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Stochastic model for football’s collective dynamics
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In this paper, we study collective interaction dynamics emerging in the game of football (soccer). To do so,
we surveyed a database containing body-sensor traces measured during three professional football matches,
where we observed statistical patterns that we used to propose a stochastic model for the players’ motion in the
field. The model, which is based on linear interactions, captures to a good approximation the spatiotemporal
dynamics of a football team. Our theoretical framework, therefore, can be an effective analytical tool to uncover
the underlying cooperative mechanisms behind the complexity of football plays. Moreover, we showed that it
can provide handy theoretical support for coaches to evaluate teams’ and players’ performances in both training
sessions and competitive scenarios.
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I. INTRODUCTION

The use of complex systems theory as an alternative
paradigm for analyzing elite sport dynamics is currently
arousing intense academic interest [1–4]. Fostered by the new
advances in data acquisition [5,6] and artificial intelligence
techniques [7–9], the use of state-of-the-art statistical tools
to evaluate teams’ performances is currently shaping a new
profile of data-driven-based professional coaches worldwide.

One can find in the literature plentiful research works in
several fields of physics that have been devoted to studying
phenomena related to sports science [10–14]. The research
community in statistical physics has focused on the study
of sports mainly in the framework of stochastic processes,
such as studying the time evolution of scores [15–17]. Al-
ternatively, other studies propose innovative models, based
on ordinary differential equations [18], stochastic agent-based
game simulations [19], and network science theory [20], aim-
ing to describe the complex dynamical behavior of teams’
players.

Formally, sports teams can be thought of as complex
sociotechnical systems [21], where a wide range of or-
ganizational factors might interact to influence athletes’
performances [22–25]. Particularly in collective games such
as football, cooperative interplay dynamics seems to be a
key feature to be analyzed [26,27]. In principle, collective
behaviors in soccer are important since they are connected
to team tactics and strategies. Usually, features of these col-
lective behaviors are described by using simple group-level
metrics [28–33]. Furthermore, temporal sequences of ball
and player movements in football, showing traits of complex
behaviors, have been reported and studied using stochastic
models and statistical analysis [19,34–36].

Recent work has focused on describing cooperative on-ball
interaction in football within the framework of network sci-
ence [20,37–40]. In [41], for instance, Garrido et al. studied
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the so call pitch passing networks in the games of the Spanish
League in the 2018/2019 season. In this outstanding work,
the authors use network metrics and topological aspects to
define the teams’ consistency and identifiability, two highly
relevant global indicators to analyze team performance during
competition.

From an alternative perspective, our research group has
focused on studying the dynamic interactions at the micro-
scopic level, i.e., by modeling player-player interactions. In
a previous work [19], we proposed an agent-based model that
correctly reproduces key features of global statistics indicators
of nearly 2000 real-life football matches. Along the same
lines, the present paper aims to describe the complexity of
this game, uncovering the underlying mechanisms ruling the
collective dynamics. Our goal is to provide a step towards a
full description of the spatiotemporal dynamics in a football
match. With this purpose, we posit a simple model based on
linear interactions to describe teams’ cooperative evolution.
To do so, we analyzed a public database containing body-
sensor traces from three professional football matches of the
Norwegian team Troms IL (see Sec. II). We will show that our
model succeeds in capturing part of the cooperative dynamics
among the players, and that higher-order contributions (non-
linear interactions) can be carefully modeled as fluctuations.
Moreover, we will show that our framework provides a useful
tool to analyze and evaluate tactical aspects of the teams.

This paper is divided into three sections: In Sec. II, we
describe the database, the statistical regularities found in the
data, and we formally propose our theoretical framework. In
Sec. III, we present our main results and relevant findings. Our
conclusion and future perspectives are briefly summarized in
the final section.

II. MATERIAL AND METHODS

A. The database

In 2014, Pettersen et al. published a database of traces
recorded with body-sensors from three professional soccer
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FIG. 1. Statistical regularities in DS1. (a) The team deployed in the field at t1 = 7 min and t2 = 8 min. Ellipses are a measure of the
characteristic area of the team at both times (see the main text). (b) Evolution of the characteristic area s. The width of the narrow bands around
the curve equals the values of 1 × σs and 2 × σs, where σs is the standard deviation. (c) Evolution of the order parameter φ. The black solid
horizontal line indicates the mean value of the series at ≈0.7. (d) Time to return to the mean value calculated from series s and φ. Dashed lines
indicate a nonlinear fit performed to measure the power-law exponent (see the main text). (e) The dynamics of the center of mass. Position
vs velocity on both axes. (f) Distribution of instantaneous accelerations of the center of mass in both axes. (g) Action zones for the players
(ellipses) in the center-of-mass frame of reference. �cn indicates each player center (see the main text for further details).

games recorded in November 2013 at the Alfheim Stadium
in Tromsø, Norway [6]. This database is divided into five
datasets; each one contains the halves of the game Tromsø
IL versus Strømsgodset IF (DS1, DS2), the halves of the
game Tromsø IL versus Anzhi Makhachkala (DS3, DS4), and
40 min of the game Tromsø IL versus Tottenham Hotspurs
(DS5). This contribution also offers video records, but they
were not used in our research. We highlight that only Tromsø
IL gave consent to be tracked with the body-sensors, thus the
traces available in the datasets are only from this team. The
goalkeeper’s position, likewise, was not tracked.

The player positions were measured at 20 Hz using the
highly accurate ZXY Sport Tracking system by ChyronHego
(Trondheim, Norway). However, to perform our analysis, we
preprocessed the data so as to have the players’ position in
the field in one-second windows. In this way, we lose resolu-
tion but it becomes simpler to analyze players’ simultaneous
movements or coordination maneuvers.

B. Statistical regularities

In this section, we describe relevant aspects of the statisti-
cal observations that we used to propose our stochastic model.

In this case, we focus on the analysis of DS1, but similar
results can be obtained for the others datasets. Let us discuss
Fig. 1. In panel (a) we show the team deployed in the field
at two different times: in an offensive position at t1 = 7 min,
and in a defensive position at t2 = 8 min. The ellipses, drawn
in the figure with dashed lines, give the standard deviation
intervals around the mean [see the Supplemental Material
(S1) for further details [42]], and they can be thought of as a
measure of the team’s dispersion in the field. The ellipses’ area
can be thought of as a characteristic area of the team deployed
in the field. The system seems to suffer an expansion at t1
and a contraction at t2. To characterize this process, we study
the temporal evolution of s := 100 × Ellipse area

Field area (%), which we
show in panel (b). We measured 〈s(t )〉 = 5.1, σs = 2.2. The
low dispersion in the time series and the symmetry around
the mean indicate that the system moves around the field with
a well-defined characteristic area exhibiting small variations
throughout the dynamics of the game.

Let us now focus on analyzing the level of global order-
ing in the team. To do so, we analyze the evolution of the
parameter φ(t ) = | 1

N

∑N
n=1

�vn(t )
|�vn(t )| | [see Eq. (1) in [43]], where

vn is the velocity of player n, and N is the total number of
players. In the case φ ≈ 1, this parameter indicates that the
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players move as a flock, following the same direction. On
the contrary, when φ ≈ 0, they move in different directions.
Panel (c) shows the temporal evolution of φ. We measured
〈φ(t )〉 = 0.7, σφ = 0.2. This level of global ordering during
the game shows that there are time intervals when the players
tend to move as a highly coordinated flock [44]. Therefore, it
seems there are interactions among the teammates that cause
the emergence of global ordering.

We now turn our attention to the analysis of the temporal
structure of series s(t ) and φ(t ). Let us define tR as the time of
return to the mean value. In panel (d) we show the distribution
Ps(tR) and Pφ (tR). In both cases, we can see heavy-tailed dis-
tributions. By performing a nonlinear fit, using the expression
P(tR) = Ct−γ

R , for the case of the relative area, s, within the
range (0, 0.4) min, we measured γs = 0.96 ± 0.03. In the case
of the order parameter φ, in the whole range, we obtained
γφ = 2.16 ± 0.04. It is well known that for a random-walk
process in one dimension, the probability of first return yields
γ = 3/2 [45]. In our case, the measured nontrivial expo-
nents seem to indicate the presence of a complex multiscale
temporal structure in the dynamics. Notice that these two
parameters, related to the team structure and order, somehow
encompass the memory and complex dynamics for the team
during the match.

We now focus on describing the dynamics of the center of
mass (CM). In Fig. 1(e), we show the relations xcm versus vx

cm,
and ycm versus v

y
cm. We can see that the position variables are

bounded to the field area, and the velocities in both axes seem
to be bounded within the small range (−5, 5) m/s. In panel (f),
on the other hand, we show the distribution of accelerations.
We measured 〈ax

cm〉 = 〈ay
cm〉 = 0, σax

cm
= 0.4, and σay

cm
= 0.2

m/s2. Since the CM of the system is barely accelerated, we can
approximate the center of mass as an inertial system. Then, to
simplify our analysis, we can study the dynamical motion of
the players from the center-of-mass frame of reference. In this
frame, we aim to define action zones for the players. To do
so, we analyze the positions in the plane that the players have
explored during the match. The ellipses in panel (g) give the
standard-deviation intervals around the mean, and they can be
thought of as characteristic action zones for the players. Note
that, from this perspective, it naturally emerges that Tromsø
IL used in this half the classical tactical system 4-4-2.

Summarizing, we observed that (i) the spatial dispersion of
the players follows a well-defined characteristic area, (ii) in-
side the team, the players’ movements exhibit correlation and
global ordering, (iii) the system exhibits a complex multiscale
temporal structure, and (iv) the players’ motion can be studied
from the center-of-mass frame of reference, simplifying the
analysis. In the next section, we use these insights to propose a
simple stochastic model of cooperative interaction to analyze
the spatiotemporal evolution of the team during the match.

C. The model

The interplay among teammates can be thought of as indi-
viduals that cooperate to run a tactical system. In this frame,
we aim to define a model to describe the spatiotemporal evolu-
tion of the team. Since our goal is to define a simple theoretical
framework such that we can easily interpret the results, we
propose a model based on player-to-player interactions. We

proceed as follows: (i) we define the equations of evolution
for the players in the team, (ii) we use the empirical data to
fit the equations’ parameters, and (iii) we model the error in
the fitting as fluctuation in the dynamics. In the following, we
present the results in this regard.

1. The equations of evolution

In the CM frame of reference, we define �rn(t ) =
(xn(t ), yn(t ))

T
and �vn(t ) = (vx

n(t ), vy
n(t ))

T
as the position and

velocity of player n at time t . We propose that the dynamical
variables change, driven by interactions that can be thought of
as springlike forces. Every player in our model is bound to (i)
a place in the field related to their natural position in the team,
�an, and (ii) the other players.

The equation of motion for a team player n can be written
as follows:

Mn �̈rn = −γn�vn + kan(�an − �rn) +
∑

m

′
knm(�rm − �rn), (1)

where the first term is a damping force, the second one is an
“anchor” to the player’s position, and the sum is the contri-
bution of the interaction forces with the other players. We
propose different interaction constants in the horizontal and
vertical axis, therefore the parameters γn, kan, and knm are 2 −
D diagonal matrices such as γn = (γ

x
n 0
0 γ

y
n
), kan = (kx

an 0
0 ky

an
),

knm = (kx
nm 0
0 ky

nm
). Moreover, since players have comparable

weights, for simplicity we consider Mn = 1 for all the players.
Notice that if equilibria exist, �rn(t → ∞) = �r∗

n and �vn(t →
∞) = 0. Then,

−
(

kna +
∑

m

′
knm

)
�r∗

n +
∑

m

′
knm �r∗

m + kan�an = 0 (2)

must hold.
Equations (1) can also be written as a first-order equation

system as follows:

�̇rn = �vn,

�̇vn = −
(

kan +
∑

m

′
knm

)
�rn +

∑
m

′
knm�rm − γn�vn + kan�an.

(3)

Furthermore, by defining �x = (x1, . . . , xn, v
x
1, . . . , v

x
n ) and

�y = (y1, . . . , yn, v
y
1, . . . , v

y
n), we can write

�̇x = Jx(�x − �x∗), �̇y = Jy(�y − �y∗), (4)

where Jx, Jy ∈ R2n×2n are the Jacobian matrices of system (3).
With Eqs. (4), we can analyze separately the system evolu-
tion along the horizontal and the vertical axis. Moreover, in
Sec. III we will show that the Jacobian matrices can be used
to describe the team’s collective behavior.

2. Fitting the model’s parameters

In this section, we show how to fit the model’s parameters
γn, kan, knm, and �an by using the datasets, and Eqs. (3) and (2).
To proceed, we have considered the following steps:
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TABLE I. Model parameters inferred for dataset DS1.

Par. x y Par. x y Par. x y Par. x y

α1 4.0×10−1 4.3×10−1 k12 4.2×10−3 1.2×10−2 k37 0.0 2.5×10−3 k79 0.0 5.1×10−4

α2 4.1×10−1 5.8×10−1 k13 0.0 0.0 k38 0.0 0.0 k7 10 4.5×10−3 1.4×10−3

α3 3.8×10−1 5.7×10−1 k14 6.4×10−3 0.0 k39 6.4×10−3 0.0 k89 5.6×10−3 6.9×10−3

α4 4.0×10−1 4.2×10−1 k15 3.9×10−3 4.7×10−3 k3 10 0.0 2.3×10−3 k8 10 6.0×10−3 3.2×10−3

α5 4.1×10−1 4.1×10−1 k16 1.7×10−3 6.7×10−3 k45 1.7×10−3 0.0 k9 10 4.7×10−3 0.0
α6 4.1×10−1 5.4×10−1 k17 4.6×10−3 0.0 k46 0.0 1.8×10−3

α7 4.2×10−1 5.0×10−1 k18 1.9×10−3 2.1×10−3 k47 0.0 5.4×10−3

α8 4.0×10−1 4.4×10−1 k19 3.7×10−3 1.4×10−3 k48 1.8×10−3 3.3×10−3

α9 2.8×10−1 3.3×10−1 k1 10 5.0×10−3 1.6×10−3 k49 3.6×10−3 6.5×10−4

α10 2.8×10−1 3.7×10−1 k23 6.7×10−3 7.1×10−3 k4 10 0.0 1.1×10−3

ka1 5.7×10−3 0.0 k24 0.0 8.9×10−4 k56 2.9×10−3 6.9×10−4

ka2 0.0 0.0 k25 2.8×10−6 0.0 k57 0.0 0.0
ka3 0.0 2.2×10−2 k26 2.1×10−3 6.7×10−3 k58 8.0×10−3 0.0
ka4 1.0×10−2 1.0×10−2 k27 5.5×10−3 0.0 k59 1.6×10−3 2.7×10−3

ka5 2.0×10−2 0.0 k28 0.0 9.9×10−4 k5 10 0.0 2.1×10−3

ka6 2.7×10−2 2.2×10−2 k29 1.9×10−3 5.4×10−3 k67 8.6×10−3 5.0×10−3

ka7 3.2×10−2 1.2×10−2 k2 10 1.5×10−3 3.5×10−3 k68 2.2×10−4 9.9×10−5

ka8 1.9×10−2 1.2×10−2 k34 0.0 3.3×10−3 k69 0.0 5.4×10−3

ka9 4.2×10−4 0.0 k35 0.0 0.0 k6 10 3.2×10−3 1.9×10−3

ka10 0.0 0.0 k36 1.6×10−3 4.0×10−3 k78 0.0 5.7×10−3

(i) For every player in the team, each dataset provides
the position in the field �rn(t ). The velocity is calculated as
�vn(t ) := �rn(t+�t )−�rn (t )

�t (�t = 1 s).
(ii) The discrete version of system (3) gives us the tool to

estimate the states of the players at time t + �t by using as
inputs the real states at time t and the model’s parameters,

�rn(t + �t )′ = �rn(t ) + �vn(t )�t,

�vn(t + �t )′ = �vn(t ) +
[
−γn�vn(t ) −

(
kan +

∑
m

′
knm

)
�rn(t )

+
∑

m

′
knm�rm(t ) + kan�an

]
�t,

where �rn(t + �t )′ and �vn(t + �t )′ are the model’s estima-
tions.

(iii) Note that by considering the definition of the velocity
given in (i), �rn(t + �t ) = �rn(t + �t )′. Then, at every step, the
parameters are only used to predict the new velocities.

Moreover, to simplify our framework, we do the following:
(iv) Since parameters �an are linked to the equilibria values

by Eq. (2), without loss of generality, we take �cn = �r∗
n [where

�cn is the center of the action radii for every player, empirically
obtained from the datasets; see Fig. 1(d)]. By doing this,
values �an can be calculated from the values of �cn and the other
parameters.

(v) To simplify our analysis, we normalized the players’
position in the dataset such that the standard deviation (scale)
of players’ velocities is the unit (i.e., σ�v = 1). This is useful
for later assessment of the fitting performance.

In this frame, we define the error �ξn(t ) := �vn(t + �t ) −
�vn(t + �t )′, and we fit γn, kan, knm by minimizing the sum∑

t

∑
n |�ξn(t )|. With this method, we obtain a unique set of

parameters that govern the equations. For a more detailed
description of the minimizing procedure, cf. Appendix A.

Notice that, to avoid possible large fluctuations linked to
drastic tactical changes, we fitted the set of parameters to each
dataset (a half match). This criterion, at the same time, let
us compare the strength of the interactions among different
matches halves.

The results of the optimization process for DS1 are given
in Table I. There we show the values of the fitted parameters
in both coordinates, x and y. We can see αn ≈ 10−1, kan ≈
10−2, and knm � 10−2. Particularly interesting are parameters
knm, since they indicate the strength of the interactions among
players. In this case, we can see a wide variety of values, from
strong interactions as in the case of players 1 − 2 to negligible
interactions in the case of players 3 − 8. For results on other
datasets, please see the Supplemental Material S2 [42].

3. Modeling�ξn(t ) as fluctuations in the velocities

By using the optimal set of parameters calculated with the
method proposed in the previous section, we can calculate for
all the players at every time step the difference between the
real velocity and the model’s prediction. This defines N tem-
poral series �ξn(t ) = {�ξn(t0), �ξn(t1), . . . , �ξn(tT )}, which can be
thought of as stochastic fluctuations in the players’ velocities.
Note that, in the context of a football match, these fluctuations
can be related to stochastic forces acting upon the players.
With this idea in mind, we propose to introduce in the sys-
tem (3) a noisy component linked to these fluctuations. With
this aim, we focus on analyzing and describing the behavior
of �ξn(t ).

Let us turn our attention to Fig. 2. Here, our goal is to
characterize the fluctuations linked to DS1. In panel (a), we
show the distributions of values related to ξ x

n (n = 1, . . . , 10).
We can see, in each case, that the curves approach a Gaussian
shape. The dashed line indicates a nonlinear fit performed
to the distribution given by the entire set of values (ξ x);
in this case, we have measured 〈ξ x〉 = 0.001 ± 0.002 and
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FIG. 2. Error characterization—Fluctuation analysis. For the horizontal axis, x. (a) Distributions of the error values for the ten players
(colored curves). Dashed lines indicate a Gaussian fit performed to the aggregated set of values. (b) Main: autocorrelation functions for the
ten cases (colored curves). The dashed line indicates the same calculation for a white noise process. Inset: Hurst exponent for the ten cases.
(c) Pearson matrix indicating the value of the linear correlation among each pair of time series, including autocorrelations. For the vertical
axis, y, the descriptions of panels (d), (e), and (f) are analogous to the previous case.

σξ x = 0.60 ± 0.02 m/s (R2 = 0.97). The fluctuations scale is
lower than the velocities scale, σξ x < σv [with σv = 1, cf.
Sec. II C 2, item (v)]. Panel (b), on the other hand, shows
the autocorrelation functions Aξ x

n
(τ ) = 〈ZZ ′〉−〈Z〉〈Z ′〉

σZ σZ′ , with Z =
ξ x

n (t ) and Z ′ = ξ x
n (t + τ ). For each case, we can see an abrupt

decay at the beginning. To help the eye to visualize the
behavior of the curves, the black dashed line in the plot
shows the autocorrelation function for a white noise pro-
cess. The inset in the panel shows the values of the Hurst
exponent calculated by performing a detrended fluctuation
analysis (DFA) to ξ x

n (t ). We obtain values around 0.5 ± 0.06,
which is consistent with a set of memoryless processes. Panel
(c), on the other hand, shows the Pearson matrix Rx

nm =
Cx

nm√
Cx

nnCx
mm

, where Cx
nm is the covariance matrix of series ξ x

n (t ).

We can see that Rx
nm < 0.25 ∀ n, m, which indicates a low

level of linear correlation among the fluctuations associated
with the different players. A similar description with analo-
gous results can be done for ξ

y
n by analyzing panels (d), (e),

and (f).
Based on the observations made above, we propose to

model the fluctuations in both axes as noncorrelated Gaussian
noise, such that �ξn(t ) = �σnξn, with 〈ξn(t )〉 = 0, 〈ξn(t )ξn(t ′)〉 =
δ(t − t ′), 〈ξn(t )ξm(t )〉 = 0, and �σn = (σ x

n , σ
y
n ) the empirical

measured scales for the processes.

III. RESULTS AND DISCUSSION

A. Simulations on the collective dynamics

As we previously stated, we first used the datasets to fit the
model’s parameters, and second we characterized the errors as
fluctuation in the velocities. With these inputs, in the frame of
our model, we can simulate the players’ collective dynamics
and compare the results with empirical data to assess the
model performance. To do this, we modify system (3) as
follows:

d�rn = �vndt, d�vn =
[
−

(
kna +

∑
m

′
knm

)
�rn +

∑
m

′
knm�rm

−γn�vn + kna�an

]
dt + �dWn, (5)

where d �Wn = �σnξndt , with �σn and ξndt as were defined in
the previous section. Note that (5) is a system of stochas-
tic differential equations (SDEs). To solve them, we use the
Euler-Maruyama algorithm for Ito equations. In this section,
we show the results linked to the dataset DS1; similar results
for the other datasets can be found in Appendix B.

Let us focus on Fig. 3. Panels (a) and (b) show two
heatmaps with the probability of finding a team player in
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FIG. 3. Results on the collective dynamics simulations. (a),(b) Probability of finding a player in the field, in empirical data and simulations,
respectively. (c) Players’ action zones. Empirical data (shadow areas) compared with simulations (curves). (d) Probability distribution of the
time to return to the mean value, P(tR). The dashed line indicates a nonlinear fit performed to the empirical data (orange circles). The inset
shows the evolution of the kinetic energy, Ek (t ), from where tR is measured.

the position (x, y). The left panel shows the results for the
empirical data, whereas the right panel shows the results for
simulations. For better visualization, in both cases the proba-
bilities were normalized to the maximum value, defining the
parameter ρ ∈ [0, 1]. As we can observe, simulations repro-
duce reasonably well the empirical observations. To quantify
the result, we calculated the Jensen-Shannon distance (DJS)
between the distributions. We measured DJS = 0.05, which
indicates a good similarity between distributions. In panel
(c), on the other hand, we compare players’ action zones.
The empirical observations are the shadow ellipses, whereas
the simulations are the curves. We can see, on the whole,
that the model gives a good approximation, particularly for
those areas with smaller dispersion. In panel (d), we ana-
lyze the kinetic energy of the system, Ek := ∑

n
1
2 |�vn|2. Our

goal here is to globally describe the temporal structure of
the system. In the inset, we show the temporal evolution of
this quantity. Regarding the mean values of the energy, we
measured 〈Ek〉DS1 = 10.3 for the data and 〈Ek〉MO = 11.5 for
simulations. We can see that the energy reaches high peaks in
the empirical case that are not observed in the outcomes of the
model compensating for the slightly lower mean. This effect
indicates the presence of higher-order contributions, probably
linked to nonlinear interactions, that our model based on linear
interactions does not take into account. The main plot in the
panel shows the distribution of the times to return to the mean

value for the kinetic energy, P(tR), for both empirical data and
the model. We can see in both cases that P(tR) ∝ t

−γEk
R , with

γEk = 2.4 ± 0.1. Note that the value of the exponent agrees
with the value measured for the time to return in the case
of the variable φ (see Sec. II B). This seems to indicate that
the temporal structure captured by the evolution of the energy
may be related to the emergence of order in the system. Let
us turn our attention to the distributions’ tails. For the case of
the empirical data, we can see the presence of extreme events
that are not observed in simulations. This effect, as well as the
peaks in Ek , could be linked to higher-order contributions of
the interactions.

To summarize, in this section we showed that despite its
simplicity, our first-order stochastic model succeeds in uncov-
ering several aspects of the complexity of the spatiotemporal
structure underlying the dynamics. In the next two sections,
we show how to utilize the fitted interactions to describe the
players’ individual and collective behavior.

B. Describing the team behavior by analyzing the model’s
parameters

1. Hierarchical clustering classification on the team lineup

The interaction parameters �knm can be useful to ana-
lyze the interplay among team players, and to describe the
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FIG. 4. Classification of the team members, based on the inferred
interaction strengths. (a) Visualization of the connection strength,
knm, among the players. (b) Hierarchical relations among the players.
At the center: the distance matrix. At the top and the left: dendro-
grams to visualize the clusters of players within the team.

environment to which they are constrained. In Fig. 4(a), we
show a visualization of the players’ interactions magnitude.
In this network of players, the links’ transparency (α value)
represents the connection strength between players n and
m. These values are calculated as κnm =

√
(kx

nm)2 + (ky
nm)2.

Note that the connection values can be used as a proxy of the
distance among the players. Let us define the distance δnm :=
e− κnm

σκ between player n and m, where σκ is the standard devi-
ation of the set of values κnm. The exponential function in δnm

is used to define large distances linked to small connections,
and short distances related to strong connections. Then, based
on this metric, we calculate the matrix of distances. With
this matrix, by using a hierarchical clustering classification
technique, we detect small communities of players within the
team. In the following, we discuss the results in this regard. In
Fig. 4(b), we show the reordered matrix of distances with two
equal dendrograms, one placed at the top and the other at the
left, showing the hierarchical relationship between players.
To perform this calculation, we used the ward method [46].
With this classification, we can easily observe the presence of
two main clusters of players. Those colored in green, players
5 − 10 − 8 − 9, can be related to the offensive part of the
team; the others can be related to the defensive. Within the
latter group, the cluster colored in red (players 1 − 2 − 6 − 7)
is related to back and middle defenders at the left side of
the field, whereas players 3 − 4 are related to back defenders
at the right. Within the former group, we can differentiate
between a central-right group of attackers, 8,9,10, and an
individual group given by player 5. As we said above, this
technique allows us to study groups of players with strong
interactions during the match. For instance, let us focus on
analyzing the group of players 6 − 7. These players cover the
central zone, and they are likely in charge of covering the
gaps when other defenders go to attack. One such example
is the advance of the wing-backs 1 − 4 by the sides. We
should expect them to behave similarly, which agrees with the
result of our classification. The case of player 5 is particularly

interesting. Our results indicate that this player is less con-
strained than the others attackers. Our classification frame
is probably detecting that 5 is a free player in the team, a
classic play builder on the midfield, in charge of generating
goal-scoring opportunities.

The information provided by the hierarchical clustering
classification allows us to characterize the players’ behavior
within a team and, therefore, provide useful insight into the
collective organization. In light of this technique, it is possible
to link the strengths and weaknesses of the team to the levels
of coordination among the players. For instance, if we observe
a lack in the levels of coordination among the rival players at
the right side of their formation (as we can see in the case of
Tromsø IL in DS1), it would be interesting to foster attacks in
this sector.

We could also perform a comparative study by analyzing
several games to correlate results with levels of coordina-
tion among the players. With this approach, we can detect
whether there are patterns related to a winning or a losing
formation, providing valuable information for coaches to use.
The same idea can be applied to training sessions, to promote
routines oriented to strengthen the players’ connection within
particular groups in the line-up, aiming to improve the team
performance in competitive scenarios.

To summarize, the hierarchical clustering analysis evi-
dences the presence of highly coordinated behavior among
subgroups of players, which can be directly related to their
role on the team. In this framework, coaches may find a useful
tool to support the complex decision-making process involved
in the analysis of the tactical aspects of the team, to assess
players’ performances, to propose changes, etc.

2. Collective modes

The eigenvalues and eigenvectors of the Jacobian matri-
ces Jx and Jy [see Eqs. (4)] can be handy to describe some
aspects of the team players dynamics on the field. If the
system exhibits complex eigenvalues, the eigenvectors can
provide information on the collective modes of the system,
and, consequently, on the collective behavior of the team.

In Fig. 5(a), we plotted the system’s eigenvalues λ ∈ C as
Reλ versus Imλ. We can see in most cases that Im(λ) = 0.
However, around Re(λ) ≈ −0.2, we can see the presence of
characteristic frequencies in both coordinates. Let us focus
on the case of λ1, the eigenvalue with smallest real part, and
Im(λ1) �= 0. This case is particularly important, because the
energy that enters the system as noise is transferred mainly
to the vibration mode given by the eigenvector associated
with λ1, vλ1 (first mode) [47,48]. In the frame of our model,
therefore, vλ1 carries information on the collective behavior of
the players. We calculated λx

1 = (−0.14 ± i 0.11) (1/s) and
λ

y
1 = (−0.19 ± i 0.04) (1/s) (note that complex conjugates

are not shown in the plot). To describe these collective modes,
let us focus on Fig. 5. Here, panel (b) is linked to the horizontal
coordinate, and panel (c) is linked to the vertical one. In the
plots, each circle represents the players in its field’s natural
positions. The circles’ radii are proportional to the absolute
value of the components of vx

λ1
[panel (b), blue] and v

y
λ1

[panel (c), yellow]. Therefore, the size of the circles in the
visualization indicates the effect of the vibration mode on the
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FIG. 5. Collective modes. (a) Eigenvalues plotted as the real part
vs the imaginary part, for the horizontal (circles) and the vertical
(crosses) axis. (b) Visualization of the first mode in the horizontal
axis. (c) Visualization of the first mode in the vertical axis. See the
main text for further details.

players, or, in other words, how much the player is involved
in this particular collective behavior. For instance, we can see
that player 1 is not affected by the mode in the horizontal
coordinate, but is highly affected by the mode in the vertical
coordinate. In another example, for the case of player 5, we
can see that the collective modes in both coordinates have a
slight effect on the motion of this player. This is because, as
we have previously stated, player 5 seems to be a free player
in the field, therefore his maneuvers are not constrained by
other players. Conversely, player 9 is the most affected in
both coordinates, which seems to indicate that the collective

behavior of the team directly affects the free movement of
this particular player. A similar analysis can be performed for
every team player in the field.

Let us now focus on using this information to describe the
behavior of the defenders and their roles on the team. Figure 5
shows that defenders 1 and 2, at the left-back in the formation,
are slightly involved in the collective mode related to the
horizontal axis [panel (b)] and highly involved in the mode
related to the vertical axis [panel (c)]. This indicates that these
players exhibit a natural trend to coordinate with the team
in the vertical direction and behave more freely when they
perform movements in the horizontal direction. Conversely,
players 3 and 4, at the right-back in the formation, are highly
involved in the collective mode related to the horizontal axis
and slightly involved in the mode related to the vertical axis.
This indicates that these defenders exhibit a natural trend to
follow the movements of the team in the horizontal axis (to-
wards the goal). These observations reveal a mixed behavior
in the defense, where defenders 3 and 4 are more likely to
participate in attacking actions, whereas defenders 1 and 2
are more likely devoted to covering gaps. Naturally, an expert
coach may easily uncover these kinds of observations while
attending a game. However, our technique could be useful for
the systematic analysis of hundreds or thousands of games.

The reader may note that the eigenvalues and eigenvectors
of the systems provide a handy analytical tool for coaches to
assess several aspects of team dynamics. In addition to the
case of the hierarchical clustering analysis, in this frame it
is possible to link the strengths and weaknesses of a team to
collective modes uncovered by this technique, which could be
useful in identifying patterns associated with a winning or a
losing formation so as to act accordingly in decision-making
processes.

3. Using network metrics to analyze the game
Tromsø IL versus Anzhi

Datasets DS3 and DS4 are related to the first and the
second half of the game Tromsø IL versus Anzhi. In this game,
Anzhi scored a goal at the last minute of the second half to
obtain a victory over the local team. In this context, the idea
is to fit DS3 and DS4 to the model, obtain the networks of
players defined by parameters �knm, and perform a comparative
study of the two cases, analyzing our results by using tradi-
tional network science metrics. Let us focus on describing
Fig. 6. In panel (a), we show the largest eigenvalue, λ1, of
the network adjacency matrix in both datasets. This param-
eter gives information on the network strength [49]. Higher
values of λ1 indicate that important players in the graph are
connected among them. We can see that λ1 in DS3 is ≈19%
higher than in DS4, which indicates that the network strength
decreases in the second half of the game. In panel (b) we
show the algebraic connectivity, λ̃2. This value corresponds
to the smallest eigenvalue of the Laplacian matrix of the play-
ers’ networks [50] and carries information on the structural
and dynamical properties of the networks. Small values of
λ̃2 indicate the presence of independent groups inside the
network, and they are also linked to higher diffusion times,
thus indicating a lack of players’ connectivity. We can see that
λ̃2 decreases ≈31% in DS4, which seems to indicate that in
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FIG. 6. Comparative analysis for the two halves of the game
Tromsø IL vs Anzhi. (a) Largest eigenvalue λ1 of the adjacency
matrix A. (b) Algebraic connectivity, λ̃2, of the Laplacian matrix L̃.
(c) Clustering coefficient. (d) Eigenvector centrality.

the second half of the game the team players lost cohesion.
Box plots presented in panel (c) show the weighted clustering
coefficient [51] of the team players. This parameter measures
the local robustness of the network. We can see that in DS3 the
clustering is slightly higher than in DS4, and the dispersion of
the values is lower. This indicates that the network of players
is more robust and homogeneous in the first half of the game.
Lastly, in panel (d) we show box plots with the eigenvector
centrality [52] of the players in both networks. The centrality
indicates the influence of a player on the team. A higher value
in a particular player is related to strong connections with the
other important players on the team. The mean value of the
centrality is in both cases ≈0.3 and the standard deviation is
≈0.05. The maximum, likewise, is very similar, ≈0.4, and the
median, shown in the box plot, is a little lower in DS3. We can
also observe that the network linked to DS3 seems to exhibit
more homogeneous values among the team players than the
network linked to DS4.

In light of the results discussed above, we can see that in
the second half of the game the team decreases in connectivity,
cohesion, and it becomes more heterogeneous. Considering
that Tromsø IL received a goal at the end of the second half
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FIG. 7. Evolution of the normalized error during the minimiza-
tion process.

and lost the game, the fall of these particular metrics seems to
be related to a decrease in the team’s performance. Previous
works devoted to the analysis of passing networks have also
reported a relationship between the magnitudes of these par-
ticular metrics in these networks and team performances [39].
In this regard, the previous analysis suggests that there is
consistency between the results reached through our methods
and those previously reported in the literature.

IV. SUMMARY AND CONCLUSIONS

In this work, we studied the spatiotemporal dynamics of a
professional football team. Based on empirical observations,
we proposed to model the player cooperative interactions to
describe the global behavior of the group. In this section, we
summarize our main results.

First, we surveyed a database containing body-sensor
traces from one team on three professional soccer games. We
observed statistic regularities in the dynamics of the games
that reveal the presence of a strong correlation in the players’
movements. With this insight, we proposed a model for the
team’s dynamic consisting of a fully connected system where
the players interact with each other following linear-springlike
forces. In this frame, we performed a minimization process to
obtain the parameters that fit the model to the datasets. Fur-
thermore, we showed that is possible to treat the higher-order
contributions as stochastic forces in the players’ velocities,
which we modeled as Gaussian fluctuations.

Second, once we defined the model, we carried out nu-
merical simulations and evaluated the model performance by
comparing the outcomes with the empirical data. We showed
that the model generates spatiotemporal dynamics that give a
good approximation to the real observations. In particular, we
analyzed (i) the probability of finding a player in a position
(x, y), (ii) the action zones of the players, and (iii) the temporal
structure of the system by studying the time to return to the
mean value in the temporal series of the kinetic energy of
the system. Despite its simplicity, in all the cases the model
exhibited a good performance.

Third, we described the system at the local level by
using the parameters we obtained from the minimization
process. In this regard, we proposed to use two analyti-
cal tools, namely a hierarchical cluster classification and an
eigenvalues-eigenvectors-based analysis. We found that it is
possible to describe the team behavior at several organization
levels and to uncover nontrivial collective interactions.

Lastly, we used network science metrics to carry out a
comparative analysis on the two halves of the game Tromsø
IL versus Anzhi. We observed that a decrease in connectivity
and cohesion, and an increase in the heterogeneity of the
network of players, seem to be related to a decrease in the
team performance.

We consider this contribution to be a new step towards
a better understanding of the game of football as a com-
plex system. The proposed stochastic model, based on linear
interactions, is simple and can be easily understood in the
frame of standard dynamical variables. Moreover, our frame-
work provides a handy analytical tool to analyze and evaluate
tactical aspects of teams, something helpful to support the
decision-making processes that coaches face in their working
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FIG. 8. Collective dynamics simulations corresponding to DS2. (a),(b) Probability of finding a player in the field, in empirical data
and simulations, respectively. (c) Players’ action zones. Empirical data (shadow areas) compared with simulations (curves). (d) Probability
distribution of the time to return to the mean value, P(tR). The dashed line indicates a nonlinear fit performed to the empirical data (yellow
circles). The inset shows the evolution of the kinetic energy, Ek (t ), from where tR is measured.

activities. It is important to highlight that our framework is not
limited to being used only in the analysis of football games.
A similar approach can be performed to study others sport
disciplines, mainly when the evaluation of players’ interac-
tions is key to understanding the game results. In [53], for
instance, the authors use players-tracking data in basketball
games to estimate the expected number of points obtained
by the end of a possession. In this case, a complementary
analysis within our framework could also unveil collective
behavior patterns linked to players’ coordination interactions
that can be correlated to the upshot at the end of the possession
intervals.

However, we point out that the full dynamics of a foot-
ball match (and other sports) cannot be addressed by only
analyzing cooperative aspects within a particular team. To
describe the full dynamics, we should also model the compet-
itive interactions among the players in both teams. To do so,
we need to measure the interplay among rivals, which in our
framework implies having body-sensor traces for both teams,
something that football clubs reject because of competing
interests. Moreover, it could be useful to have a record of
the ball position to improve our analysis. In this context, the
use of alternative measurement techniques based on artificial
intelligence and visual recognition becomes relevant [54–56].

To summarize, our model provides a simple approach to
describe the collective dynamics of a football team untan-

gling interactions among players, and stochastic inputs. The
structure of interactions that results from this approach can
be considered a new metric for this sport. In this sense,
our analysis complements recent contributions in the frame-
work of network science [20,37–41]. Note that there is a
major difference between our approach and current network-
science-oriented methods: The latter analyze interaction based
on players’ passes, whereas our approach analyzes interaction
based on players’ movements. In this regard, the problem
with studying a football team from only passing/pitch net-
works is that this approach is entirely based on on-ball action,
which completely neglects how players behave when they are
far from the center of the plays (off-ball actions). Our ap-
proach, instead, integrates the information of the entire team
to calculate every single link between players, therefore in
our model we also consider off-ball actions, which is key to
correctly evaluating a team’s performance [57]. In addition,
many of the metrics of current use in this sport can be tested
through our model [28–33]. On the other hand, to perform an
analysis based on passing/pitch networks, one must have a
record of the ball position and be able to characterize events
(passes) during the match. Our model, instead, employs just
the data of players’ positions, something that nowadays can
be easily measured, both in training sessions and competitive
scenarios, with the simplest GPS trackers available on the
market.
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Finally, we consider that it is possible to improve our model
by incorporating nonlinear interactions in the equations of
motion. An analysis of the most commonly observed players’
maneuvers may help to find new statistical patterns to be used
as an insight to propose a nonlinear approach. In this regard,
we leave the door open to future research projects in the field.
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APPENDIX A: THE MINIMIZATION PROCESS

As we explained in Sec. II C 2, to obtain the model’s pa-
rameters, we define the error �ξn(t ) := �vn(t + �t ) − �vn(t +
�t )′, and we fit γn, kan, and knm by minimizing the sum  =∑

t

∑
n |�ξn(t )|. To do so, we coded a python script based on

the use of the scipy.optimize.minimize routine (see the online
documentation [58]). In this script, we proceed as follows:

(i) At the beginning, we set the parameters equal to zero.
(ii) We randomly choose one of the parameters and mini-

mize  via only this parameter. If the minimization succeeds,
we keep it.

(iii) We randomly choose another parameter and repeat the
previous step. Note that now we are using the previously fitted
parameter to fit the new one.

(iv) Repeat the previous steps M times, with M � Npars,
where Npars = 65 is the number of parameters.

(v) After M steps, we fit the entire set of parameters simul-
taneously using as seeds the values obtained in the previous
steps.

In Fig. 7, we show the evolution of the normalized total
error as a function of the normalized number of parameters
fitted in the process described above. Here we focus on the
case of DS2. Notice that N is the number of players in the
team, T is the total match time, and Npars is the number of
model parameters. We can see that after fitting the total set
of parameters by performing steps (i)–(iv), the error enters
a plateau indicating that the system reaches a stable set of
optimized values. After this process, step (v) is performed to
achieve a joint optimization.

APPENDIX B: COLLECTIVE DYNAMICS SIMULATION
RELATED TO DS2, DS3, AND DS4

For DS2, DS3, and DS4, we simulated the players collec-
tive dynamics and compared the results with empirical data in
order to assess the model performance. The results are shown
in Figs. 8, 9, and 10. The panels follow all the same pattern:

FIG. 9. Collective dynamics simulations corresponding to DS3. (a),(b) Probability of finding a player in the field, in empirical data
and simulations, respectively. (c) Players’ action zones. Empirical data (shadow areas) compared with simulations (curves). (d) Probability
distribution of the time to return to the mean value, P(tR). The dashed line indicates a nonlinear fit performed to the empirical data (yellow
circles). The inset shows the evolution of the kinetic energy, Ek (t ), from where tR is measured.
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FIG. 10. Collective dynamics simulations corresponding to DS4. (a),(b) Probability of finding a player in the field, in empirical data
and simulations, respectively. (c) Players’ action zones. Empirical data (shadow areas) compared with simulations (curves). (d) Probability
distribution of the time to return to the mean value, P(tR). The dashed line indicates a nonlinear fit performed to the empirical data (yellow
circles). The inset shows the evolution of the kinetic energy, Ek (t ), from where tR is measured.

Panels (a) and (b) show two heatmaps with the probability
of finding a team player in the position (x, y). The left panel
shows the results for the empirical data, while the right panel
shows the results for simulations. For a better visualization, in
both cases the probabilities were normalized to the maximum
value, defining the parameter ρ ∈ (0, 1). In panel (c), we
compare players’ action zones. The empirical observations are
the shadow ellipses, whereas the simulations are the curves.
In panel (d), we analyze the kinetic energy of the system,
Ek := ∑

n
1
2 | �vn|2. Our goal here is to globally describe the

temporal structure of the system. In the inset, we show the
temporal evolution. We measured 〈Ek〉DS1 = 10.3 for the data,
and 〈Ek〉MO = 11.5 for simulations. The main plot in the panel

shows the distribution of the time to return to the mean value,
P(tR). We can see that in both cases, P(tR) ∝ t

−γEk
R . The values

of the exponents for the three cases are γ DS2
Ek

= 2.41 ± 0.07,
γ DS3

Ek
= 2.3 ± 0.1, and γ DS4

Ek
= 2.2 ± 0.1. Note that the values

are similar to the value obtained for DS1 (see Sec. III A).
The results in all the cases agree with the result for DS1.

Here, it is important to point out that in the datasets analyzed
in this section, there are periods during the match when the
body-sensor traces were not recorded. This lack of informa-
tion might have a direct effect on the process we used to obtain
the parameters. However, despite the simplicity of the model
and the lack of available data to fit the model, we can conclude
that it reproduces the empirical data reasonably well.

[1] N. Almeira, A. L. Schaigorodsky, J. I. Perotti, and O. V. Billoni,
Structure constrained by metadata in networks of chess players,
Sci. Rep. 7, 1 (2017).

[2] A. L. Schaigorodsky, J. I. Perotti, and O. V. Billoni, Memory
and long-range correlations in chess games, Physica A 394, 304
(2014).

[3] J. I. Perotti, H.-H. Jo, A. L. Schaigorodsky, and O. V. Billoni,
Innovation and nested preferential growth in chess playing be-
havior, Europhys. Lett. 104, 48005 (2013).

[4] Ş. Erkol and F. Radicchi, Who is the best coach of all time? a
network-based assessment of the career performance of profes-
sional sports coaches, J. Complex Netw. 9, cnab012 (2021).

[5] L. Pappalardo, P. Cintia, A. Rossi, E. Massucco, P. Ferragina, D.
Pedreschi, and F. Giannotti, A public data set of spatio-temporal
match events in soccer competitions, Sci. Data 6, 1 (2019).

[6] S. A. Pettersen, D. Johansen, H. Johansen, V. Berg-Johansen,
V. R. Gaddam, A. Mortensen, R. Langseth, C. Griwodz, H. K.
Stensland, and P. Halvorsen, Soccer video and player position

024110-12

https://doi.org/10.1038/s41598-017-15428-z
https://doi.org/10.1016/j.physa.2013.09.035
https://doi.org/10.1209/0295-5075/104/48005
https://doi.org/10.1093/comnet/cnab012
https://doi.org/10.1038/s41597-019-0247-7


STOCHASTIC MODEL FOR FOOTBALL’S COLLECTIVE … PHYSICAL REVIEW E 104, 024110 (2021)

dataset, in Proceedings of the 5th ACM Multimedia Systems
Conference (ACM, New York, 2014), pp. 18–23.
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