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Nonhydrodynamic initial conditions are not soon forgotten
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Solutions to hydrodynamic equations, which are used for a vast variety of physical problems, are assumed to
be specified by boundary conditions and initial conditions on the hydrodynamic variables only. Initial values of
other variables are assumed to be irrelevant for a hydrodynamic description. We show that this assumption
is not correct because of the existence of long-time-tail effects that are ubiquitous in systems governed by
hydrodynamic equations. We illustrate this breakdown of a hydrodynamic description by means of the simple
example of diffusion in a disordered electron system.
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I. INTRODUCTION

Hydrodynamic descriptions of matter are abundant in vir-
tually all subfields of physics. The most obvious example
is provided by classical fluids [1]; others include plasmas
[2,3], superfluids, spin transport in magnets, and excitations
in liquid crystals and in solids [4,5]. More recently, hydro-
dynamic descriptions have been used to study active matter
[6], general relativity [7], supersymmetric field theories and
quantum gravity [8], quark-gluon plasmas [9], and the unusual
properties of Weyl and Dirac metals and semimetals [10].

The basic assumption of any hydrodynamic theory is that
the behavior of a macroscopic system on “hydrodynamic”
length and time scales, i.e., scales large compared to the mi-
croscopic ones, can be described in terms of a small number of
“hydrodynamic” variables or modes, while all other degrees
of freedom are effectively integrated out and just renormalize
coefficients. The feasibility of such a reduction from a huge
(on the order of 1023) number of degrees of freedom to a
few variables that are essential for the problem at hand is a
crucial assumption underlying much of statistical mechanics.
An essential feature of any such reduced description is that it
is closed in the sense that the initial values of the hydrody-
namic variables completely determine the time evolution of
the system. In this paper we will show that this is not true,
for the following reasons. Let h be a set of hydrodynamic
variables (we will consider explicit examples below), and let
δh(t = 0) be an initial perturbation. Kinetic theory shows that
in general the relaxation of h towards its equilibrium value on
hydrodynamic time scales is also governed by a set of initial
values of “nonhydrodynamic” variables h⊥ that are orthogonal
to h with respect to an appropriate scalar product in the space
of modes. While this violates the closure assumption of the
hydrodynamic description, by itself it does not completely
invalidate the underlying concept: If δh(t = 0) and δh⊥(t =
0) multiply the same relaxational dynamics, then one can
adjust the hydrodynamic boundary conditions to still obtain

a complete description. This is analogous to the concept of a
‘slip length’ used to describe the flow of a fluid near a surface,
i.e., the distance between the actual surface and the fictitious
one where the hydrodynamic boundary conditions can be used
[11,12]. However, if the different sets of initial conditions
multiply different dynamics, then such an adjustment is not
possible and the very concept of a closed hydrodynamic de-
scription breaks down. As we will show, this is the generic
situation whenever perturbations decay algebraically in time,
rather than exponentially, a phenomenon known as long-time
tails (LTTs) [13,14]. LTTs are not described by the Boltz-
mann equation, and are generically present in all systems
for which hydrodynamic descriptions are used [6,8,11]. As a
consequence of their ubiquitous existence, all hydrodynamic
descriptions are inherently incomplete.

II. A SIMPLE EXAMPLE: DIFFUSION

To illustrate these ideas, let us consider the arguably sim-
plest hydrodynamic process, diffusion, which has applications
in physics, chemistry, biology, and engineering [15–17]. It is
phenomenologically described by Fick’s law, which states that
the current density j associated with a conserved density n is
proportional to the gradient of n, j(x, t ) = −D ∇n(x, t ), with
D the diffusion coefficient. Together with the continuity equa-
tion for n, ∂t n(x, t ) = −∇ · j(x, t ), this constitutive equation
leads to the diffusion equation

∂t n(x, t ) − D ∇2n(x, t ) = 0. (1)

This is expected to be valid for times t � t0 and wave num-
bers q � q0, with t0 and 1/q0 the microscopic time and length
scales that depend on the nature of the diffusive process. In
this description there is only one hydrodynamic variable, viz.,
the density. With n0 the constant equilibrium density, Eq. (1)
describes the relaxation of a density perturbation δn(x, t ) =
n(x, t ) − n0. It is solved by a spatial Fourier transform and
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a temporal Laplace transform [4,18]. The result is the well
known diffusion pole in the complex-frequency (z) plane,

δn(q, z) = δn(q, t = 0) i/[z + iDq2sz], (2a)

with q the wave vector, and sz = sgn Im (z). In the time do-
main, this corresponds to exponential decay with a relaxation
time that diverges as 1/q2 for small q,

δn(q, t ) = δn(q, t = 0) e−Dq2t . (2b)

According to Eq. (2b), the initial value δn(q, t = 0) com-
pletely determines the relaxation for t � t0 and q � q0.

A derivation of the diffusion pole from kinetic theory (see
below) shows that δn(q, t ) also depends on initial conditions
in higher angular-momentum channels; e.g., an initial current.
Within diffusion theory, these initial conditions are “non-
hydrodynamic” since they involve quantities other than the
density. As we will show in Sec. III B, solving the standard
Boltzmann equation for the scattering of electrons by static
pointlike impurities (s-wave scattering only) yields

δn(q, t � t0) = [δn(q, t = 0) + δn⊥(q, t = 0)] e−Dq2t . (3a)

Here the diffusion coefficient is D = v2
Fτ/3, with vF the Fermi

velocity and τ the elastic mean-free time. In this case, the mi-
croscopic time and wave number are t0 = τ and q0 = 1/vFτ ,
respectively. δn⊥(q, t = 0) is a set of nonhydrodynamic initial
conditions that are orthogonal in angular-momentum (l) space
to the density, with the longitudinal part of the current density
j (l = 1) the leading contribution,

δn⊥(q, t = 0) ≈ −iτq · j(q, t = 0). (3b)

Despite this incompleteness of a purely hydrodynamic de-
scription, the density relaxation can still be described by the
solution of the diffusion equation, Eq. (2b), if we replace
δn(t = 0) by δn taken at an adjusted initial time ts defined
by

δn(q, ts) ≡ δn(q, t = 0) e−Dq2ts

= δn(q, t = 0) + δn⊥(q, t = 0). (3c)

The “slip time”

ts = −1

Dq2
[1 + δn⊥(q, t = 0)/δn(q, t = 0)] (3d)

is the temporal analog of the “slip length” mentioned above.
Its value depends on the initial conditions [19].

What allows for this concept of a slip time is that the two
orthogonal initial conditions in Eq. (3a) multiply the same ex-
ponential relaxation. Within the framework of the Boltzmann
equation, an effective hydrodynamic description therefore is
still possible. However, the exponential decay predicted by
Eq. (3a) is not the true asymptotic long-time behavior: Corre-
lation, or mode-mode-coupling, effects lead to a nonanalytic
frequency dependence of the diffusion coefficient. As a func-
tion of time, this corresponds to a power-law decay of δn,
which is an example of a LTT in the context of diffusion. This
effect is not contained in the standard Boltzmann equation.

The combination of LTTs and nonhydrodynamic initial
conditions yields a long-time behavior of the density relax-
ation that cannot be reconciled with the diffusion equation
by adjusting the initial condition as in Eq. (3c), even with a

frequency-dependent diffusivity that yields the correct LTT.
The reason is that the initial values of δn and δn⊥ multiply
different LTTs, as we will now demonstrate by means of a
more elaborate example.

III. DENSITY RELAXATION OF DISORDERED
ELECTRONS

As an example, we consider the density relaxation of non-
interacting conduction electrons in a three-dimensional (3D)
system with weak quenched disorder. The latter leads to LTTs
known as weak-localization (WL) effects [20,21], but in 3D
systems it does not lead to Anderson localization; the system
remains metallic. Let εF and kF be the Fermi energy and wave
number, respectively, and m the effective mass. The density
of states per spin at the Fermi surface is NF = kFm/2π2, and
the mean-free path is � = vFτ . For weak disorder (kF� � 1,
or εFτ � 1), and and t � 1/Dq2, we find

δn(q, t ) = δn(q, t = 0)

[
3

4
√

π

1

kF�

q/kF

(Dq2t )3/2
+ O

(
1

t5/2

)]

+δn⊥(q, t = 0)
9

8
√

π

1

kF�

q/kF

(Dq2t )5/2
. (4a)

The different LTTs in the two terms make it impossible to ac-
count for the nonhydrodynamic initial conditions represented
by δn⊥(t = 0) by means of a slip time as in Eqs. (3). A
diffusion pole, Eq. (2a), generalized to allow for the LTT, thus
fails to describe the density relaxation at long times. This re-
mains true for intermediate times τ � t � 1/Dq2, where the
leading time dependence (ignoring an O(1/kF�) contribution
to the constant part of the δn⊥ term) is

δn(q, t ) = δn(q, t = 0) [1 + O(Dq2t )]

+ δn⊥(q, t = 0)

[
1 − 3

2
√

π

1

kF�

q/kF

(Dq2t )1/2

]
.

(4b)

Here the difference between the hydrodynamic and nonhy-
drodynamic terms is even more striking than in Eq. (4a): The
former is a constant, as described by the diffusion equation,
whereas the latter has a 1/t1/2 long-time tail. Again, the con-
cept of a slip time breaks down.

Equations (4), and the related comments, represent our
main result which we will now derive from kinetic theory.
The dependence on nonhydrodynamic initial conditions arises
already at the level of the Boltzmann equation, while the
weak-localization LTTs require a more sophisticated treat-
ment of collision processes.

A. Kinetic equation for the single-particle distribution

Consider the single-electron distribution function f (p, x, t )
as a function of the electron momentum p, real-space position
x, and time t . In the absence of external forces, the kinetic
equation that governs f reads

(∂t + p · ∇x/m) f (p, x, t ) = (∂ f /∂t )coll. (5)

This is completely general: The total time derivative of f on
the left-hand side equals the collision integral, i.e., the tempo-
ral change of f due to collision, on the right-hand side. The
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equilibrium distribution function is given by the Fermi-Dirac
distribution f0(p) = 1/(e(εp−μ)/T ) + 1), with εp = p2/2m the
single-electron energy, μ the chemical potential, and T the
temperature. We parametrize the deviation from equilibrium,
δ f = f − f0, by

δ f (p, x, t ) = w(εp) φ(p, x, t ), (6)

where w(εp) = −∂ f0/∂εp is a weight function. For later ref-
erence, the number density n and the number current density
j are

n(x, t ) = 1

V

∑
p

f (p, x, t ), (7a)

j(x, t ) = 1

V

∑
p

p f (p, x, t ), (7b)

where V is the system volume.

B. Boltzmann equation

The Boltzmann collision integral for elastic scattering by
impurities is [22,23]

(
∂ f

∂t

)B

coll

= −1

NFV

∑
p′

δ(εp − εp′ )
1

τ
W ( p̂, p̂′)

×[δ f (p, x, t ) − δ f (p′, x, t )]. (8a)

The δ function reflects the elastic nature of the collisions,
and W is a form factor. For pointlike scatterers, the latter is
a constant equal to one and we obtain

(
∂ f

∂t

)B

coll

= −1

τ

[
δ f (p, x, t ) − δ f̄ (εp, x, t )

]
, (8b)

where

δ f̄ (εp, x, t ) = 1

V NF

∑
p′

δ(εp − εp′ ) δ f (εp, x, t ) (8c)

is δ f averaged over the εp-energy shell. Integrating over
the momentum yields

∑
p δ f̄ (εp, x, t ) = ∑

p δ f (p, x, t ), so
the number density, Eq. (7a), is conserved. After a Fourier-
Laplace transform as in Eq. (2a), the linearized Boltzmann
equation reads(

−iz + i

m
p · q + 1

τ

)
φ(p, q, z) = φ(p, q, t = 0)

+ 1

τ
φ̄(εp, q, z), (9)

with φ from Eq. (6) and φ̄ defined in analogy to δ f̄ . Now
consider δn = n − n0, the deviation of the particle-number
density from its equilibrium value n0. From Eq. (9) we find

δn(q, z) = J0(q, z) + i

τ

1

V

∑
p

w(εp)φ̄(εp, q, z)

z − p · q/m + i/τ
, (10a)

where

J0(q, z) = i

V

∑
p

δ f (p, q, t = 0)

z − p · q/m + i/τ
. (10b)

For T � εF we can replace p · q/m in Eq. (10a) by vF p̂ · q,
which neglects corrections of O(T 2) to the q-dependence of
δn. The resulting closed equation for δn yields

δn(q, z) = J0(q, z)/(1 − iJ (q, z)/τ ), (11a)

where

J (q, z) = 1

4π

∫
d	p

1

z − vF p̂ · q + i/τ
, (11b)

with 	p the solid angle associated with p. An expansion in the
limit of small wave numbers (q� � 1) and frequencies (zτ �
1) yields

J0(q, z) = iδn(q, t = 0)

z + i/τ
+ iq· j(q, t = 0)

(z + i/τ )2
+ O(q2),

(12a)

1 − i

τ
J (q, z) = −iτ (z + iD0q2) + O(z2, q4), (12b)

where D0 = v2
Fτ/3 is the Boltzmann diffusion coefficient. In-

serting these results into Eq. (11a), and performing a Laplace
back transform, yields Eqs. (3a) and (3b).

Equations (10b) and (12a) show that the solution depends,
in addition to the initial density perturbation, on the initial
current density, as well as higher modes. At the level of the
Boltzmann equation, after a few mean-free times the various
initial-condition terms all multiply the same time dependence
and therefore can be incorporated into a “slip time” as in
Eq. (3c). This is no longer the case if one uses a more so-
phisticated collision integral that accounts for LTTs.

C. Weak-localization effects

The LTTs associated with weak-localization effects arise
from two-particle correlations that are not included in
the Boltzmann collision integral and lead to a frequency-
dependent diffusivity that is nonanalytic at zero frequency
[24,25]. Reference [26] showed that these effects can be in-
corporated into the kinetic equation for the single-particle
distribution by adding an additional term to the collision in-
tegral. This additional term can still be written in the form of
Eq. (8a) [27], with two modifications: First, the scattering rate
1/τ must be replaced by a time-dependent memory function
α (to be specified below) that encodes correlations. The weak-
localization contribution to the collision integral then has the
form

(
∂ f

∂t

)WL

coll

= −
∫ t

0
dt ′α(t − t ′)

1

NFV

∑
p′

δ(εp − εp′ )

×W WL( p̂, p̂′) [δ f (p, x, t ′) − δ f (p′, x, t ′)].

(13)

Second, the form factor is strongly angle dependent, which
reflects the fact that the weak-localization effects are due to
backscattering events [28]:

W WL( p̂, p̂′) = 1

4π
δ( p̂ + p̂′) − 1. (14a)
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The additional contribution to the collision integral does not
change the total scattering rate [27]:∫

d	p′ W WL( p̂, p̂′) = 0. (14b)

The weak-localization contribution to the collision integral
becomes
(

∂ f

∂t

)WL

coll

=
∫ t

0
dt ′α(t − t ′)

[
δ f (−p, x, t ′) − δ f̄ (εp, x, t ′)

]
.

(15a)

The function α(t ) and its Laplace transform are [29,30]

α(t ) = 1

πNFτ

1

V

∑
k

e−D0k2t (t > 0). (15b)

α(z) = i

πNFτ

1

V

∑
k

1

z + iD0k2sz
(15c)

= sz
1

τ

3

π

1

kF�

[
c − π

2
ζ 1/2 + O(ζ )

]
, (15d)

where ζ = z sz/iD0k2
F, c is the nonuniversal zero-frequency

contribution [29], and Eq. (15d) is valid for d = 3. Note the
nonanalytic frequency dependence that results from integrat-
ing over the diffusion pole. Only this contribution to α matters
for the arguments that follow.

The kinetic equation that generalizes Eq. (9) now reads
(

−iz + i

m
p · q + 1

τ

)
φ(p, q, z) − α(z) φ(−p, q, z)

= φ(p, q, t = 0) +
(

1

τ
− α(z)

)
φ̄(εp, q, z). (16)

By letting p → −p we obtain two coupled equations for φ(p)
and φ(−p) that can be solved exactly. The result for the
density relaxation generalizes Eq. (11a) to

δn(q, z) = J̃0(q, z) + iα(z)K0(q, z)

1 − [i/τ − iα(z)][J̃ (q, z) + iα(z)K (q, z)]
. (17a)

In terms of a denominator

N (p, q, z) = z − p · q/m + i/τ + (α(z))2

z + p · q/m + i/τ
, (17b)

we find

J̃0(q, z) = i

V

∑
p

δ f (p, q, t = 0)/N (p, q, z), (17c)

J̃ (q, z) = 1

4π

∫
d	p 1/N (kF p̂, q, z), (17d)

K0(q, z) = i

V

∑
p

δ f (−p, q, t = 0)

N (p, q, z)(z + p · q/m + i/τ )
, (17e)

K (q, z) =
∫

d	p

4π

1

N (kF p̂, q, z)(z + vF p̂ · q + i/τ )
. (17f)

To determine the long-wavelength behavior it suffices
to expand the numerator in Eq. (17a) to O(q) and the

denominator to O(q2). Neglecting corrections to the diffusion
pole that are analytic in z, we find

δn(q, z) = iδn(q, t = 0)

z + iD(z)q2
+ iδn⊥(q, t = 0)

[z + iD(z)q2][1 + szα(z)]
(18a)

with δn⊥ from Eq. (3b), and a renormalized diffusivity

D(z) = D0sz/[1 + szα(z)τ ]. (18b)

The nonanalytic frequency dependence of the diffusiv-
ity is a well-known manifestation of the existence of LTTs
[20]. However, Eq. (18a) demonstrates another striking con-
sequence of their existence, which has not been discussed
before. To see this, we determine the leading nonanalytic
z-dependence of δn, which follows from using Eq. (15d) in
Eqs. (18). In the asymptotic low-frequency regime z � D0q2,
the latter is z1/2 in the first term on the right-hand side of
Eq. (18a), and z3/2 in the second one. For z � D0q2, the first
term has no nonanalytic z-dependence, while the second term
goes as z−1/2. The corresponding behavior in the time domain
can be obtained by using the concept of generalized functions
and their Fourier transforms [31,32]. By making use of the
identities

(−izsz )1/2 = 1√
2

[
z1/2 + (−z)1/2

]
, (19a)

szz
1/2 = i(−z)1/2, (19b)

all of the relevant nonanalyticities can be expressed in terms
of

Hν (z) = −i [zν − (−z)ν]. (20a)

The Laplace back transform for noninteger ν is [31]

Hν (t ) = −2

π
sin(πν) sin(πν/2) (1 + ν)/|t |1+ν, (20b)

with  the Gamma function. H−1(t ) is a constant. Applying
these results to Eqs. (18) we obtain Eqs. (4).

IV. CONCLUSION

We conclude with some general remarks.
(1) We have illustrated our ideas by means of a specific

example, which has the advantage that the kinetic equation is
exactly soluble, which in general is not the case. However, the
conclusions are general: Kinetic theory generically yields a
dependence on nonhydrodynamic initial conditions, and LTTs
are known to be present generically. As a result, all hydro-
dynamic descriptions are necessarily incomplete. One cannot
simply integrate out the nonhydrodynamic variables and still
correctly describe transport or other nonequilibrium effects.
We note that, due to the ubiquity of LTTs, this conclusion
is much more general than other mechanisms that lead to
the failure of hydrodynamic descriptions, such as many-body
localization, where strong disorder in certain quantum system
leads to a failure of the system to equilibrate [33].

(2) In our example the only hydrodynamic variable is
the density. Accordingly, the “nonhydrodynamic” initial con-
ditions include all higher moments of the single-particle
distribution function with respect to the momentum, taken at

024111-4



NONHYDRODYNAMIC INITIAL CONDITIONS ARE NOT … PHYSICAL REVIEW E 104, 024111 (2021)

the initial time. In general, the set of hydrodynamic variables
is larger. For instance, in the case of the Navier-Stokes theory
of a classical fluid, it consists of the particle number den-
sity, momentum density, and energy or entropy density. The
leading nonhydrodynamic initial conditions in an angular-
momentum expansion are the initial values of the stress tensor
and the energy current density.

(3) More generally, even a description in terms of the
initial value of the entire single-particle distribution function
f , as we have used in this paper, is not complete, and this
observation implies that there is no simple remedy for this
incompleteness. To obtain a closed description in terms of
f alone, with the solution determined by the initial condi-
tion f (p, x, t = 0), one has to effectively integrate out higher
order distribution functions, such as the pair correlation func-
tion G(2) = f (2) − f f , with f (2) the two-particle distribution
function. A complete description in terms of f therefore
depends on G(2)(t = 0), which in general is nonzero and
also multiplies a LTT contribution [11]. The problem is thus

not confined to hydrodynamic theories. Rather, we conclude
that, due to LTT effects, no reduced description can be truly
complete.

To summarize: Long-time-tail effects have been investi-
gated in a host of physical systems including classical fluids,
superfluids, granular matter, active matter, electrons in solids,
quark-gluon plasmas, and quantum gravity. The main message
of this paper is that a purely hydrodynamic description that
is routinely used in all these fields is incomplete because
nonhydrodynamic initial-condition effects cannot be ignored
in general.
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