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Universal properties of the Kardar-Parisi-Zhang equation with quenched columnar disorders
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Inspired by the recent results on totally asymmetric simple exclusion processes on a periodic lattice with short-
ranged quenched hopping rates [A. Haldar and A. Basu, Phys. Rev. Research 2, 043073 (2020)], we study the
universal scaling properties of the Kardar-Parisi-Zhang (KPZ) equation with short-ranged quenched columnar
disorder in general d dimensions. We show that there are generic propagating modes in the system that have their
origin in the quenched disorder and make the system anisotropic. We argue that the presence of the propagating
modes actually make the effects of the quenched disorder irrelevant, making the universal long wavelength
scaling property belong to the well-known KPZ universality class. On the other hand, when these waves vanish in
a special limit of the model, new universality class emerges with dimension d = 4 as the lower critical dimension,
above which the system is speculated to admit a disorder-induced roughening transition to a perturbatively
inaccessible rough phase.
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I. INTRODUCTION

Quenched disorders are known to significantly affect the
universal scaling properties of condensed matter systems and
statistical models in equilibrium. For example, the universal
critical properties of classical N-component spin models near
their second-order phase transitions can be affected by the
quenched disorder, leading to a new universality class [1,2].
On the other hand, quenched random fields can destroy the
ordered phase altogether [3]. Scaling properties of interface
growth models are also found to be affected by quenched
disorders [4–7]. Understanding of how quenched disorders
affect universal properties in nonequilibrium systems is far
less understood than their equilibrium counterparts, and re-
mains a challenging problem. Lack of any general framework
to study the statistical properties of nonequilibrium systems
has often prompted physicists to construct and study simple
conceptual models that are easily analytically tractable, such
that questions of basic principles can be answered within
well-controlled approximations.

The Kardar-Parisi-Zhang equation, originally proposed as
a nonlinear hydrodynamic model for surface growth phenom-
ena [8], serves as a paradigmatic model for nonequilibrium
phase transition above dimension d > 2. Recently, the univer-
sal scaling properties of the density fluctuations in a totally
asymmetric simple exclusion process (TASEP) in a ring ge-
ometry with quenched disordered hopping rates has been
studied by mapping the problem into a one-dimensional (1D)
Kardar-Parisi-Zhang equation with quenched columnar dis-
order (disorder distributions, which depend only on position
and are fixed in time) [9]. It has been shown that away from
the half-filling, the quenched disorder is irrelevant, and the
universal long wavelength properties of the system is iden-
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tical to that of the 1D KPZ equation without any disorder.
On the other hand, close to half-filling, quenched disorder is
relevant, a new universality class different from the 1D KPZ
universality emerges, leading to the scaling exponents taking
values different from their 1D KPZ counterpart. These results
qualitatively agree with the simulations performed [10–12] for
driven lattice gases in presence of quenched disorder. Further-
more, it was speculated in Ref. [9], based on a simple scaling
analysis and the linear instability of the Gaussian fixed point
that near the analog of half-filling, the lower critical dimension
might be higher than 2. This speculation makes it imperative
to ask what precisely the critical dimension is, and whether it
is truly the lower critical dimension (as opposed to the upper
critical dimension).

In this article, we systematically generalize the 1D KPZ
equation with short-ranged quenched columnar disorder [9]
to d dimensions. We systematically study this equation to
uncover its universal scaling properties in the long wavelength
limit. Our principal results in this article are as follows. (i) The
generalized d-dimensional equation does not remain invariant
under Galilean transformation in presence of the disorder,
and there are generic underdamped propagating waves in the
system. The latter makes the system necessarily anisotropic.
(ii) Surprisingly, the presence of the waves makes the dis-
order irrelevant (in a renormalization group or RG sense).
As a result and very intriguingly, the Galilean invariance and
isotropy are restored in the long wavelength limit; the univer-
sal scaling property naturally belongs to the d-dimensional
KPZ universality class. (iii) For specific choices of the model
parameters, the waves vanish and the system is isotropic. In
this case the disorder is relevant (in a RG sense), and the
Galilean invariance remains broken in the long wavelength
limit. Consequently, the universal scaling exponents belong to
a new universality class different from the pure KPZ equa-
tion. In particular, the scaling exponents at d = 2, relevant
for surface growth phenomena, are calculated at the one-loop
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order. We establish that d = 4 is the lower critical dimension
of the model in this case, such that above d = 4, the model
can undergo a roughening transition to a (perturbatively in-
accessible) rough phase. This disorder-mediated roughening
transition generalizes the well-known roughening transition of
the pure KPZ equation for d > 2. We thus find that indepen-
dent of whether waves are present or absent, the statistics of
the long wavelength fluctuations are always isotropic. Para-
doxically, the waves—when they are present and make the
system anisotropic at small scales—are responsible for the
emergent isotropy in the long wavelength limit. This is a
prominent outcome from our study. We use a one-loop dy-
namic RG calculational framework for our work.

Although the KPZ equation was originally proposed as a
hydrodynamic model for surface growth, it has been exten-
sively studied as a paradigmatic model for nonequilibrium
phase transition. It has also been recognized as a hydro-
dynamic model for other phenomena, e.g., nonequilibrium
dynamics of the phase in a collection of nearly phase ordered
model [13]. All these have led to extensive theoretical studies
of the KPZ equation at various dimensions [14]. Likewise,
the quenched disordered d-dimensional KPZ equation that we
construct and study here is not only significant as a hydrody-
namic model for growing surfaces in the presence of quenched
disorder (with 2D as the physically relevant dimension), but
is also a paradigmatic nonequilibrium quenched disordered
hydrodynamic model that displays a disorder-induced rough-
ening transition, with its implications transcending the narrow
boundaries of surface growth phenomena. For a comprehen-
sive and thorough understanding of the universal aspects of
this model, it is essential to study this model theoretically in
general d dimensions.

The rest of this article is organized in the following manner.
We set up the hydrodynamic equations for height of growing
surfaces with quenched columnar disorder in Sec. II. The KPZ
universality has been discussed in Sec. III. We discuss the
scaling behavior in linear theory in Sec. IV A, and then cal-
culate the nonlinear effects on the scaling exponents by using
RG framework for this quenched disordered model in rest of
Sec. IV. We summarize our results in Sec. V. Some technical
details are provided in the Appendix for the interested readers.

II. KPZ EQUATION WITH COLUMNAR
QUENCHED DISORDER

We begin by recalling the 1D hydrodynamic equation,
derived in Ref. [9] for density fluctuations in a periodic
TASEP with quenched disordered hopping rates in the ther-
modynamic limit. The equation of motion (EoM) for density
fluctuation φ(x, t ) reads [9]

∂φ(x, t )

∂t
= ν

∂2φ(x, t )

∂x2
+ λ1

∂φ(x, t )

∂x
+ λm

∂δm(x)

∂x

− λ

2

∂φ2(x, t )

∂x
+ λ2

∂

∂x
[δm(x)φ(x, t )]

− λ3
∂

∂x
[δm(x)φ2(x, t )] + ∂ f (x, t )

∂x
. (1)

Here, ν is a diffusion coefficient, λ, λm, λ1, λ2, λ3 are different
model parameters. In particular, λ1, λ2 are both proportional

to (2ρ0 − 1) where ρ0 is the mean particle density. Hence,
λ1, λ2 vanish in the half-filled limit (ρ0 = 1/2) whereas those
have nonzero value for away from the half-filled limit [9].
Furthermore, m(x) is the random quenched disorder that has
its origin in the quenched disorder hopping rates in the under-
lying lattice-gas TASEP model. To make precise connections
with TASEP on a ring geometry, periodic boundary conditions
on the fields and the noises together with x ∈ [0, L], along
with the thermodynamic limit L → ∞ are to be assumed. As
explained in Ref. [9], density fluctuation φ(x, t ) is driven by
two conserved stochastic variables: quenched noise ∂xδm(x)
and annealed noise ∂x f (x, t ). We write m(x) = m0 + δm(x),
where m0 = m(x) is the mean value of m(x), and δm(x) is
local fluctuation of m(x) about m0. We assume δm(x) < m0 to
ensure m(x) remains positive everywhere;1 we choose δm(x)
to be short-ranged Gaussian distributed with a variance

δm(x)δm(0) = 2D̃δ(x); (2)

D̃ is the strength of the quenched noise, and is definite
positive.

Stochastic function f (x, t ) is an annealed noise, which is
assumed to be zero mean and Gaussian distributed with a
variance

〈 f (x, t ) f (0, 0)〉 = 2Dδ(x)δ(t ). (3)

Here, D > 0 is the noise strength, the analog of temperature in
nonequilibrium systems. Here 〈. . .〉 implies the averages over
time-dependent noise distribution and an overline implies the
averages over quenched disorder distribution. The annealed
noise f (x, t ) models the inherent stochastic nature of the
dynamics (or the update rules) of the underlying lattice-gas
model, and is essentially a nonequilibrium generalization of
thermal noises present in equilibrium systems at finite tem-
peratures.

The variances of f (x, t ) and δm(x) in the Fourier space are

〈 f (k1, ω1) f (k2, ω2)〉 = 2Dδ(k1 + k2)δ(ω1 + ω2), (4a)

δm(k1, ω1)δm(k2, ω2) = 2D̃δ(k1 + k2)δ(ω1 + ω2)δ(ω1).

(4b)

Let us introduce a height variable via the transformation
φ(x, t ) = ∂xh. This transforms (1) to

∂h(x, t )

∂t
= ν∂xxh(x, t ) + ∂xh(x, t )[λ1 + λ2δm(x)]

− λ

2
[∂xh(x, t )]2 + λ2[δm(x)∂xh(x, t )]

− λ3[δm(x)(∂xh(x, t ))2]

+ λmδm(x) + f (x, t ). (5)

Here h(x, t ), a single-valued function, is the height of the
1D surface with respect to an arbitrary baseline. Equation (5)

1In the lattice-gas TASEP language this condition means the local
hopping rate remains positive everywhere; a negative m(x) at some x
means a negative hopping rate at that point, a possibility excluded in
the definition of the lattice-gas model. However, a negative m(x) is
acceptable in an equivalent surface growth model.
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gives the dynamics of a growing 1D surface with quenched
columnar disorder. Some general comments on the structure
of (5) are in order: The first term on the first line of the
right-hand side (rhs) of Eq. (5) is the standard diffusive term,
identical to its counterpart in the pure KPZ equation. The
second term on the first line of the rhs is a first-order spatial
derivative term of h with a coefficient that depends on the
quenched disorder. In the absence of the quenched disorder,
this coefficient is a constant and can be removed by a Galilean
transformation [14,15], and hence does not appear in the pure
KPZ equation. The second and third lines of the rhs contain
three nonlinear terms; the first one is the well-known nonlin-
ear term of the pure KPZ equation and another two depend on
the quenched disorder. The two terms on the fourth line of the
rhs act as the external sources, one of which, i.e., λmδm(x), is
time-independent, i.e., quenched and has no analog in the pure
KPZ equation; the second one f (x, t ) is time-dependent and
hence annealed, models the inherent stochastic nature of the
microscopic dynamics, and survives in the pure KPZ limit. We
further note that, when λ1 = 0 = λ2, Eq. (5) is invariant under
inversion of space, i.e., under x → −x, whereas for λ1 �=
0, λ2 �= 0, it is not, due to the presence of the propagating
waves. These correspond, respectively, to near the half-filled
and away from the half-filled limits for density fluctuation in
Eq. (1).

We now generalize the problem to a d-dimensional grow-
ing surface in presence of columnar quenched disorder. This
can be done in several ways. We generalize in a way to
ensure that the d-dimensional generalized equation has a def-
inite symmetry, and reduces to the 1D case in a simple and
unambiguous way. Noticing that there are two terms (with
coefficients λ1, λ2) containing single spatial derivative on h in
(5), which imply the absence of the space inversion symmetry
in EoM, we generalize the EoM of h(x, t ) to d dimensions
by assuming breakdown of the inversion symmetry along
one particular dimension, while the system remains inversion
symmetric along all other (d − 1) directions. We use ‖ as
subscript to denote the special direction in which the inversion
symmetry is absent. The generalized EoM for h(x, t ) (x now
refers as position on d-dimensional surface) has the generic
form

∂h

∂t
= ν∇2h + λ1∂‖h + λmδm − λ

2
[∇h]2

+ λ2[δm∂‖h] − λ3[δm(∇h)2] + f . (6)

It is clear that Eq. (6) has a lower symmetry than the d-
dimensional KPZ equation. It is rotationally invariant in
the (d − 1)-dimensional subspace, which excludes the ‖
direction, unlike the d-dimensional KPZ equation that is
rotationally invariant in the full d-dimensional space. It is in-
structive to write down the Burgers version [15,16] of Eq. (6)
for a quenched disorder Burgers velocity v by using the trans-
formation v = ∇h:

∂v
∂t

= ν∇2v + λ1∇v‖ + λm∇δm − λ

2
∇[v]2

+ λ2∇[δmv‖] − λ3∇[δm(v)2] + ∇ f . (7)

The variances of the noises in d-dimensional space are just
the direct generalizations, respectively, of (2) and (3):

δm(x)δm(0) = 2D̃δd (x). (8a)

〈 f (x, t ) f (0, 0)〉 = 2Dδd (x)δ(t ). (8b)

Due to the presence of quenched disorders, Eq. (6) does not
remain invariant under the Galilean transformation x 
→ x +
v0t, t 
→ t, h(x, t 
→ h(x + v0t ) + v0 · x). In Eq. (6) the term
with linear derivative λ1∂‖h implies the existence of under-
damped propagating modes. The surface would be anisotropic
due to presence of the propagating modes with picking up
a specific direction, that without any loss of generality is
assumed to be along the x direction, i.e., the parallel direction
x‖ is identified with the x direction. In the absence of any
quenched disorder [δm(x) = 0], Eq. (10) reduces to the well-
known KPZ equation.

Notice that the height fluctuation governed by Eq. (6) is
driven by quenched [δm(x)] and annealed [ f (x, t )] noises,
which scale in differently under rescaling of space and
time (see below). Decomposing h(x, t ) = h1(x) + h2(x, t ), a
time-independent h1(x) and a time-dependent h2(x, t ) is a
convenient choice that allows us to extract the fluctuation
corrections systematically. Furthermore, this choice allows us
to enlarge the effective parameter space [see the text below
Eq. (10)], which in the RG procedure eventually produce fixed
points and which can be interpreted straightforwardly [9].
Time-independent function h1(x) then satisfies

−νψ∇2h1 − λ1ψ∂‖h1 − λmδm + λψ

2
(∇h1)2

−λ2ψ [δm(∂‖h1)] + λ3ψ [δm(∇h1)2] = 0. (9)

Time-dependent function h2(x, t ) satisfies

∂h2

∂t
= νρ∇2h2 + λ1ρ∂‖h2 − λρ

2
(∇h2)2 + λ2ρ[δm(∂‖h2)]

− λρψ (∇h1) · (∇h2) − λ3ρ[δm(∇h2)2]

− λ3ρψ [δm∇h1 · ∇h2] + f . (10)

Here, we use different sets of model parameters associated
h1 and h2 to allow for different scalings of h1 and h2 in long
wavelength limit. The parameters νψ, νρ are directly propor-
tional to ν; similarly λψ , λρ , λρψ are proportional to λ; λ1ψ ,
λ1ρ are proportional to λ1; also λ2ψ , λ2ρ are proportional to λ2

and λ3ψ , λ3ρ , λ3ρψ are proportional to λ3. However, we treat
each of these constants as independent parameters, since any
simple relation between them in the bare or unrenormalized
theory is not maintained by the RG procedure (see below).

Equations (9) and (10) obviously generalize the corre-
sponding 1D equations in Ref. [9]. Field h1(x) represents
the frozen height of a surface, which is entirely driven
by the quenched disorder δm(x), whereas h2 represents
the time-dependent height of a growing surface, driven by
the time-dependent additive noise f . Clearly, the dynamics
of the height field h2(x, t ) in Eq. (10) is affected by the frozen
height field h1(x) that satisfies Eq. (9), and hence by the
quenched disorder.

We define two cases depending on the choices of parame-
ters. Case I: Here, λ1 �= 0, λ2 �= 0 hence λ1ψ, λ1ρ, λ2ψ, λ2ρ

are nonzero, leading to the presence of propagating

024109-3



ASTIK HALDAR PHYSICAL REVIEW E 104, 024109 (2021)

modes. Case II: here, λ1 = 0, λ2 = 0 mean λ1ψ = λ1ρ =
λ2ψ = λ2ρ = 0, propagating modes vanish and the full d-
dimensional isotropic property of surface is restored. These
two cases are corresponding to the away from half-filled limit
and near to the half-filled limit of the periodic TASEP [9],
respectively.

III. KARDAR-PARISI-ZHANG UNIVERSALITY CLASS

We first briefly review the KPZ universality before analyz-
ing our disordered model. The KPZ equation is given by [8]

∂h

∂t
= ν∇2h − λ

2
(∇h)2 + f . (11)

Here, h(x, t ) is height of d-dimensional surface at any instant
time t and driven by Gaussian white noise f with satisfying
(8b). This model equation admits Galilean invariance due
to transformation of the inertial frame. Correlation function
of the height fluctuations follows the scaling in the long
wavelength limit:

〈[h(x, t ) − h(0, 0)]2〉 = |x|2χΘ (|x|z/t ). (12)

Here, χ and z are roughness and dynamic exponents for h; Θ

is a dimensionless scaling function of its argument. One could
find the scaling behavior of h(x, t ) in the long time limit by
defining a dimensionless coupling constant g = λ2D

ν3 . The RG
flow equation for g in the one-loop perturbative theory satisfies

dg

dl
= g

[
2 − d + g

4d − 6

d

]
. (13)

Notice from (13) that g diverges at d = 3/2; furthermore,
between 3/2 < d < 2 g = 0, is the only physically acceptable
solution. This is believed to be an artifact of the one-loop
perturbation theory [17]. The Galilean invariance of the KPZ
equation leads to χ + z = 2, an exact relation between the
scaling exponents. At one dimension, z = 3/2 and χ = 1/2
are exactly known analytically due to the fluctuation-
dissipation-theorem in the model. Coupling g grows under
rescaling and is marginally relevant at d = 2, the lower critical
dimension of the KPZ equation. The KPZ equation admits a
roughening transition (smooth-to-rough phase transition) for
dimensions higher than 2D; the rough phase is inaccessible in
the perturbative theory. Various aspects of the KPZ equation
have been studied extensively by several methods, including
perturbative and nonperturbative methods. We refer the inter-
ested reader to Refs. [18–24] for details. Our studies here on
the quenched columnar disordered KPZ equation complement
and extend the general studies of the KPZ equation.

IV. UNIVERSAL PROPERTIES
AND SCALING BEHAVIOUR

The autocorrelation functions of h1(x) and h2(x, t ) are
characterized by the universal scaling exponents. The auto-
correlation functions are given by

C1(x) ≡ [h1(x) − h1(0)]2 = |x‖|2χ1 f1

( |x|μ1
⊥

x‖

)
, (14)

C2(x, t ) ≡ 〈[h2(x, t ) − h2(0, 0)]2〉

= |x‖|2χ2 f2

(
|x‖|z/t,

|x|μ2
⊥

x‖

)
. (15)

Here, f1 and f2 are two dimensionless scaling functions of
their arguments; x = (x‖, x⊥) with x‖ being the direction of
propagation of the traveling waves and x⊥ being d − 1 trans-
verse directions to the propagating direction of waves. The
scaling functions represent the generic anisotropy in the pres-
ence of the propagating waves. Scaling exponents χ1 and χ2

are roughness exponents for h1 and h2, respectively, and z is
dynamic exponent of h2; exponents μ1, μ2 are the anisotropy
exponents with μ2 = 1 in the pure d-dimensional KPZ equa-
tion (since it is fully isotropic).

A. Linear theory

The equal-time autocorrelation functions of h1(x) and
h2(x, t ) can be written down exactly in the linear theory using
the linear terms in (9) and (10). These in the Fourier space for
Case I are

〈|h1(k)|2〉 
 2D̃λ2
m

λ2
1ψk2

‖ + ν2
ψk4

⊥
, (16a)

〈|h2(k, t )|2〉 = D

νρk2
, (16b)

where in (16a) we have ignored k4
‖ in comparison with k2

‖
in the long wavelength limit. Naturally, the exponents χ1 =
(2 − d )/2 and χ2 = (2 − d )/2 in the linear theory are known
exactly. Furthermore, we identify that μ1 = 2 and μ2 = 1 in
the linear theory. See Ref. [14] for the linear analysis on the
KPZ equation.

Similarly, the equal-time autocorrelation functions for
Case II are also known exactly in the linear theory. These are
given by

〈|h1(k)|2〉 = 2D̃λ2
m

ν2
ψk4

. (17a)

〈|h2(k, t )|2〉 = D

νρk2
(17b)

in the Fourier space. We thus find that χ1 = (4 − d )/2 and
χ2 = (2 − d )/2 in linear theory; in this case μ1 = 1 = μ2. z
remains at 2 and χ2 has the same value in the linear theory in
both the cases.

B. Nonlinear effects

The nonlinear terms in (9) and (10) may change the scaling
exponents found in the linear theory. The exponents can no
longer be found exactly in the presence of the nonlinear terms.
Furthermore, naïve perturbation theory produces diverging
corrections to the model parameters. To handle these diver-
gences systematically, we here use perturbative dynamical RG
approach to find the effects of anharmonic terms in scaling
exponents for long wavelength limit.

The RG method is well documented in the literature
[14,15,25]; we briefly outline the steps of the RG analysis. The
momentum shell dynamic RG consists of few steps, at first the
fields are expressed as the sum of low and high wave-vector
modes: h1(q) = h<

1 (q) + h>
1 (q) and h2(q, ω) = h<

2 (q, ω) +
h>

2 (q, ω). Here <, > represent low and high wave-vector
modes, respectively. Let the upper wave-vector cutoff be � ∼
1/a, where a is the microscopic length scale in the system.
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We integrate out the high wave-vector Fourier modes of fields
having wave vectors �e−δl < |q| < �. This integration can
only be done perturbatively, which are represented diagram-
matically by the Feynman diagrams, which in turn are given
in the Appendices B and C. This integration reduces the upper
cutoff of wave vector to �e−δl from �, and then we restore
the upper limit of wave vector to � by rescaling wave vector
by q′ = qeδl , along with the frequency by ω′ = ωezδl , where
z is the dynamic exponent. The long wavelength parts of the
fields are also rescaled; the necessary details are available in
Appendix A. This procedure ultimately yields the RG flow
equations, which in turn gives the RG fixed points.

C. Universality class of Case I

In this case, the surface is anisotropic due to the existence
of the traveling waves with nonzero λ1ψ , λ1ρ . We write the
model equations keeping the most relevant terms in the long
wavelength limit below.

−νψ∇2h1 − λ1ψ∂‖h1 − λmδm + λψ

2
(∇h1)2

−λ2ψ [δm(∂‖h1)] = 0, (18)

and

∂h2

∂t
= νρ∇2h2 + λ1ρ∂‖h2 − λρ

2
(∇h2)2 + λ2ρ[δm(∂‖h2)]

− λρψ (∇h1) · (∇h2) + f . (19)

The perturbative corrections of these parameters, which in-
volve disorder (proportional to D̃) are finite; infrared divergent
corrections are due to the pure KPZ nonlinear term [ λρ

2 (∇h2)2]
only, see Appendix B. Now to determine the scaling of the
dimensionless effective coupling constants near the Gaus-
sian fixed point, that depend upon the disorder variance D̃.

These are a0 = λ2
ψ D̃λ2

m

λ4
1ψ

, a1 = D̃λ2
2ψ

λ2
1ψ

, a2 = λ2
ρψ D̃λ2

m

λ2
1ρλ2

1ψ

, a3 = λ2
2ρ D̃

λ2
1ρ

,

a4 = λψλ2ψ D̃λm

λ3
1ψ

. Under the rescaling of the wave vector, fre-

quency, and the fields, the flow of these near the Gaussian
fixed point [9]

da0

dl
= −da0,

da1

dl
= −da1,

da2

dl
= −da2,

da3

dl
= −da3,

da4

dl
= −da4. (20)

Thus all these coupling constants are irrelevant near the Gaus-
sian fixed point at all dimensions. The Galilean invariance of
the dynamics of h2(x, t ) is restored in the long wavelength
limit due to the irrelevance of the quenched disorder. The

flow of the dimensionless coupling constant g̃ = λ2
ρD
ν3
ρ

, which

appears in the pure KPZ problem as well, near the Gaussian
fixed point is

dg̃

dl
= g̃[2 − d]. (21)

This is unstable for d < 2, but stable for d > 2. At any rate,
even for d > 2, g̃ remains more relevant near the Gaussian
fixed point than the other dimensionless coupling constants
as defined above, all of which have their origins in the dis-
order. We can thus conclude that disorder is irrelevant (in a

RG sense) in the long wavelength limit at all dimensions for
Case I. This immediately implies that the long wavelength
scaling is governed by the KPZ nonlinearity with the univer-
sal scaling belonging to the KPZ universality class. Thus, a
roughening transition is expected at d > 2, just as it is for
the pure KPZ equation, to a rough phase identical to that
for the pure KPZ equation, whose scaling properties are not
accessible to the standard perturbative calculations. Further-
more and related to what we have just concluded, isotropy is
restored in the long wavelength limit of the fluctuations of h2.
This implies μ2 = 1 in the renormalized equation, as in the
pure KPZ equation. This generalizes one of the conclusions
of Ref. [9] valid for 1D. We therefore conclude that while the
Gaussian fixed point is stable with respect to perturbations by
the quenched disorder, the pure KPZ nonlinearity (with cou-
pling g̃) remains relevant and determines the universal scaling
properties. Thus the long wavelength properties of the model
is given by the KPZ universality class. Therefore lower critical
dimension is 2 and a roughening transition (i.e., a smooth-
to-rough transition) exists as in the pure KPZ equation. The
upper critical dimension of Case I, identical to that for the
pure KPZ equation, is not known. It is speculated to be 4 by
some authors [26–30], although it remains debatable till the
date.

D. Universality class of Case II

We now discuss the universal scaling properties of Case
II. In this case, the underdamped propagating modes vanish
(since λ1ρ = 0) in the dynamics of h2(x, t ) as discussed be-
fore in Sec. II. Thus the surface is isotropic. We write down
below the model equations keeping most relevant nonlinear
terms:

−νψ∇2h1 − λmδm + λψ

2
(∇h1)2 = 0. (22)

∂h2

∂t
= νρ∇2h2 − λρψ [∇h1 · ∇h2] + f . (23)

The naïve perturbative fluctuation corrections to the model
parameters diverge in the long wavelength limit, which can
be systematically handled within the RG framework. Here
we perform one loop RG analysis; fluctuation corrections of
parameters are represented by the one loop Feynman diagrams
whose details are available in Appendix C. The flow equations
of the model parameters are

dνψ

dl
= νψ

[
d − 2 +

(
2

d
− 1

)
g1

]
. (24a)

dλm

dl
= λm

[
−χ1 − 3d

2
+ g1

2

]
. (24b)

dλψ

dl
= λψ

[
−d − 2 + χ1 − 2g1

d

]
. (24c)

dνρ

dl
= νρ

[
z − 2 +

(
2

d
− 1

)
g2

]
. (24d)

dD

dl
= D[−d + z − 2χ2 + 2g2]. (24e)

dλρψ

dl
= λρψ

[
z − 2 + χ1 − 2g2

d

]
. (24f)
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FIG. 1. Nontrivial fixed point value of g1 as a function of d
(surface dimension) in one loop calculation. This is also same for
g2; see text.

Here, the dimensionless coupling constants are g1 =
λ2

ψ D̃λ2
m

ν4
ψ


d
(2π )4 , g2 = λ2

ρψ D̃λ2
m

ν2
ψν2

ρ


d
(2π )4 involving D̃, where 
d is an-

gular part of the d-dimensional loop integrals. The flow
equations of g1 and g2 are

dg1

dl
= g1[4 − d + (5 − 12/d )g1], (25)

dg2

dl
= g2[4 − d + (2 − 8/d )g2 + (3 − 4/d )g1]. (26)

Flow equations (25) and (26) clearly reveal that d = 4 is the
critical dimension of both g1 and g2. Let us now calculate
the fixed point (FP) values of g1 and g2 at different dimen-
sions by setting dg1/dl = 0 = dg2/dl . The Gaussian FP is
g∗

1 = 0 = g∗
2, furthermore one can find easily nontrivial FP as

g∗
1 = 4−d

12/d−5 from (25) and using this in (26) g∗
2 = 4−d

12/d−5 same
as g∗

1, shown in Fig. 1. Notice that the nontrivial fixed point
diverges at d = 12/5 and physically unacceptable between the
dimensions 12/5 and 4.

We find in detail below for different dimensions:
(i) d � 12/5: In this regime the Gaussian FP g∗

1 = 0 = g∗
2

is unstable. Thus g∗
1 and g∗

2 should be nonzero in the statis-
tical steady state, implying relevance (in a RG sense) of the
quenched disorder. The nontrivial FP is linearly stable. The
scaling exponents at the stable fixed point are given below.

(A) d = 1: The exponents are χ1 = 9/7, χ2 = 5/7, z =
11/7. Thus χ2 + z = 16/7 > 2, in contrast to the pure 1D
KPZ equation. The results are consistent with [9].

(B) d = 2: The exponents are χ1 = 2, χ2 = 2, z = 2. Also
here χ2 + z > 2, unlike the pure KPZ equation.

(ii) Dimension 12/5 � d < 4: For this intermediate range
of dimensions, physically acceptable fixed point is only g∗

1 =
0, g∗

2 = 0, which, however, is an unstable fixed point. The per-
turbation theory apparently breaks down for 12/5 � d < 4,
which we believe is an artifact of the one-loop expansion em-
ployed here. This is similar to what we find for 3/2 < d < 2
in the one-loop RG calculations for the pure KPZ equation;
see Eq. (13) [17]. A schematic RG flow diagram is shown in
Fig. 2 below.

(iii) Dimension d = 4: It is the lower critical dimension
of the presented model here. The nonlinear couplings are

FIG. 2. Schematic RG flow diagram for d < 4. Stable and unsta-
ble fixed points are shown; flow lines indicate the direction of the RG
flows towards stable FP (see text).

marginally relevant, are shown in (25) and (26). This implies
that at d = 4, the coupling constants flow to infinity in a
finite RG time or for a finite system size, that is controlled
by the precise values of the unrenormalized model parameters
(and hence nonuniversal). This is reminiscent of the flow of
the coupling constant at two dimensions in the pure KPZ
equation.

(iv) Dimension d > 4: Let d = 4 + ε, where ε > 0 is as-
sumed to be small. The Gaussian fixed points are now stable,
corresponding to z = 2, χ1 = 2 − d/2, and χ2 = 1 − d/2,
corresponding to asymptotically smooth phases. In addition,
similar to the pure KPZ equation, we expect unstable fixed
points with both g∗

1, g∗
2 ∼ O(ε), that would indicate a disorder

induced roughening transition in the model. In fact, we do find
g∗

1 = ε/2. This however leaves g2 marginal. However, given
the fact that g∗

2 = 0 is a stable fixed point (along with g∗
1 = 0),

and g∗
1 has an unstable fixed point that is O(ε), we specu-

late that g2 too shows a roughening transition such that for
large enough bare or unrenormalized value of g2, it flows to
infinity under renormalization. Our one-loop RG appears to be
inadequate to capture this behavior; higher-order perturbation
theory or numerical solutions of the dynamical equation could
be useful in this regard. This further indicates that d = 4 is the
lower critical dimension for both g1 and g2.

Some studies [26–30] suggest d = 4 as the upper critical
dimension on or above which the scaling exponents from the
linear theory holds, for the pure KPZ equation. But here d = 4
is found to be the lower critical dimension, which is higher
than the lower critical dimension of the pure KPZ equation.
Since the upper critical dimension of a model is higher than
the lower critical dimension in most cases, we expect the
upper critical dimension for Case II is to be greater than
d = 4.

In the pure KPZ equation, the stable fixed point that
governs the rough phase is inaccessible in a perturbation
theory, although such a fixed point should exist on physical
ground. Similarly, here too a globally stable fixed point that
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FIG. 3. Speculated global RG flows in the g1 − g2 plane in an
Occam’s razor style argument. Perturbative accessible (small filled
black circles) and inaccessible (small coloured squares) are shown.
RG flow lines with directions are marked. Notice not all the unstable
and in-principle perturbatively accessible fixed points are captured
by the one-loop theory; see text.

characterizes the rough phase must exist. Using an “Occam’s
razor” style argument, we speculate the RG flow diagram
Fig. 3 that has the physically acceptable and simplest flow
topology. Notice that at this putative strong coupling fixed
point, both g1 and g2 are expected to be nonzero, for if g2 = 0
at this fixed point, the rough phase should become identical to
that of the pure KPZ equation. Such a possibility is, however,
ruled out, since a strong coupling perturbatively inaccessible
rough phase appears already at 2d for the pure KPZ equation,
whereas for Case II here, it can appear only at 4d or above.
Thus the rough phase here is expected to be different from its
counterpart for the pure KPZ equation.

Finally, we give a schematic, pictorial comparison between
the phases and phase transitions in Case I and Case II as a
function of dimension d in Fig. 4 below.

We expect the new universality class that emerges in
the absence of the propagating waves holds not only when
these waves strictly vanish, but also when these have small
amplitudes, i.e., a nonuniversal small window of speeds of
propagation around zero, for reasons identical to those enunci-
ated in Ref. [9]. Essentially for sufficiently high wave vectors,
the propagating waves are subdominant to the damping terms.
If under mode elimination from the high wave-vector lim-
its, the theory gets renormalized before the crossover scale
ξc between the propagating modes and damping terms, the
renormalized theory at the crossover scale would be like what
we have obtained for Case II. Since at length scales larger
than ξc, the propagating modes are important, and no further
renormalization takes place. As a result, the scaling behavior
corresponding to our Case II above will be displayed by the
system, with a non-KPZ scaling behavior. If, on the other

FIG. 4. Phases and phase transitions in the model as a function of
d . (top) Case I and (bottom) Case II. Lower (dlcI = 2) and (dlcII = 4)
dimensions for Case I and Case II, respectively, and (yet unknown)
upper critical (ducI ) and ducII dimensions, respectively, for Case I and
Case II are marked. Further, ducII is expected to be higher than ducI ;
see text.

hand, the theory does not get renormalized till the crossover
scale ξc is reached, further renormalization of the theory at
scales larger than ξc takes place, which comes entirely from
the KPZ nonlinearity. This naturally leads to a scaling behav-
ior identical to the pure KPZ equation; see Ref. [9] for more
detailed discussions.

V. SUMMARY AND OUTLOOK

To summarize, we have studied here the universal scaling
properties of d-dimensional KPZ equation with quenched
columnar disorder. For this, we have generalized the 1D
continuum equation constructed and studied in Ref. [9]. We
have obtained a number of interesting results. For instance,
we show that the columnar disorder in general leads to the
loss of the Galilean invariance of the pure KPZ equation and
generation of underdamped propagating waves in the system,
which in turn makes the system anisotropic. Interestingly,
these waves render the quenched disorder irrelevant (in a RG
sense); as a result, the universal scaling exponents belong to
the d-dimensional KPZ universality class. Since the pure KPZ
equation is isotropic, this implies that the long wavelength
scaling properties of the model are actually isotropic. We
argue that the rough phase of the model that is inaccessible
in a perturbation theory, is statistically identical to that for
the pure KPZ equation in the long wavelength limit. Thus
isotropy becomes an effective symmetry in the long wave-
length limit. For certain choices of the model parameters, the
propagating waves vanish. In that limit the model is already
isotropic. Furthermore, the quenched disorder in the absence
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of the waves is now relevant (in a RG sense). We establish
that the model now has d = 4 as the lower critical dimension.
We have calculated the roughness and the dynamic scaling
exponents within a one-loop approximation, which belong to
a universality class hitherto unknown. We argue that above
d = 4 the model undergoes a roughening transition from a
smooth to rough phase that is analogous to the well-known
roughening transition in the KPZ equation above d = 2. This
rough phase, although not accessible in a perturbation theory,
should be statistically different from its counterpart in the
pure KPZ equation. We have argued that the upper critical
dimension in Case II should be higher than 4.

We have considered only Gaussian-distributed short-
ranged quenched disorder. Our calculational framework can
be extended to Gaussian-distributed long-range disorder in a
straightforward manner. While precise values of the scaling
exponents should depend upon the scaling of the variance of
the long-range disorder, by using the logic outlined above we
can generally argue that the universal scaling properties will
crucially depend upon whether or not there are underdamped
propagating waves. We expect our results here will provide
impetus to future theoretical work along this direction.
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APPENDIX A: PERTURBATION THEORY:
GENERATING FUNCTIONAL AND SCALING

The generating functional [31–35] is defined as

Z =
∫

Dĥ1Dh1Dĥ2Dh2Dδm exp{−S[ĥ1, h1, ĥ2, h2, δm]}.
(A1)

ĥ1, ĥ2 are the conjugate fields to h1, h2 respectively. Here,
S[ĥ1, h1, ĥ2, h2, δm] is the action functional. Two types of
terms are present in the action S: linear terms and nonlinear
terms. The perturbation theory is set up by expanding the
nonlinear terms present in the action.

The perturbative step of evaluating fluctuation corrections
is followed by rescaling wave vector (equivalently, space) and
frequency (equivalently, time) as q → bq and ω → bzω, re-
spectively. The long wavelength parts of the fields are rescaled
as follows:

ĥ1(q) = b−χ1−d ĥ1(bq), h1(q) = bd+χ1 h1(bq),

δm(q) = bd/2δm(bq),

ĥ2(q, ω) = bz−χ2 ĥ2(bq, bzω),

h2(q, ω) = bd+z+χ2 h2(bq, bzω). (A2)

APPENDIX B: RENORMALIZATION GROUP
ANALYSIS FOR CASE I

The action functional corresponding to equations (18) and
(19) is

S[ĥ1, h1, ĥ2, h2, δm] =
∫

x
ĥ1[−νψ∇2h1 − λ1ψ∂‖h1 − λmδm + λψ

2
(∇h1)2 − λ2ψ [δm(∂‖h1)] + δm2

4D̃

+
∫

x,t
ĥ2[−Dĥ2 + ∂t h2 − νρ∇2h2 − λ1ρ∂‖h2 + λρ

2
(∇h2)2 − λ2ρ[δm(∂‖h2)] + λρψ (∇h1) · (∇h2)]. (B1)

The two point functions found from linear terms present in
(B1) and nonlinear vertices in (B1) are presented diagrammat-
ically in Fig. 5 and Fig. 6, respectively.

The bare two point functions in the harmonic theory ne-
glecting nonlinear terms from (B1) are

〈ĥ1(−k)h1(k)〉 = 1

νψk2 + ik‖λ1ψ

. (B2a)

〈|h1(k)|2〉 = 2D̃λ2
m

k2
‖λ

2
1ψ + ν2

ψk4
. (B2b)

〈h1(−k)δm(k)〉 = 2D̃λm

νψk2 − ik‖λ1ψ

. (B2c)

FIG. 5. Diagrammatic representations of two point functions.
Arrows in propagators [(a), (e)] constitute casuality information.

〈ĥ2(−k,−ω)h2(k, ω)〉 = 1

−iω + ik‖λ1ρ + νρk2
. (B2d)

〈|h2(k, ω)|2〉 = 2D

(ω − k‖λ1ρ )2 + ν2
ρk4

. (B2e)

FIG. 6. Diagrammatic representations of the anharmonic vertices
terms in action (B1).

024109-8



UNIVERSAL PROPERTIES OF THE … PHYSICAL REVIEW E 104, 024109 (2021)

FIG. 7. One loop Feynman diagrams for the corrections of the
propagator and correlator of h1: (a), (b) for propagator and (c), (d),
(e) for correlator corrections.

The fluctuation corrections of the propagators and correlators
of h1, h2 are represented by one-loop Feynman diagrams in
Fig. 7 and Fig. 8, respectively.

The one-loop contributions to the corrections of parameters
in (B1) are finite. Those are of the forms

Fig. 7(a) = λ2
ψ D̃λ2

m

iλ3
1ψ

∫
dd q

(2π )d

1

q3
‖

[k2q2 + (k · q)2

− q2k · q(2 + 3k‖/q‖)]. (B3a)

Fig. 7(b) = 2λ2
2ψ D̃

λ1ψ

∫
dd q

(2π )d
. (B3b)

Fig. 7(c) = λ2
ψ (D̃λ2

m)2

λ4
1ψ

∫
dd q

(2π )d
. (B3c)

Fig. 7(d) = 2λ2
2ψ D̃2λ2

m

λ2
1ψ

∫
dd q

(2π )d
. (B3d)

Fig. 7(e) = 2λψλ2ψ D̃λ2
m

λ3
1ψ

∫
dd q

(2π )d

q2

q2
‖
. (B3e)

Fig. 8(a) = 2DD̃λ2
ρψλ2

m

λ2
1ρλ

2
1ψ

∫
dd q

(2π )d

q2

q2
‖
. (B4a)

Fig. 8(b) = −2Dλ2
2ρ

λ2
1ρ

∫
dd q

(2π )d

q2
‖

q2
. (B4b)

FIG. 8. One loop Feynman diagrams for the corrections of the
correlator and propagator of h2: (a), (b) for correlator and (c), (d) for
propagator corrections.

FIG. 9. One-loop Feynman diagram for the vertex λψ correction
for Case II.

Fig. 8(c) = iD̃λ2
ρψλ2

m

λ1ρλ
2
1ψ

∫
dd q

(2π )d

1

qq2
‖

[−2(k · q)2 − k2q2]

+ q(k · q)

q2
‖

[2 + k/q + k‖/q‖]. (B4c)

APPENDIX C: RENORMALIZATION GROUP ANALYSIS
FOR CASE II

Action functional corresponding to Eqs. (22) and (23) is

S =
∫

x
ĥ1[−νψ∇2h1 − λmδm + λψ

2
(∇h1)2] + δm2

4D̃

+
∫

x,t
ĥ2[−Dĥ2+(∂t h2 − νρ∇2h2+λρψ∇h1 · ∇h2)].

(C1)

Two point functions of the harmonic theory neglecting non-
linear terms fom (C1) are

〈ĥ1(−k)h1(k)〉 = 1

νψk2
. (C2a)

〈|h1(k)|2〉 = 2D̃λ2
m

ν2
ψk4

. (C2b)

〈h1(−k)δm(k)〉 = 2D̃λm

νψk2
. (C2c)

〈ĥ2(−k,−ω)h2(k, ω)〉 = 1

−iω + νρk2
. (C2d)

〈|h2(k, ω)|2〉 = 2D

ω2 + ν2
ρk4

. (C2e)

The two point functions for this case are also represented
diagrammatically in Fig. 5. For this case, the nonlinear ver-
tices are presented by Figs. 6(a), 6(b), and 6(d).

In this case, the one loop diagrams in Figs. 7(a), 7(c)
contribute to the corrections of the propagator and correlator
of h1, respectively. The diagrams in Figs. 8(a), 8(c) contribute
to the corrections of correlator and propagator of h2, respec-
tively. Figures 9 and 10 contribute to vertices corrections in
(C1).

The one-loop contributions to corrections of parameters in
(C1) are

Fig. 7(a) = λ2
ψ D̃λ2

m

ν3
ψ

[
2

d
− 1

] ∫ Λ

Λ/b

dd q
(2π )d

1

q4
. (C3a)
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FIG. 10. One-loop Feynman diagram for the vertex λρψ correc-
tion for Case II.

Fig. 7(c) = λ2
ψ D̃2λ2

m

ν4
ψ

∫ Λ

Λ/b

dd q
(2π )d

1

q4
. (C3b)

Fig. 8(a) = 2Dλ2
ρψ D̃λ2

m

ν2
ψν2

ρ

∫ Λ

Λ/b

dd q
(2π )d

1

q4
. (C4a)

Fig. 8(c) = λ2
ρψ D̃λ2

m

ν2
ψνρ

[1 − 2/d]
∫ Λ

Λ/b

dd q
(2π )d

1

q4
. (C4b)

Fig. 9(a) = 2λ3
ψ D̃λ2

m

ν4
ψd

∫ Λ

Λ/b

dd q
(2π )d

1

q4
. (C5a)

Fig. 9(b) = −λ3
ψ D̃λ2

m

ν4
ψd

∫ Λ

Λ/b

dd q
(2π )d

1

q4
. (C5b)

Fig. 10 = 2λ3
ρψ D̃λ2

m

ν2
ψν2

ρd

∫ Λ

Λ/b

dd q
(2π )d

1

q4
. (C6)

Finally one-loop corrected parameters in (C1) are

ν<
ψ = νψ

[
1 +

(
2

d
− 1

)
λ2

ψ D̃λ2
m

ν4
ψ

∫ Λ

Λ/b

dd q
(2π )d

1

q4

]
. (C7a)

λ<
m = λm

[
1 + λ2

ψ D̃λ2
m

2ν4
ψ

∫ Λ

Λ/b

dd q
(2π )d

1

q4

]
. (C7b)

λ<
ψ = λψ

[
1 − λ2

ψ D̃λ2
m

ν4
ψ

2

d

∫ Λ

Λ/b

dd q
(2π )d

1

q4

]
. (C7c)

ν<
ρ = νρ

[
1 +

(
2

d
− 1

)
λ2

ρψ D̃λ2
m

ν2
ψν2

ρ

∫ Λ

Λ/b

dd q
(2π )d

1

q4

]
. (C7d)

D< = D

[
1 + 2λ2

ρψ D̃λ2
m

ν2
ψν2

ρ

∫ Λ

Λ/b

dd q
(2π )d

1

q4

]
. (C7e)

λ<
ρψ = λρψ

[
1 − λ2

ρψ D̃λ2
m

ν2
ψν2

ρ

2

d

∫ Λ

Λ/b

dd q
(2π )d

1

q4

]
. (C7f)
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