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We investigate by means of Monte Carlo simulations the dynamic phase transition of the two-dimensional
kinetic Blume-Capel model under a periodically oscillating magnetic field in the presence of a quenched random
crystal-field coupling. We analyze the universality principles of this dynamic transition for various values of
the crystal-field coupling at the originally second-order regime of the corresponding equilibrium phase diagram
of the model. A detailed finite-size scaling analysis indicates that the observed nonequilibrium phase transition
belongs to the universality class of the equilibrium Ising ferromagnet with additional logarithmic corrections in
the scaling behavior of the heat capacity. Our results are in agreement with earlier works on kinetic Ising models.

DOI: 10.1103/PhysRevE.104.024108

I. INTRODUCTION

In the last decades our understanding of equilibrium
critical phenomena has developed to a point where well-
established results are available for a wide variety of systems.
In particular, the origin and/or the difference between equi-
librium universality classes is by now well understood. This
observation also partially holds for systems under the pres-
ence of quenched disorder. However, far less is known for the
physical mechanisms underlying the nonequilibrium phase
transitions of many-body interacting systems that are far from
equilibrium and clearly a solid classification of nonequilib-
rium phase transitions into universality classes is missing.

We know today that when a ferromagnetic system, be-
low its Curie temperature, is exposed to a time-dependent
oscillating magnetic field, it may exhibit a fascinating dy-
namical behavior [1]. In a typical ferromagnetic system being
subjected to an oscillating magnetic field, there occurs a
competition between the timescales of the half-period of the
applied field t1/2 and the metastable lifetime τ , which is de-
fined as the average time it takes the system to leave one
of its two degenerate zero-field equilibrium states when a
field of magnitude h0 opposite to the initial magnetization is
applied. In practice, τ is measured as the first-passage time
to zero magnetization. When t1/2 < τ , the time-dependent
magnetization tends to oscillate around a nonzero value which
corresponds to the dynamically ordered phase. In this re-
gion, the time-dependent magnetization is not capable of
following the external field. However, for larger values of the
half-period, the system is given enough time to follow the
external field and in this case the time-dependent magnetiza-
tion oscillates around its zero value, indicating a dynamically
disordered phase. When t1/2 ≈ τ , a dynamic phase transition
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takes place between the dynamically ordered and disordered
phases.

Throughout the years, there have been several theoret-
ical [2–22] and experimental studies [23–27] dealing with
dynamic phase transitions and hysteresis phenomena. The
main conclusion is that both the amplitude and period of the
time-dependent magnetic field play a key role in dynamic
critical phenomena. Furthermore, the characterization of uni-
versality classes in spin models driven by a time-dependent
oscillating magnetic field has also attracted a lot of interest
lately [28–37]. A short listing of the main results is given in
the following: (1) The critical exponents of the kinetic Ising
model were found to be compatible to those of the equi-
librium Ising model at both two (2D) and three dimensions
(3D) [28–30,32]. (2) Buendía and Rikvold [31] estimated the
critical exponents of the 2D Ising model and provided strong
evidence that the characteristics of dynamic phase transition
are universal with respect to the choice of stochastic dynam-
ics. These authors used the so-called soft Glauber dynamics
[38], for which both nucleation and interface propagation are
slower and the interfaces smoother than for the standard hard
Glauber and Metropolis dynamics. (3) The role of surfaces
at nonequilibrium phase transitions in Ising models has been
elucidated by Park and Pleimling [33]: the nonequilibrium
surface exponents were found to be different than their equi-
librium counterparts. (4) Experimental evidence by Riego
et al. [27] and numerical results by Buendía and Rikvold [35]
verified that the equivalence of the dynamic phase transition to
an equilibrium phase transition is limited to the area near the
critical period and for zero bias. (5) Numerical simulations by
Vatansever and Fytas showed that the nonequilibrium phase
transitions of the pure and random-bond spin-1 Blume-Capel
model belong to the universality class of the equilibrium pure
Ising model with logarithmic corrections in the disordered
case [36,37]. Some general and very useful features of the
dynamic phase transition of the pure Blume-Capel model can
also be found in Refs. [8,16,17,19,39,40].
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The above results in 2D and 3D kinetic Ising and Blume-
Capel models establish a mapping between the universality
principles of the equilibrium and dynamic phase transitions
of spin- 1

2 and spin-1 models. They also provide additional
support in favor of an earlier investigation of a Ginzburg-
Landau model with a periodically changing field [10], as well
with the symmetry-based arguments of Grinstein et al. in
nonequilibrium critical phenomena [41].

As the vast majority of works in the field deal with pure
systems, in this paper we attempt to shed some additional light
on the effect of quenched disorder on dynamic phase transi-
tions [37]. We should note here some earlier mean-field and
effective-field theory treatments of the problem where it was
shown that the dynamic character of a typical system driven
by a time-dependent magnetic field sensitively depends on the
amount of disorder, accounting for reentrant phenomena and
dynamic tricritical points [42–47].

In this paper we use as a test-case platform for our numer-
ical experiment the square-lattice Blume-Capel model [48]
under a time-dependent magnetic field, diffusing disorder in
the crystal-field coupling [see below Eq. (2)]. This type of
randomness has also been used in the past for the equilibrium
version of the model by Branco and Boechat [49], Sumedha
and Mukherjee [50], Vatansever et al. [51] and is much closer
to the experimental reality as it mimics the physics of random
porous media in 3He - 4He mixtures [52]. In a nutshell, our
extensive Monte Carlo simulations for various values of the
crystal-field coupling along the phase boundary indicate that
the dynamic phase transition of the model belongs to the uni-
versality class of the corresponding equilibrium Ising model
with logarithmic corrections in the heat-capacity scaling due
to the presence of quenched disorder.

The rest of the paper is organized as follows: In Sec. II
we introduce the model, provide details of our simulation
protocol, and define the relevant thermodynamic observables.
The numerical results are presented in Sec. III and a summary
of our conclusions is given in Sec. IV.

II. MODEL AND METHODS

A. Model

The Hamiltonian of the Blume-Capel model under a time-
dependent oscillating magnetic field reads as

H = −J
∑
〈xy〉

σxσy +
∑

x

�xσ
2
x − h(t )

∑
x

σx, (1)

where the spin variable σx takes on the values {−1, 0,+1},
〈xy〉 indicates summation over nearest neighbors on the square
lattice, and the coupling J > 0 denotes the ferromagnetic ex-
change interactions. �x represents the crystal-field strength
and controls the density of vacancies (σx = 0). As mentioned
above we choose a site-dependent bimodal crystal-field prob-
ability distribution of the form

P (�x ) = pδ(�x + �) + (1 − p)δ(�x − �), (2)

where p ∈ (0, 1) is the control parameter of the disorder distri-
bution with μ = �(1 − 2p) and s = 2�

√
p(1 − p) the mean

value and standard deviation of the distribution (2), respec-
tively. Finally, the term h(t ) corresponds to a spatially uniform

FIG. 1. Phase diagram of the pure (p = 0) and random (p = 1
2 )

square-lattice Blume-Capel model in the �-T plane showing the
ferromagnetic (F) and paramagnetic (P) phases that are separated
by a continuous transition at small � (solid line) and a first-order at
large � (dotted line). The line segments meet at a tricritical point (�t ,
Tt) marked by a black rhombus. Numerical data shown are selected
estimates from previous studies, as indicated also in the panel.

periodically oscillating magnetic field, so that all lattice sites
are exposed to a square-wave magnetic field with amplitude
h0 and half-period t1/2 [30–32].

Some useful explanatory comments for the equilibrium
(h(t ) = 0) version of the model are in order:

(1) For � = ∞ the model is equivalent to the random site
spin- 1

2 Ising model, where sites are present or absent with
probability p or 1 − p, respectively [49].

(2) For p = 0 the pure Blume-Capel model is recovered
[53–56]. The phase diagram of the pure (p = 0) and random
(p = 1

2 ) model in the �-T plane is shown in Fig. 1 including
a variety of critical and transition points from the current
literature. For small � there is a line of continuous transitions
(in the Ising universality class) between the ferromagnetic
and paramagnetic phases that crosses the � = 0 axis at T0 ≈
1.693 [54]. For large � the transition becomes discontinuous
and it meets the T = 0 line at �0 = zJ/2 [48], where z = 4 is
the coordination number (as usual we set J = kB = 1 to fix the
temperature scale). The two line segments meet at a tricritical
point (�t ≈ 1.966, Tt ≈ 0.608) [55].

(3) With the inclusion of disorder (p > 0) the critical tem-
perature of the system rises (see the yellow filled squares
in Fig. 1). For further explanations and simple arguments
explaining this behavior we refer the reader to Ref. [51].

B. Numerical approach

We performed Monte Carlo simulations with periodic
boundary conditions using the single-site update Metropolis
algorithm [57–59]. This approach, together with the stochastic
Glauber dynamics [60], consists the standard recipe in kinetic
Monte Carlo simulations [31]. Let us briefly outline below the
steps of our algorithm:

(1) A lattice site is selected randomly among the N = L ×
L options.

(2) The spin variable located at the selected site is flipped,
keeping the other spins in the system fixed.
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(3) The energy change originating from this spin flip op-
eration is calculated using the Hamiltonian of Eq. (1) via
�H = Ha − Ho, where Ha denotes the system’s energy after
the trial switch of the selected spin and Ho corresponds to the
total energy of the old spin configuration. The probability to
accept the proposed spin update is given by

�(σx → σ ′
x ) =

{
exp(−�H/kBT ), if Ha � Ho

1, if Ha < Ho.
(3)

(4) If the energy is lowered, the spin flip is always ac-
cepted.

(5) If the energy is increased, a random number R is gen-
erated, such that 0 � R < 1: If R is less than or equal to the
calculated Metropolis transition probability the selected spin
is flipped. Otherwise, the old spin configuration remains un-
changed. Note that all transitions among the three spin states
{−1, 0,+1} are allowed in our numerical protocol.

Using the above scheme we simulated the model of Eqs. (1)
and (2) at � = 0.5, 1, and 2, fixing the control parameter
p to the value 1

2 , guided by the analysis of Ref. [51]. Sys-
tem sizes varied within the range L = 32–512 and for each
linear size an average over 500 independent realizations of
the disorder was performed. The first 103 periods of the ex-
ternal field were discarded during the thermalization process
and numerical data were collected and analyzed during the
following 11 × 103 periods of the field. Note that the time
unit in our simulations is one Monte Carlo step per site
(MCSS) and that error bars were estimated using the jackknife
method [59]. Appropriate choices of magnetic-field strength
h0 = 0.3 and temperature T (�) = 0.8 × Tc(�) ensured that
the metastable decay of the system following field reversal
occurs through nucleation and growth of many droplets of
the stable phase, i.e., the multidroplet regime. This point
was already emphasized by Sides et al. in 1998 [28] (see
also Ref. [32]). Here, Tc(� = 0.5) = 1.6854, Tc(� = 1) =
1.6473, and Tc(� = 2) = 1.4907 are the equilibrium critical
temperatures of the random p = 1

2 Blume-Capel model de-
fined in Eqs. (1) and (2) [51].

Finally, a comment on the fitting process discussed below
in Sec. III: We employed the standard χ2 goodness of fit test
[61]. Specifically, the Q value of our χ2 test is the probability
of finding a χ2 value which is even larger than the one actually
found from our data. We consider a fit as being fair only if
10% � Q � 90%.

C. Observables

In order to determine the universality aspects of the kinetic
random Blume-Capel model, we consider the half-period de-
pendencies of various thermodynamic observables. The main
quantity of interest is the period-averaged magnetization

QL = 1

2t1/2

∮
M(t )dt, (4)

where the integration is performed over one cycle of the
oscillating field. Given that for finite systems in the dynam-
ically ordered phase the probability density of QL becomes
bimodal, one has to measure the average norm of QL in order
to capture symmetry breaking so that 〈|Q|〉L defines the dy-
namic order parameter of the system. In Eq. (4), M(t ) is the

time-dependent magnetization per site

M(t ) = 1

N

N∑
x=1

σx(t ). (5)

To characterize and quantify the transition using finite-size
scaling arguments we must also define quantities analogous to
the susceptibility in equilibrium systems. The scaled variance
of the dynamic order parameter

χ
Q
L = N

[〈Q2〉L − 〈|Q|〉2
L

]
(6)

has been suggested as a proxy for the nonequilibrium suscep-
tibility, also theoretically justified via fluctuation-dissipation
relations [18].

Similarly, one may also measure the scaled variance of the
period-averaged energy

χE
L = N

[〈E2〉L − 〈E〉2
L

]
, (7)

so that χE
L can be considered as the respective heat capacity.

Here E denotes the cycle-averaged energy corresponding to
the cooperative part of the Hamiltonian (1). With the help of Q
we may also define the fourth-order Binder cumulant [28,29]

U Q
L = 1 − 〈|Q|4〉L

3〈|Q|2〉2
L

, (8)

a very useful observable for the characterization of universal-
ity classes [62,63].

III. RESULTS

As a starting point let us describe shortly the mechanism
underlying dynamic ordering in kinetic ferromagnets as de-
picted in Figs. 2–4 below. In all these plots results for a single
realization of the disorder are shown of a system size L = 192
and for � = 1. Similar results were obtained also for the other
� values but are omitted for brevity.

Figure 2 presents the time evolution of the magnetization
and Fig. 3 the period dependencies of the dynamic order
parameter Q of the kinetic random Blume-Capel model. For
rapidly varying fields [Fig. 2(a)], the magnetization does not
have enough time to switch during a single half-period and
remains nearly constant for many successive field cycles, as
also illustrated by the black line in Fig. 3. On the other
hand, for slowly varying fields [Fig. 2(c)], the magnetization
follows the field, switching every half-period, so that Q ≈ 0,
as also shown by the blue line in Fig. 3. Thus, whereas
in the dynamically disordered phase the ferromagnet is able
to reverse its magnetization before the field changes again,
in the dynamically ordered phase this is not possible and
therefore the time-dependent magnetization oscillates around
a finite value. The competition between magnetic field and the
metastable state is captured by the half-period t1/2 (or by the
normalized parameter � = t1/2/τ [32]). Obviously, t1/2 plays
the role of temperature in the equilibrium system. Now, the
transition between the two regimes is characterized by strong
fluctuations in Q [see Fig. 2(b) and the evolution of the red
line in Fig. 3]. This behavior is indicative of a dynamic phase
transition and occurs for values of the half-period close to
the critical one t c

1/2 (otherwise when � ≈ 1). Of course, since
the value t1/2 = 66 MCSS used for this illustration is slightly
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FIG. 2. Time series of the magnetization (red solid curves) of
the kinetic random p = 1

2 Blume-Capel model under the pres-
ence of a square-wave magnetic field (black dashed lines) for L =
192 at � = 1, for three values of the half-period of the external
field: (a) t1/2 = 20 MCSS, corresponding to a dynamically ordered
phase, (b) t1/2 = 66 MCSS, close to the dynamic phase transition,
and (c) t1/2 = 100 MCSS, corresponding to a dynamically disor-
dered phase. Note that for the sake of clarity the ratio h(t )/h0 is
displayed.

FIG. 3. Period dependencies of the dynamic order parameter of
the kinetic random p = 1

2 Blume-Capel model for L = 192 at � = 1.
Results are shown for the three characteristic cases of the half-period
of the external field, following Fig. 2.

above t c
1/2 = 65.96(6) (see also Fig. 11 below), the observed

behavior includes as well some nonvanishing finite-size
effects.

Some additional spatial aspects of the transition scenarios
described above via the configurations of a local order param-
eter {Qx} are shown in Fig. 4. Below t c

1/2 [see Fig. 4(a)], the
majority of spins spend most of their time in the +1 state, i.e.,
in the metastable phase during the first half-period, and in the
stable equilibrium phase during the second half-period, except
for fluctuations. Thus, most of the Qx ≈ +1 and the system
lies in the dynamically ordered phase. On the other hand,
when the period of external field is selected to be bigger than
the relaxation time of the system, above t c

1/2 [see Fig. 4(c)],
the system follows the field in every half-period with some
phase lag, and Qx ≈ 0 at all sites x. The system in this case
is in the dynamically disordered phase. Near t c

1/2 and the
expected dynamic phase transition, there are large clusters of
both Qx ≈ +1 and −1 values within a sea of Qx ≈ 0, as shown
in Fig. 4(b).

At this point we would like to scrutinize the effects of the
zero spin state σx = 0 and (random) crystal-field coupling �,
in comparison to the well-established picture of the standard
Ising ferromagnet. Although there is no doubt that the local
order parameter of most interest is {Qx}, yet, it can not distin-
guish between random distributions of σx = ±1 and regions
of σx = 0. To bring out this distinction, we present in Fig. 5
configurations of the dynamic quadrupole moment {Ox} over
a full cycle of the external field, where O = 1

2t1/2

∮
ρ(t )dt and

ρ(t ) = 1 − 1
N

∑N
x=1 σ 2

x denotes the order parameter conjugate
to the crystal-field coupling �. Moreover, in analogy to Figs. 2
and 3, the additional Figs. 6 and 7 present the time evolution
of ρ(t ) and the period dependencies of the quadrupole mo-
ment of the kinetic random p = 1

2 Blume-Capel model. In all
Figs. 5–7 simulation parameters are exactly the same to those
used in Figs. 2–4 above.

Of course, the dynamic quadrupole moment is always 0 for
the kinetic spin- 1

2 Ising model because σx = ±1 in this case.
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FIG. 4. Configurations of the local dynamic order parameter
{Qx} of the kinetic random p = 1

2 Blume-Capel model for L = 192
at � = 1. The “snapshots” of {Qx} for each regime are the set of
local period-averaged spins during some representative period. Three
panels are shown: (a) t1/2 = 20 MCSS < t c

1/2, dynamically ordered
phase; (b) t1/2 = 66 MCSS ≈ t c

1/2, near the dynamic phase transition;
and (c) t1/2 = 100 MCSS > t c

1/2, dynamically disordered phase.

FIG. 5. In full analogy with Fig. 4 we show snapshots of the
period-averaged quadrupole moment conjugate to the crystal-field
coupling �. Simulation parameters are exactly the same as those
used in Figs. 4(a)–4(c).

For the spin-1 Blume-Capel model the density of vacancies
is controlled by the crystal-field coupling � and, thus, the
value of O changes depending on �. When the value of
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FIG. 6. Time series of the order parameter conjugate to the
crystal field ρ(t ) (solid blue curves) of the kinetic random p = 1

2
Blume-Capel model under the presence of a square-wave magnetic
field (black dashed lines) for L = 192 at � = 1, for three values
of the half-period as in Fig. 2: (a) t1/2 = 20 MCSS, (b) t1/2 = 66
MCSS, and (c) t1/2 = 100 MCSS. Again for the sake of clarity the
ratio h(t )/h0 is displayed.

FIG. 7. Period dependencies of the dynamic quadrupole moment
O of the kinetic random p = 1

2 Blume-Capel model for L = 192 at
� = 1. Results are shown for the three characteristic cases of the half
period of the external field, following Fig. 6.

� increases, starting from the Ising limit (� → −∞), the
number of vacancies increases as well in the system, so that
O tends to increase from its minimum value. For the case of
the kinetic random p = 1

2 Blume-Capel model at � = 1, as
depicted in Figs. 4 and 5, one may conclude that the effect
of vacancies is not significant. Moreover, for this particular
case of � = 1 we have performed a quantitative comparison
among the pure (p = 0) and random (p = 1

2 ) model and did
not observe any significant differences in the configurations of
the local dynamic order parameter Q and quadrupole moment
O that are worth to be noted. On the other hand, we expect to
see more prominent effects in the small-p and high-� limits
that correspond to the ex-first-order transition regime of the
equilibrium model’s phase diagram [51]. In fact, the set of
parameters p = 0.02 and � = 2 may be a promising choice
and we present in Figs. 8 and 9 three sets of configurations
for both the local dynamic order parameter and quadrupole
moment, below, around, and above the dynamic phase transi-
tion. These snapshots fully corroborate our claim that in this
regime the underlying phenomena are indeed controlled by
the vacancies, as expected.

To further explore the nature of dynamic phase transitions
encountered in the above disordered kinetic model we per-
formed a finite-size scaling analysis based on the observables
outlined in Sec. II C. Previous studies in the field indicated that
although finite-size scaling is a tool that has been designed for
the study of equilibrium phase transitions, it can be success-
fully applied as well to far from equilibrium systems [28–32].

As an illustrative example we present in Fig. 10 the finite-
size behavior of the dynamic order parameter (main panel)
and the emerging susceptibility (inset) [see also Eq. (6)]
for the case � = 1 and for two characteristic system sizes.
The dynamic order parameter starts off from a finite value
and approaches zero as the half-period increases, showing a
sharp change for a range of t1/2 values that correspond to the
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FIG. 8. Configurations of the local dynamic order parameter
{Qx} of the kinetic random Blume-Capel model for L = 192, p =
0.02, and � = 2. Note that for this set of (p, �) parameters we ap-
proximated the critical half-period of the system to be t c

1/2 ≈ 53, from
the peak positions of the corresponding dynamic susceptibility and
heat-capacity curves. Three panels are shown: (a) t1/2 = 20 MCSS
< t c

1/2, dynamically ordered phase; (b) t1/2 = 53 MCSS ≈ t c
1/2, near

the dynamic phase transition; and (c) t1/2 = 100 MCSS > t c
1/2, dy-

namically disordered phase.

FIG. 9. In full analogy with Fig. 8 we show snapshots of the
period-averaged quadrupole moment conjugate to the crystal-field
coupling �. Simulation parameters are exactly the same as those
used in Figs. 8(a)–8(c).

respective peak in the dynamic susceptibility. These maxima
locations of χ

Q
L , denoted hereafter as (χQ

L )∗, may be used to
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FIG. 10. Typical dynamic order parameter 〈|Q|〉L (main panel)
and susceptibility χ

Q
L (inset) curves of the kinetic random p = 1

2
Blume-Capel model at � = 1 and for two systems with linear sizes
L = 64 (open black squares) and L = 128 (filled red circles).

define suitable pseudocritical half-periods t∗
1/2. In full analogy

we may also denote the heat-capacity maxima as (χE
L )∗.

We start the presentation of our finite-size scaling analysis
with a characteristic determination of the critical half-period
t c
1/2 and the exponent ν for the system with � = 1. A similar

analysis was performed for the other values of � as well and a
summary of our findings is given in Table I. The main panel of
Fig. 11 illustrates the shift behavior of the peak locations t∗

1/2
of the dynamic susceptibility and heat capacity as a function
of 1/L. The solid lines are a joint fit of the form [64–66]

t∗
1/2 = t c

1/2 + bL−1/ν . (9)

FIG. 11. Shift behavior of the two pseudocritical half-periods t∗
1/2

corresponding to the maxima of the dynamic susceptibility (filled
black squares) and heat capacity (filled red circles) of the kinetic
random p = 1

2 Blume-Capel model at � = 1. The inset illustrates
the half-period dependency of the corresponding fourth-order Binder
cumulant U Q

L .

FIG. 12. Finite-size scaling behavior of the dynamic susceptibil-
ity maxima (χQ

L )∗ of the kinetic random p = 1
2 Blume-Capel model.

Results for three values of � are shown in a log-log scale.

The obtained values for the critical parameters are t c
1/2 =

65.96(6) and ν = 1.03(3). Clearly, the value of ν is in very
good agreement with the value of ν = 1 in the 2D equilibrium
Ising universality class [67].

Additional evidence of universality may be obtained from
the fourth-order Binder cumulant U Q

L defined in Eq. (8) for the
case of the dynamic order parameter. In the inset of Fig. 11 we
present our numerical data of U Q

L for � = 1 and a wide range
of sizes studied. The vertical dashed line marks the critical
half-period value of the system t c

1/2 as estimated from the
analysis of Eq. (9) and the horizontal dashed line the univer-
sal value U ∗ = 0.610 692 4(16) of the 2D equilibrium Ising
model [68]. Certainly, the crossing point is expected to depend
on the lattice size L (as it is also shown in the figure) and
the term universal is valid for given lattice shapes, boundary
conditions, and isotropic interactions [69,70]. However, the
data shown in the inset of Fig. 11 support, at least qualitatively,
another instance of equilibrium Ising universality, since the
crossing point is consistent to the value 0.610 6924. We should
note here that Hasenbusch et al. presented very strong evi-
dence that the critical Binder cumulant of the equilibrium 2D
randomly site-diluted Ising model maintains its pure-system
value [71]. In this respect, a dedicated study along the lines of
Ref. [71] for an accurate estimation of U ∗ in kinetic random
Ising and Blume-Capel models would be welcome.

In this final part we investigate the finite-size scaling
behavior of the dynamic susceptibility and heat-capacity max-
ima. In particular we present in Fig. 12 the size evolution of
the dynamic susceptibility peaks in a log-log scale for all three
values of � considered. The solid lines are a fit of the form
[72] (

χ
Q
L

)∗ ∼ Lγ /ν, (10)

providing estimates for the magnetic exponent ratio γ /ν in
excellent agreement with the Ising universality class value of
7
4 (see also Table I below). At this stage, it would be ideal to
also observe the possible double logarithmic scaling behavior
of the heat-capacity maxima (χE

L )∗, as predicted by Ref. [73]
for the disordered Ising ferromagnet. Indeed, as it is shown in
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TABLE I. A summary of critical parameters describing the dy-
namic phase transition of the square-lattice kinetic Blume-Capel
model in a quenched random crystal field. Note that the values of
� considered in this work, given the randomness distribution (2)
with p = 1

2 , correspond to the second-order transition regime of the
model’s equilibrium phase diagram. One needs very small values of
p, i.e., p � 0.1, in order to reach the originally first-order transition
regime at high values of � ≈ 2 (see Figs. 9–13 in Ref. [51]).

� t c
1/2 ν γ /ν

0.5 72.41(9) 1.00(3) 1.75(1)
1 65.96(6) 1.03(3) 1.76(1)
2 47.61(7) 1.05(7) 1.75(2)

Fig. 13 the data for L � 64 are fairly good described by a fit
of the form (

χE
L

)∗ ∼ ln [ln (L)]. (11)

IV. CONCLUSIONS

We investigated, using extensive Monte Carlo simulations,
the effect of quenched disorder in the crystal-field cou-
pling on the dynamic phase transition of the square-lattice
Blume-Capel model under a periodically oscillating mag-
netic field. At a first qualitative level, the role of vacancies
and the crystal-field coupling has been scrutinized by ex-
amining the configurations of the dynamic order parameter
and quadrupole moment of the system for a wide range of
simulation parameters. At a second stage, the application
of finite-size scaling techniques allowed us to probe with
good accuracy the values of critical exponents describing this
dynamic phase transition, all of which were found to be com-
patible with those of the equilibrium Ising ferromagnet. An
additional study of the scaling behavior of the heat capacity

FIG. 13. Double logarithmic scaling behavior of the heat-
capacity maxima (χE

L )∗ of the kinetic random p = 1
2 Blume-Capel

model for three values of �, as indicated in the panel.

revealed a double logarithmic divergence, as expected for the
disordered Ising ferromagnet. To conclude, although univer-
sality is a cornerstone in the theory of critical phenomena it
stands on a less solid foundation for the case of nonequilib-
rium systems under the presence of quenched disorder. We
hope that our contribution will stimulate further research in
this direction.
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