive property of the energy [44]. In this paper, we drop
the second term by setting J = 0, which means the crystal-
field interaction and the biquadratic interaction are much
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stronger than the bilinear exchange interaction. As mentioned
in the Introduction, this simplified BEG model without the
bilinear exchange coupling can show some prominent prop-
erties of the long-range interacting systems at thermodynamic
equilibrium such as ensemble inequivalence and nonadditivity
of energy [43]. Without loss of generality, the Boltzmann
constant kB and K are set to be unity.

Our simplified BEG model can be solved in both canonical
and microcanonical ensembles, and one can easily obtain
the analytical descriptions of the equilibrium distribution
functions in the thermodynamic limit with the help of the
canonical partition function

Z (β ) =
∑
{Si}

e−βH =
∑
{Si}

e−β�
∑N

i=1 S2
i + βK

2N (
∑N

i=1 S2
i )2

, (3)

where β = (kBT )−1 is the inverse temperature. Using the
Hubbard-Stratonovich transformation [45]

eba2 =
√

b

π

∫ +∞

−∞
exp(−by2 + 2aby)dy, (4)

the partition function of our model can be rewritten as

Z (β ) =
√

βKN

2π

∫ ∞

−∞

∑
{Si}

e− βKN
2 y2−β(�−Ky)Nqdy, (5)

where q = ∑
i S2

i /N is the quadrupole moment per particle.
Note that the Hubbard-Stratonovich transformation should be
utilized twice to solve the ordinary BEG model with bilinear
exchange coupling, and hence, the partition function is ex-
pressed by a double integral [8–10]. By dropping the bilinear
exchange term, our simplified BEG model becomes much
easier to solve.

After summing over all the spin configuration {Si}, the
partition function is given by

Z (β ) =
√

βKN

2π

∫ ∞

−∞
e−N{ βKy2

2 −ln [1+2eβ(Ky−�)]}dy

≡
∫ ∞

−∞
exp [−Nβ f̃ (β, y)]dy, (6)

where f̃ (β, y) is an analytic function of β and y. As an exam-
ple, we plot f̃ (β, y) as a function of y for two different values
of � in Fig. 1. Given β (or temperature), the equilibrium state
of our system corresponds to the absolute minimum of f̃ (β, y)
according to the saddle-point analysis, and the value of y cor-
responds to the equilibrium quadrupole moment per particle q.
Figure 1 shows that the system experiences a canonical first-
order transition with increasing β (or decreasing temperature)
in both cases (� = 0.55 and 0.64).

Using the saddle-point analysis, the integration in Eq. (6)
can be calculated in terms of y, and the energy per particle of
the system ε can be deduced from the partition function by
using the canonical relation ε = − 1

N ∂ ln Z/∂β. The canonical
free energy per particle is given by

f (β ) = min
y

f̃ (β, y) (7)

FIG. 1. The function f̃ (β, y) for different � and β. A canonical
first-order PT occurs at β = 13.86 (a) or β = 4.95 (b)

in the thermodynamic limit N → ∞. And the canonical en-
tropy is given by using the conventional expression

s(ε) = min
β

max
y

[βε − β f̃ (β, y)]. (8)

The canonical results of the energy and entropy of our model
are displayed in Fig. 3 in comparison with their corresponding
microcanonical quantities.

III. MICROCANONICAL APPROACH

The microcanonical entropy per spin s(ε), as a function of
the energy per spin ε, can be obtained directly by utilizing the
saddle-point method given in Refs. [46,47]. The saddle-point
method shows that

s(ε) = max
y

min
β

[βε − β f̃ (β, y)]. (9)

By comparing the expression of the microcanonical entropy
given in Eq. (9) with the conventional expression of the canon-
ical entropy [Eq. (8)], it can be seen that these two entropies
can be different in different ensembles. However, to gain a
better understanding on the origin of the entropy jump during
the microcanonical zeroth-order PT, we switch to the con-
ventional microcanonical approach. Note that both methods
(the saddle-point method and the conventional microcanonical
method presented below) are equivalent.

Suppose there are N+ up spins, N− down spins, and N0

spins taking the value S = 0 in the system. Thus, N+ +
N− + N0 = N . The magnetization and the quadrupole mo-
ment become M = ∑N

i=1 Si = N+ − N− and Q = ∑N
i=1 S2

i =
N+ + N−, respectively, and the number of microstates is

� = N!

N+!N−!N0!
. (10)

Hence, the energy per spin ε and the entropy per spin s =
1
N ln � can be written as

ε = �q − K

2
q2, (11)

s(ε, m) = −[
(1 − q) ln(1 − q) + 1

2 (q + m) ln(q + m)

+ 1
2 (q − m) ln(q − m) − q ln 2

]
(12)

in the thermodynamic limit (N → ∞), where m = M/N and
q = Q/N . q can be obtained by solving Eq. (11) for any given
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FIG. 2. The microcanonical entropy per spin sm(ε, m) as a func-
tion of energy per spin ε and magnetization m (a)–(c). (d) s(ε) as a
function of ε for different �. Solid and dashed lines represent s− and
s+, respectively.

energy ε:

q± = �

K
±

√
�2

K2
− 2ε

K
. (13)

Since q± must be real, the expression under the square root
should not be less than 0. Meanwhile, q± must lie in the inter-
val [0,1], 0 � q± � 1. Therefore, the range of variation of the
energy should be εc � ε � εmax for q+ and 0 � ε � εmax for
q−, where εc = � − K

2 and εmax = �2

2K .
s±(ε, m) can be obtained for any given � by substituting

Eq. (13) into Eq. (12), which is shown in Figs. 2(a)–
2(c). The global maximum of s± locates at m = 0 because
∂s
∂m |m=0 = 0 and ∂2s

∂m2 |m=0 = −1/q < 0, which can be seen in
Figs. 2(a)–2(c). The entropy for a given energy is obtained
by maximizing s±(ε, m) with respect to the magnetization
m. Thus, s±(ε) = maxm s±(ε, m) = s±(ε, 0) and the sponta-
neous magnetic moment of this system is 0, which indicates
that the system stays in the paramagnetic phase. From
Fig. 2(d), it can be seen that the microcanonical entropy s is
not a univalent function of the energy ε due to the nonunique-
ness of the solutions of Eq. (11). The minimal value of s+
locates at ε = εc, and s+(εc) = ln 2 owing to the equivalence
of +1 and −1 states of spin at the lowest energy level.

By looking at the most probable state as determined by the
maximum of the entropy, the equilibrium entropy is given by

s(ε) = max{s+(ε), s−(ε)}. (14)

This equation is valid if our model is ergodic. By specifying
the model is restricted to the local microcanonical dynamics,
the ergodicity can be broken [43,48]. As mentioned in the In-
troduction, we would like to show an example with an ergodic
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FIG. 3. Entropy (a) and temperature (b) as functions of en-
ergy for the microcanonical (solid line) and canonical (dashed line)
ensembles.

spin system which is not restricted to the local microcanonical
dynamics. Thus, Eq. (14) is true by definition.

Using Eqs. (12)–(14), we calculate the microcanonical en-
tropy of our simplified BEG model in the thermodynamic
limit (N → ∞) and show the results in Fig. 3(a) together with
the corresponding canonical entropy. In this figure, we show
the entropy functions for two typical cases, � = 0.55 and
� = 0.64. From Fig. 3(a), a finite entropy jump can be ob-
served at ε = εc = 0.05 for � = 0.55 in the microcanonical
ensemble. This entropy jump is caused by the switching be-
tween these two branches (+ and −) of the microcanonical en-
tropy [see Fig. 2(a) and 2(d)]. The appearance of a nonconcave
point on the microcanonical entropy curve at ε � 0.159 for
� = 0.64 relies on the same reason [see Figs. 2(b) and 2(d)].
Note that nonconcave regions in microcanonical entropy ap-
pear in the presence of PTs, while the corresponding canonical
entropy applies to the concave envelope of the microcanonical
entropy. Based on the usual thermodynamic relation given in
Eq. (1), the microcanonical temperature T may not monoton-
ically increase with the energy ε when the the microcanonical
entropy s is nonconcave, as shown in Fig. 3(b).

IV. PHASE TRANSITION AND PHASE DIAGRAM

For the microcanonical case, the energy ε is the con-
trol variable. For � = 0.64, a transition with the continuous
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FIG. 4. The microcanonical and canonical (�, T ) phase dia-
gram. The tinted areas are not accessible in the microcanonical
ensemble.

entropy s but a discontinuity in the temperature T is of first
order (see the gray solid lines in Fig. 3). On the contrary, for
the case of � = 0.55, the microcanonical entropy s exhibits
a finite jump at the transition point ε = 0.05 which implies a
zeroth-order PT. The specific energy of the zeroth-order tran-
sition is εc = � − K

2 , and the entropy jump can be understood
by calculating the Boltzmann entropy via the microcanonical
approach as we have already illustrated in Sec. III. Note that,
the microcanonical temperature T also shows a jump at the
zeroth-order PT point and T drops to zero immediately after
the transition.

In the canonical ensemble, the temperature T (or the in-
verse temperature β) is the control variable and the energy
per spin ε is deduced from the partition function Z by using
the canonical relation Nε = −∂ ln Z (β )/∂β. From the caloric
curves (T -ε curves) indicated by dashed lines in Fig. 3(b), the
PTs are of first order for both cases (� = 0.55 and � = 0.64)
accompanied by latent heats. This can also be verified by
checking the f̃ (β, y) function shown in Fig. 1.

The (�, T ) phase diagrams in both the microcanonical
ensemble and the canonical ensemble are shown in Fig. 4.
These two phase diagrams illustrate the ensemble inequiva-
lence quite clearly. Both the zeroth-order PT (the light green
area) and the first-order PT (the light pink area) can be found
in the microcanonical phase diagram while the system cannot
exhibit the zeroth-order PT in the canonical ensemble.

In the microcanonical ensemble, starting from the point of
(� = 0.5, T = 0), the zeroth-order PT changes to first order
at the vertical boundary separating the light green area and the
light pink area. The vertical boundary is shown as a white ver-
tical line at �B � 0.6135 in Fig. 4, and �B is simply obtained
by solving s+(�, ε) = s−(�, ε) = ln 2. The first-order PT
ends at a microcanonical critical point (MCP, shown as a green
square dot in Fig. 4). At the MCP, both s+(�, ε) = s−(�, ε)
and ∂s+(�, ε)/∂ε = ∂s−(�, ε)/∂ε should be satisfied at the
same time, which leads to {�MCP = 2

3 � 0.667, TMCP = 2
9 �

0.222}. Both the zeroth-order PT and the first-order PT are
characterized by a discontinuity in the temperature. Thus, a
transition is represented by two lines in the (�, T ) phase
diagram and these two lines are corresponding to the tem-
peratures at the transition point. For the zeroth-order PT, one
transition line is shown as the black solid curve in Fig. 4,
and another transition line is the horizontal isothermal line at
T = 0 since the temperature drops to 0 immediately after the
PT. The red and blue solid lines in Fig. 4 correspond to the
first-order PT.

In the canonical ensemble, the PT is of first order. The PT
line (gray dashed line) is straight, starting from (� = 0.5, T =
0) and ending at the canonical critical point (CCP). The CCP
is characterized by the vanishing of the first-order, the second-
order, and the third-order derivatives of f̃ (β, y) with respect
to y. Hence, the CCP is then given by {�CCP = 1

2 + 1
4 ln 2 �

0.673, TCCP = 1
4 = 0.25, yCCP = 1

2 }. The MCP (�) and the
CCP (�) are quite close to each other but do not coincide.

V. SUMMARY

In this paper, we theoretically studied the simplified
Blume-Emery-Griffiths model without bilinear exchange cou-
pling both in the microcanonical ensemble and in the
canonical ensemble. We explored the microcanonical and
canonical phase diagrams of this model for the entire pa-
rameter range of �. Similar to the earlier studies with other
choices of parameter ranges, the ensemble inequivalence was
also observed within our parameter range. We mainly focused
on the microcanonical zeroth-order phase transition accom-
panied by a unique entropy jump. This model can exhibit
the microcanonical zeroth-order phase transition without the
nonergodic assumption.
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[32] A. M. Frassino, D. Kubizňák, R. B. Mann, and F. Simovic,
J. High Energy Phys. 09 (2014) 080.

[33] D.-C. Zou, Y. Liu, and B. Wang, Phys. Rev. D 90, 044063
(2014).

[34] M. B. Jahani Poshteh, B. Mirza, and Z. Sherkatghanad, Phys.
Rev. D 88, 024005 (2013).

[35] R. A. Hennigar and R. B. Mann, Entropy 17, 8056 (2015).
[36] N. Altamirano, D. Kubizňák, R. B. Mann, and Z.
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