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The problem of obtaining physical parameters that cannot be directly measured from observed data arises in
several scientific fields. In the classic approach, the well-known maximum likelihood estimation associated with
a Gaussian distribution is employed to obtain the model parameters of a complex system. Although this approach
is quite popular in statistical physics, only a handful of spurious observations (outliers) make this approach
ineffective, violating the Gauss-Markov theorem. In this work, starting from the generalized logarithmic function
associated to the Sharma-Taneja-Mittal (STM) information measure, we propose an outlier-resistant approach
based on the generalized log-likelihood estimation. In particular, our proposal deforms the Gaussian distribution
based on a two-parameter generalization of the ordinary logarithmic function. We have tested the effectiveness
of our proposal considering a classic geophysical inverse problem with a very noisy data set. The results show
that the task of obtaining physical parameters based on the STM measure from noisy data with several outliers
outperforms the classic approach, and therefore, our proposal is a useful tool for statistical physics, information
theory, and statistical inference problems.
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I. INTRODUCTION

The task of estimating physical parameters that cannot
be directly measured from empirical data arises in a wide
variety of scientific problems [1–3]. For example, in electrical
impedance tomography problems [4–6], the properties of the
electrical conductivity (model parameters) of a conductive
object (physical system) are obtained from electrical mea-
surements (observed data) taken at different locations of that
object. In this regard, an optimization problem is employed to
finding the best physical model, m, that match the observed
data, dobs, to the modeled data, dmod(m) = G(m), in which G
denotes the so-called forward operator [7]. In the electrical
impedance tomography case, the forward operation is given
by the solutions of Maxwell’s equations. In this way, the
electrical conductivity is obtained by minimizing the residual
data (or error): dobs − dmod.

Usually, the optimization process used in the estimation
of physical parameters (also called data inversion) is carried
out in the least-squares sense, in which the objective function
is given by the sum of the squares of the errors. From a
probabilistic viewpoint, the least-squares method assumes that
the errors are independent and identically distributed by a
Gaussian probability distribution, which is closely linked to
the maximization of the classic Boltzmann-Gibbs-Shannon
(BGS) entropy (see, for instance, Sec. 2 of Ref. [8]). Although
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Gaussian statistics are very useful in solving several data
inversion problems [9–13], the maximum likelihood estimator
(MLE) associated with the classic approach is an unbiased
estimator if the errors are non-Gaussian, violating the Gauss-
Markov theorem [14,15].

In fact, a handful of spurious measures (outliers) is enough
for the classic approach to fail [16,17]. Thus, the data inver-
sion based on non-Gaussian criteria has been an alternative
for robust inference of physical parameters. Among them we
can mention the data inversion based on the Cauchy error cri-
terion [18,19], Student’s t distribution [20,21], hybrid criteria
[22–24], and more recently, in the sense of Rényi [25], Tsallis
[26–31], and Kaniadakis [32–35] statistics.

It is worth mentioning that all aforementioned approaches
consider the method of maximum likelihood as a starting
point. The maximum likelihood estimation is a powerful
method to obtain model parameters from the measured data
that is very useful in statistical physics, information theory,
and statistical inference. However, if the assumed statistical
model is not adequate for the distribution of the errors, then
the classic approach is doomed to fail, which makes it difficult
to perform automated tasks. In this regard, a long (and some-
times tedious) data processing is carried out before the data
inversion to remove possible outliers, so that soon afterward
the classic approach is employed. In fact, after heavy data
processing, the distribution of the errors can be described by
a Gaussian distribution obeying the well-known central-limit
theorem [36]. Moreover, in addition to the time spent on data
processing, it is worth mentioning that this process is not
perfect.
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In this work, in order to avoid a heavy data preprocessing
and enable automatized approaches, we formulate the task of
estimating physical parameters by generalizing the maximum
likelihood method. In particular, we consider the generalized
log-likelihood function associated with the Sharma-Taneja-
Mittal (STM) information measure [37,38] and based on the
κ, r-deformed product [39], which we call of maximum Lκ,w-
likelihood estimation (MLκ,wE) method after introducing a
parameter w = r/κ . The MLκ,wE is controlled by the entropic
indexes κ and w that are related with the STM entropy. In this
paper, we demonstrate that even if the observed data have out-
liers and assuming that the errors are Gaussian, the MLκ,wE
is robust for non-Gaussian errors if the entropic indexes are
properly chosen.

This paper is organized as follows. In Sec. II, we present
a brief review of the mathematical basis of STM information
measure. In Sec. III, we present the theoretical foundations
of the parameter estimation based in its classic framework.
Then, in Sec. IV, we introduce the probabilistic maximum
log-likelihood method in the sense of the STM information
measure to derive an outlier-resistent objective function in
order to perform robust inference on physical parameters of
a complex system. In Sec. V, we demonstrate the robustness
property of our proposal with several numerical experiments
by employing a geophysical data-inverse problem. To con-
clude, we devote the Sec. VI to the final remarks on our
proposal and its implications for statistical physics and infor-
mation theory.

II. STM INFORMATION MEASURE

In Refs. [37,38], Mittal, Sharma, and Teneja have been
introduced the κ, r-generalized entropy which can be defined
in the following form [40]:

Sκ,r[p] = − 1

2κ

∫
�

[p1+r+κ (x) − p1+r−κ (x)]dx, (1)

where x ∈ � is a random variable with probability function
p(x), κ , and r are the entropic indexes.

The entropy functional in Eq. (1) is commonly referred
to as Sharma-Taneja-Mittal entropy (or κ, r entropy or STM
entropy), and it may be written also in terms of the so-called
κ,w-deformed logarithmic function (or κ,w logarithm),
lnκ,w, after defining the parameter w = r

κ
:

Sκ,w[p] = −
∫

�

p(x) lnκ,w[p(x)]dx, (2)

in which

lnκ,w(x) = xκ (w+1) − xκ (w−1)

2κ
. (3)

We remark that in the limit (κ,w) → (0, 0), the κ,w-
deformed function reduce to the ordinary logarithmic:

lim
(κ,w)→(0,0)

lnκ,w(x) = ln0,0(x) := ln(x), (4)

and, consequently, note that the STM entropy [Eq. (1) or (2)]
reduces to the classic BGS entropy at the same limit:

lim
(κ,w)→(0,0)

Sκ,w[p] = S0,0[p] = −
∫

�

p(x) ln0,0[p(x)]dx

lim
(κ,w)→(0,0)

Sκ,w[p] = −
∫

�

p(x) ln[p(x)]dx := SBGS. (5)

Furthermore, the κ,w logarithm [Eq. (3)] in the particular
cases w = 0 and w = 1, correspond to the κ logarithm and
to the q logarithm (with q = 1 + 2κ) functions, respectively.
In this way, it is remarkable that the STM entropy [Eq. (1) or
(2)] reduces the Kaniadakis κ entropy [41–46] and Tsallis q
entropy [47–51] in the w = 0 and w = 1 cases.

III. CLASSIC MAXIMUM LIKELIHOOD ESTIMATOR

The principle of maximum likelihood is one of the most
used inference methods to obtain the optimum values of
the model parameters from the observations, through the so-
called MLE. Let x = {x1, x2, . . . , xN } be an independent
and identically distributed sample according to a probability
function p(x|m), with m ∈ M the model parameters, the MLE
of m is obtained through likelihood function:

arg max
m∈M

L (m|x) :=
N∏

i=1

p(xi|m), (6)

or by employing the log-likelihood function:

arg max
m∈M

L(m|x) =
N∑

i=1

ln[p(xi|m)], (7)

with L = ln [L(m|x)]. In this classic framework, the MLE es-
timates the model parameters in which the likelihood function
[Eq. (6)] (or its logarithm [Eq. (7)]) have the maximum value.

Assuming that errors are independent and identically dis-
tributed according to a standard Gaussian distribution,

p(x) = 1√
2π

exp

(
−1

2
x2

)
, (8)

the associated MLE is given, as expected, by a Gaussian
likelihood function:

L(m|x) =
(

1√
2π

)N

exp

[
−1

2

N∑
i=1

x2
i (m)

]
, (9)

and, therefore, the Gaussian log-likelihood is given by:

L(m|x) = −N

2
ln(2π ) − 1

2

N∑
i=1

x2
i (m). (10)

Since that maximizing Eq. (10) is equivalent to minimizing
its negative, the parameter estimation in this framework can
be performed by minimizing the following function:

φ(m) = 1

2

N∑
i=1

x2
i (m) + N

2
ln(2π ), (11)

where φ is the least-squares objective function, in which we
call hereinafter of classic objective function.

Although the least-squares approach, and consequently
data inversion based on Gauss’s law of error, is quite popular,
it is very sensitive to aberrant measures (outliers) [16]. This
may be seen quantitatively by analyzing the influence func-
tion, which is defined as [52,53]:

ϒ := ∂φ(m)

∂m
. (12)
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FIG. 1. The κ,w influence function plots [Eq. (19)] for typical for the (a) κ = 0.01, (b) κ = 0.1, (c) κ = 0.3, (d) κ = 0.9, (e) κ = 1.5,
(f) κ = 2.5, (g) κ = 3.5, (h) κ = 4.5, (i) κ = 6.0, (j) κ = 8.0, (k) κ = 10.0, and (l) κ = 12.0 cases. The black solid, the blue dotted, and the
dash-dotted curves represent, respectively, the w = 1, w = 5/3, and w = 3 cases.

An objective function is said to be robust (or outlier resistant)
if ϒ tends to zero when there are outliers in the observed
data set. Otherwise, the objective function is nonrobust. The
influence function related to the classic objective function
[Eq. (11)] is

ϒ =
N∑

i=1

xi(m) =
N∑

i=1

[
dobs

i − dmod
i (m)

]
, (13)

where x(m) = dobs − dmod(m) denotes the error. Let dobs
out be

an outlier, analyzing the latter equation [Eq. (13)] we notice
that ϒ → ∞ under dobs

out → ∞ and therefore the parameter
estimation based on the classic approach is nonrobust.

IV. MAXIMUM Lκ,w-LIKELIHOOD ESTIMATOR

In order to formulate a κ, r generalization of Gauss’s law
of error, Scarfone emphet al. has been proposed in Ref. [39], a
κ, r generalization of the classic likelihood function by means
of the so-called κ, r product. In this regard, the Lκ,w likeli-
hood function is obtained by replacing the ordinary product
in the classic likelihood function [Eq. (6)] with the ⊗κ,w

operator.
In this way, the MLκ,wE of m is defined through the follow-

ing optimization problem:

arg max
m∈M

Lκ,w(m|x)

:= p(x1|m) ⊗
κ,w

p(x2|m) ⊗
κ,w

· · · ⊗
κ,w

p(xN |m). (14)

We remark that in the limit (κ, r) → (0, 0), the MLκ,wE
[Eq. (14)] reduces to the MLE [Eq. (6)]. In addition, the
Lκ,w log-likelihood is obtained by taking the κ,w logarithm
[Eq. (3)] of the both sides of Eq. (14), Lκ,w = lnκ,w(Lκ,w ):

arg max
m∈M

Lκ,w(m|x) =
N∑

i=1

lnκ,w[p(xi|m)]. (15)

Thus, if the estimator m̂ exists, then the MLκ,wE of
m parameter is defined through the following optimization
problem:

m̂ := arg max
m∈M

Lκ,w(m|x), (16)

in which the classic approach is a particular case in the limit
(κ,w) → (0, 0).

Again, based on the assumption that errors are independent
and identically distributed according to a standard Gaussian
distribution [Eq. (8)] the associated MLκ,wE is given by the
following κ,w-generalized log-likelihood function:

Lκ,w(m|x) =
N∑

i=1

lnκ,w

{
1√
2π

exp

[
−1

2
x2

i (m)

]}
. (17)

We notice that maximizing Eq. (17) is equivalent to minimiz-
ing its negative. Thus, we define the κ,w objective function
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FIG. 2. (a) The 55-Hz Ricker wavelet and its (b) frequency
spectrum.

as follows:

φκ,w(m) = −
N∑

i=1

lnκ,w

{
1√
2π

exp

[
−1

2
x2

i (m)

]}
, (18)

in which it is remarkable that the classic objective function
[Eq. (11)] is a particular case in the classic limit (κ,w) →
(0, 0).

Thus, the κ,w influence function is

ϒκ,w =
N∑

i=1

xi

2

{
(2π )−

κ
2 (w+1)(w + 1)exp

[
−κ

2
(w + 1)x2

i

]

− (2π )−
κ
2 (w−1)(w − 1)exp

[
−κ

2
(w − 1)x2

i

]}
. (19)

It is worth noting that in classic limit (κ,w) → (0, 0) the
κ,w influence function [Eq. (19)] reduces to the classic in-
fluence function [Eq. (13)]. Moreover, by analyzing the latter
equation [Eq. (19)], we notice that the κ,w objective function
is resistant to outlier for the case κ > 0 and w � 1 since
ϒκ,w → 0 under dobs

out → ∞ (xi → ∞). In this work, we con-
sider the robust cases w = 1, w = 5/3, and w = 3, with κ >

0. Figure 1 shows the behavior of the κ,w influence function
for typical κ values (as indicated in each panel), which indi-
cates that the κ,w objective function for the cases w = 1, w =
5/3, and w = 3 cases are outlier resistant since ϒκ,w → 0
under x → ±∞. By analyzing this figure, it is remarkable that
as the κ and w values increase, the κ,w influence function
decays faster to zero, following an asymptotic behavior of the

form: limx→±∞ϒκ,w(x) ∝ exp[ − κ
2 (w − 1)x2]. In addition,

we notice that for x close to zero in the cases w = 5/3 and
w = 3, the κ,w influence function is oscillatory due to the
misfit between the two terms inside of square brackets in

FIG. 3. (a) The portion of the Marmousi model considered as the
true model. (b) Initial model used in all numerical simulations.

Eq. (19), as depicted in Figs. 1(a)–1(e). Comparing the κ,w

influence function [Eq. (19)] with the classic influence func-
tion [Eq. (13)], one can see that in our proposal the ith error
xi is weighted by the term in square brackets divided by 2.
Since the term in square brackets is always positive and lower
than one, the κ,w influence function is down-weighted by the
magnitude of the ith error and the κ and w parameters. This
robustness property is the key reason κ,w objective function
is expected to be outlier-resistant in the parameter estimation
task.

V. NUMERICAL EXAMPLE

To demonstrate the robustness of data inversion based on
MLκ,wE, we consider a classic geophysical imaging problem
named poststack inversion (PSI) [54,55]. The PSI is routinely
used to obtain a quantitative acoustic impedance model of
the subsurface (model parameters) from seismic reflection
data (observed data) (see, for instance, Refs. [56–59]). The
PSI forward problem is based on the following convolutional
model [60]:

dmod(m, t ) = 1

2

∫ ∞

−∞
s(τ )

∂

∂t
[m(t − τ )]dτ, (20)

where s represents the seismic source employed in the seismic
acquisition, m = ln (AI ) denotes the model parameters with
AI being the acoustic impedance, and t denotes the time. We
remark that obtaining the acoustic impedance or its logarithm
is completely equivalent [60].
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FIG. 4. Reconstructed acoustic impedance models for the %Spike = 1 case, in which panel (a) shows the PSI result by employing the
classic approach [(κ,w) → (0, 1)]. Panels (b)–(d) refer to PSI results based on MLκ,wE with w = 1 and κ = 0.9, 4.5, and 12.0, respectively.
Panels (e)–(h) show the PSI results based on MLκ,wE w = 5/3 with κ = 0.01, 0.9, 4.5, and 12.0, while panels (i)–(l) show the w = 3 case
with κ = 0.01, 0.9, 4.5, and 12.0.

In practices, the modeled seismic data [Eq. (20)] is com-
puted in a discrete domain using the following expression:
dmod = Gm = SDm, in which S is the so-called wavelet
matrix:

S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

s1 0 ... 0
... s1

... 0

sn
...

. . . 0

0 sn
... s1

...
...

. . .
...

0 ... ... sn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (21)

and D denotes the first-order linear differentiation:

D = 1

2

⎡
⎢⎢⎢⎣

−1 1 0 ... 0
0 −1 1 ... 0
...

...
. . .

. . . 0
0 ... ... −1 1

⎤
⎥⎥⎥⎦, (22)

being s = {s1, s2, . . . , sn} the discretized seismic source. In
this way, the residual data are defined by x(m) = Gm − dobs,
where dobs denotes the observed data.

Furthermore, we consider a Ricker wavelet as the seismic
source [61] in all numerical simulations presented in this
work, which is mathematically defined through the following
constitutive relation [62]:

s(t ) = (
1 − 2π2υ2

pt2
)
exp

(−π2υ2
pt2

)
, (23)

where υp represents the most energetic frequency content
(also known as peak frequency). In particular, we consider
a Ricker wavelet with 55-Hz peak frequency, as depicted in
Fig. 2.

To simulate realistic circumstances, we consider a section
of the Marmousi geological model [63,64] as the true model
[Fig. 3(a)], which is based on North Quenguela trough in the
Kwanza Basin, Angola. The Marmousi model is widely used
to perform numerical tests of new geophysical data inverse
strategies.
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FIG. 5. Reconstructed acoustic impedance models for the %Spike = 30 case, in which the panel (a) shows the PSI result by employing the
classic approach [(κ,w) → (0, 1)]. Panels (b)–(d) refer to PSI results based on MLκ,wE with w = 1 and κ = 0.9, 4.5, and 12.0, respectively.
Panels (e)–(h) show the PSI results based on MLκ,wE w = 5/3 with κ = 0.01, 0.9, 4.5, and 12.0, while panels (i)–(l) show the w = 3 case
with κ = 0.01, 0.9, 4.5, and 12.0.

To minimize the κ,w objective function, we employ
the quasi-Newton method named limited-memory Broyden-
Fletcher-Goldfarb-Shanno (L-BFGS) [65], which updates the
model parameters in the direction of decreasing of the gradi-
ent, ∇mφ(m):

m j+1 = m j − α jH−1
j ∇mφ(m j ), (24)

where α j > 0 is the step-length of the jth L-BGFS iter-
ation and H−1 denotes the inverse of the Hessian matrix.
In this work, we compute the step-length α according to
the Wolfe conditions [66]. It is worth emphasizing that,
in order to decrease the computational cost, L-BFGS al-
gorithm computes an approximation of the inverse of the
Hessian matrix based on previous gradient evaluations (see
Ref. [67] for more details). Moreover, we use the same initial
model [Fig. 3(b)] for all numerical simulations carried out
in this work. It is worth mentioning that several numerical
simulations have been carried out for the noiseless data cir-
cumstance, in which the reconstructed model from the classic

approach and our proposal were satisfactory and very similar.
For this reason, we will not present the results of this ideal
case.

From now on, we consider noisy seismic data to examine
the robustness of our proposal in estimating physical pa-
rameters. In this way, we consider a data set contaminated
by Gaussian errors, as the background noise, with a signal-
to-noise ratio of 40 dB and a set of large errors (outliers).
Concerning the outliers, we consider 80 different noisy sce-
narios in which each scenario is composed of a given amount
of outliers contaminating the data. In this regard, in the first
scenario, 1% of the seismic data samples are contaminated by
outliers [named %Spike = 1]. In the second one, 2% of the
data samples are corrupted by outliers [%Spike = 2], and so
on, every 1% to maximum contamination of 80% [%Spike =
80] in the last one. We randomly add outliers to the seismic
data to avoid biased samples. For that, we randomly select the
samples through a uniform distribution, in which the observed
data with Gaussian noise at ith outlier-position is calculated
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FIG. 6. Reconstructed acoustic impedance models for the %Spike = 80 case, in which the panel (a) shows the PSI result by employing the
classic approach [(κ,w) → (0, 1)]. Panels (b)–(d) refer to PSI results based on MLκ,wE with w = 1 and κ = 0.9, 4.5, and 12.0, respectively.
Panels (e)–(h) show the PSI results based on MLκ,wE w = 5/3 with κ = 0.01, 0.9, 4.5, and 12.0, while panels (i)–(l) show the w = 3 case
with κ = 0.01, 0.9, 4.5, and 12.0.

as: dobs
i = [dobs

i ]GaussianNoise + α × β, where α ∈ [−2; 2] and β

follows a standard normal distribution.
Figure 4 shows the reconstructed model for the %Spike =

1 case, in which Fig. 4(a) depicts the classic approach
[(κ,w) → (0, 1)] result. We notice that even with only 1%
contamination by outliers, the classic approach generated an
acoustic impedance model with a lot of artifacts, as can be
seen through the vertical fringes in Fig. 4(a). On the other
hand, the quality of the models generated through the data
inversion based on the MLκ,wE is sensitive to the κ and w

parameters, as depicted in Figs. 4(b)–4(l). We notice that as
the κ parameter increases the amount of artifacts in the re-
constructed model decreases and, therefore, the result is more
close to the true model [Fig. 3(a)]. Indeed, we already ex-
pected this behavior because as the κ value increases the major
deviation of a Gaussian behavior is automatically considered.

Figures 5 and 6 show the reconstructed models for the
%Spike = 30 and 80 cases, respectively, in which it is no-

ticeable that the performance of the classic approach is very
poor, generating wrong and biased models as depicted in panel
(a) of these figures. Indeed, the classical framework is very
sensitivity to the outliers in the seismic data set as expected
[16]. In contrast, from a visual inspection, our proposal is
outlier resistant especially for κ > 4.5, as depicted in panels
(b)–(l) of Figs. 5 and 6.

In order to compare the data-inversion results in a
quantitative way, we performed 97,441 numerical simula-
tions considering 0 � κ � 12 and 0 � %Spike � 80, and
then we compute the linear correlation coefficient (Pear-
son’s R) [68] between each reconstructed model and the
true model [Fig. 3(a)]. In this paper, the Pearson’s R mea-
sures the degree of linear relationship between the elements
of the reconstructed model and the true model and ex-
presses the degree of correlation through values between
0 (bad reconstructed model) and 1 (perfect reconstructed
model).
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FIG. 7. Heatmaps generated from the Pearson’s R between the reconstructed models and the true model [Fig. 3(a)] for all numerical
simulations carried out in this study for the cases (a) w = 1, (b) w = 5/3, and (c) w = 3. The white solid line separates the reconstructed
models strongly correlated (R � 0.8) with the true model, from the others (R < 0.8).

Due to the large number of data inversions carried out, we
summarize the Pearson’s R computed in each numerical sim-
ulation on heatmaps, as depicted in Fig. 7. On these maps, the
reconstructed models with high similarity to the true model
are represented by the hot colors (close to red scale) and the
less similar ones by the cold colors (close to blue scale). In
addition, the white line separates the reconstructed acoustic
impedance models strongly correlated (R � 0.8) with the true
model, following the strength-scale suggested by Ref. [69],
from the others (R < 0.8). From a visual inspection of Fig. 7,
we note that the models reconstructed in circumstances in
which the number of spurious measurements (outliers) is less
than 5% (%Spike < 5) are strongly correlated with the true
model for any κ � 0 in the case w = 1 [Fig. 7(a)]. However,
in situations where the seismic data are heavily corrupted by
outliers, the best reconstructed models are associated with the
highest κ values, especially for the κ > 7 case with w = 1 and
w = 3 as depicted by the reddish area at the top of the white
line in Figs. 7(a) and 7(c), respectively. The case w = 5/3, on
the other hand, proved to be robust for contamination of up to
50% when κ → 12.

Furthermore, the notable bluish region on the maps for
cases w = 5/3 [Fig. 7(b)] and w = 3 [Fig. 7(c)] indicate
that the reconstructed models are weakly correlated with
the true model. In this regard, such unsatisfactory models
were obtained just because under these parameters values the
κ,w influence function is oscillatory around zero error [see
Figs. 1(a)–1(e)], which is an undesirable behavior for an error
law because, in some circumstances, positive and negative
errors with similar magnitude have the same influence on the
data-inversion process.

VI. FINAL REMARKS

In this work, we have presented a robust methodology
to mitigate the sensitivity of the probabilistic maximum-
likelihood method, for Gaussian distributions, to erratic

measurements (outliers). Based on the κ,w-generalized al-
gebra introduced by Ref. [39], we proposed a MLκ,wE for
Gaussian distributions which is robust to non-Gaussian errors.
Furthermore, we analytically investigated the robustness prop-
erties of MLκ,wE from the influence function analysis. In this
way, we have discussed the role of the κ and w parameters for
robust inference. In this regard, from the analyses performed
in Sec. IV, we concluded that the MLκ,wE is robust under
outliers for the κ > 0 and w � 1 case and nonrobust for other
situations. Indeed, the geophysical data-inversion example
presented in Sec. V, confirmed that the objective function
based on MLκ,wE is a powerful tool for a reliable estimation
of physical parameters from very noisy data. In particular, we
have verified that a κ value close to 12 is a good choice to
makes the κ,w objective function robust to a lot of erratic
data.

It is worth emphasizing that the results presented in this
study show that our proposal ignores the effect of outliers
in the data-inversion process, which allows us to dispense a
long work of data preprocessing. In addition, the MLκ,wE-
based objective function is a promising methodology to deal
with low-quality data. Furthermore, it is worth noting that the
MLκ,wE-based objective function introduced in the present
study may be easily adapted to inference physical parameters
of any inverse problem. In fact, we notice that the requirement
for employing the MLκ,wE-based objective function is the
definition of the residual data (the difference between the
modeled data and the observed data). In other words, what
differs between one application and another is the forward
modeling process, which can be represented, for instance,
by stochastic models in the description of biological systems
[70–73], as well as by regularized problems in machine learn-
ing [74,75], epidemiological models [34,76], among many
others in applied physics [77,78]. As a future perspective,
since there are many other probability distributions, we intend
to study to apply MLκ,wE to other distributions and statistical
physics applications.
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