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Continuous nonequilibrium transition driven by heat flow
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We discovered an out-of-equilibrium transition in the ideal gas between two walls, divided by an inner,
adiabatic, movable wall. The system is driven out-of-equilibrium by supplying energy directly into the volume
of the gas. At critical heat flux we have found a continuous transition to the state with a low-density, hot gas
on one side of the movable wall and a dense, cold gas on the other side. Molecular dynamic simulations of the
soft-sphere fluid confirm the existence of the transition in the interacting system. We introduce a stationary state
Helmholtz-like function whose minimum determines the stable positions of the internal wall. This transition can
be used as a paradigm of transitions in stationary states and the Helmholtz-like function as a paradigm of the
thermodynamic description of these states.
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Nonequilibrium thermodynamics [1–5] have never reached
the same status as equilibrium thermodynamics [6]. Despite
many decades of study, the question concerning the exis-
tence of universal extremal principles that determine behavior
of nonequilibrium systems is still open. The most promi-
nent propositions are the maximum and minimum entropy
production principles [7–9]. There are attempts to provide
theoretical justifications of the maximum entropy production
principle based on information theory [10,11] or least action
principle [12]. However, applicability of both principles is
widely discussed [11,13–16] and the lack of their predic-
tive success is acknowledged. On the other hand, there is
a significant progress in the characterization of nonequilib-
rium systems by fluctuation theorems that involve probability
distribution of quantities defined on trajectories [5,17–23]. Al-
though stochastic dynamics links the statistics of trajectories
with the entropy production, to our knowledge, this approach
has not been used for predictions of steady states.

Equilibrium thermodynamics provides a clear definition of
a few macroscopic variables defining the equilibrium state
and function, which has a minimum at this state. For exam-
ple, the state of a one-component system interacting with the
environment via isothermal walls is defined by three param-
eters: T temperature, V volume, and N number of particles.
The state’s function, the Helmholtz free energy F (T,V, N ),
is minimized in the equilibrium state. The minimization is
over potential states obtained at constant T, V, N via internal
constraints. The present paper introduces a methodology of
nonequilibrium thermodynamics having a similar structure
as the equilibrium counterpart. We use this methodology to
analyze the continuous transition between two nonequilibrium
stationary states that we discovered in a paradigmatic heat
flow model.

*maciolek@is.mpg.de
†rholyst@ichf.edu.pl

In a series of our recent papers [24–26] we have ana-
lyzed one-component systems subjected to the constant heat
flow. In the system’s stationary state, its internal energy is
a function of T, L, N , and the heat flux, J . Here T is the
temperature at the boundary, where the heat flux leaves the
system, L is the size of the system, and N is the number of
particles. This observation suggests that the thermodynamic
parameters describing such a nonequilibrium steady state are
similar to those describing its equilibrium counterpart. A new
thermodynamic parameter characterizing the state is the heat
flux J .

Here we study an ideal gas between two parallel walls at
fixed temperature T separated by the distance L. The energy
flows into the system’s volume in the form of heat, and the
energy supplied into the system per unit time and unit vol-
ume is λ = J/V . Such an energy supply can be realized by
microwaves in an appropriate designed experimental setup. A
schematic plot of the system is shown in Fig. 1. The internal
energy in the steady state U has the following form:

U = Ueq f (λL2/kT ), (1)

where k is the thermal conductivity and Ueq is the energy of the
same system in the absence of an external energy supply. We
introduce a movable adiabatic wall parallel to the bounding
walls. At equilibrium, the wall is located precisely in the
middle of the system. For small heat fluxes, the position of the
wall is stable. Above a critical flux, the wall moves towards
one of the bounding surfaces. We show that the minimum of
the nonequilibrium Helmholtz-like free energy, defined in this
paper, determines the stationary state’s wall position. Unlike
in the existing approaches, see, e.g., Refs. [27,28], our con-
struction of a nonequilibrium free-energy-like potential does
not rely on the knowledge of entropy.

As shown in Fig. 1, the left and right boundaries are fixed
at x = ±L, with a large area A → ∞, giving V = 2AL. A
movable wall is adiabatic, i.e., does not allow heat to pass
it, and constitutes the internal constraint. Thus the system is
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FIG. 1. Schematic plot of a system with a movable wall. The
vertical black lines represent the wall. The left and right boundaries
have an area of A and are placed at ±L. The heat flows through
the boundaries. Energy is supplied through an homogeneous ex-
ternal energy input of density λ. The external walls are kept at
temperature T .

separated into two subsystems 1 and 2, each with a fixed
number of particles N1 and N2. In the following we will
denote variables of the subsystem i = 1, 2 with subscript i,
and the subsystem on the left (right)-hand side is designated
1 (2). The wall is assumed to move freely without friction.
Therefore, the condition for the total system to reach steady
state is that the pressures exerted by each subsystems are
equal P1(xw ) = P2(xw ), where xw is the position of the wall.
In equilibrium, according to the ideal gas law PeqV = NkBT ,
where kB is the Boltzmann constant, therefore the intended
ratio of N1/N2 is achieved by placing a wall such that N1/N2 is
equal to the ratio of the volumes Vi. We make two assumptions
about this system. First, we assume that the heat conduction
follows Fourier’s law. Then, the temperature profile can be
obtained from the local continuity equation of energy

−k∇2T (�r) = λ. (2)

Second, assuming local equilibrium and the equation of state
for monoatomic ideal gas can be extended to be valid locally
so that in nonequilibrium steady states

P = n(�r)kBT (�r), ε = 3

2
n(�r)kBT (�r) = U

V
, (3)

where n(�r) is the local particle number density at position
�r, with

∫
V n(�r)d3r = N , T (�r) is the local temperature at �r

and ε is the energy density. In the above two relations, both
P and ε are constant across the system. This is because the
redistribution of mechanical energy occurs much faster than
the redistribution of heat. From the above two assumptions,
the steady state energy density of the system and of each
subsystem can be obtained using

ε = 3

2
NkB

1∫
V

d�r
T (�r)

, εi = 3

2
NikB

1∫
Vi

d�r
Ti (�r)

, (4)

where the temperature profiles are obtained from Eq. (2) with
the appropriate boundary conditions. As a result, the energy of
the system prior to the constraint is given by Eq. (1) and the
energy of the subsystem of Ni particles under the constraint is

Ui = Ui,eq f
(
λL2

i /kT
) = 3

2 NikBT f
(
λL2

i /kT
)
, (5)

with N1 + N2 = N , where Ueq = (3/2)NkBT and Ui,eq are the
system and subsystem energy in equilibrium, Li is the length

FIG. 2. System’s response as a function of xw for two values of
λ. (a) The difference between pressures in compartments normalized
with equilibrium pressure Peq = NkbT/V . (b) Total internal energy of
the system normalized with Ueq. The vertical lines mark the position
of the steady states x(1)

w for λ = 2 and x(1)
w , x(2)

w , and x(3)
w for λ = 10.

λ is in units of kT/L2.

of the subsystem with L1 = L + xw and L2 = L − xw, and the
function f is given by

f (x) ≡
√

x(x + 2)

2 Arctanh
√

x/(x + 2)
. (6)

The derivations are shown in Appendix A. We would like to
make two remarks. First, the variables of f are separated to
λ and L2

i /kT , where λ is the control parameter, and the coef-
ficient L2/kT (or L2

i /kT for the subsystems) are parameters
that are either of the intrinsic properties of the system, or of
the environment that is not changed (T ). Second, this model
is seemingly similar to the model considered in our previous
paper [24] (named there as case 1). In case 1, however, the
adiabatic wall is fixed in space, and the subsystems are inde-
pendent. Whereas in the movable wall model, the constraint
couples the two subsystems. This single difference results in
an interesting second-order nonequilibrium phase transition
which we will discuss next.

For our movable wall model, the condition of nonequi-
librium steady states can be equivalently stated as P1(xw ) =
P2(xw ) or ε1(xw ) = ε2(xw ). The solutions x(i)

w [where the
superscript (i) indicates the ith solution] are obtained nu-
merically. Graphically, the solutions and their corresponding
stability can be observed at and around the zeros of P1(xw ) −
P2(xw ). We set N1 = N2 = N/2 and observe that as λ increases
(at fixed T , V , and N), the system undergoes a second-order
nonequilibrium phase transition. The order parameter is the
stable position of the wall xw. For small λ we find a stable
steady state at xw = 0. As this division gives identical sub-
systems, P1 = P2 trivially. An example is shown in Fig. 2(a)
(dashed curve). One can see that the curve P1(xw ) − P2(xw ) is
monotonic and exhibit a single zero-crossing point at xw = 0.
To evaluate the stability, suppose now that the constraint is
pushed away from the center towards xw > 0. One observes
that P1 − P2 < 0. Consequently, the pressure difference will
push the wall back towards x(1)

w = 0. Therefore, x(1)
w = 0 is

a stable solution in this phase. For large λ, interestingly,
the system has three steady states. They correspond to the
position of the wall at x(1)

w = 0 and at x(2)
w = −x(3)

w �= 0 due
to symmetry. Qualitatively, one can imagine the asymmetric
case where, according to Eq. (3), the smaller average number
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FIG. 3. (a) Diagram showing the location of the stationary states
in the parameter space (xw, λ). Stable (s) and unstable (u) stationary
states are indicated in black (red). (b) Energy of the total system U
(in units of Ueq) as a function of the flux per unit volume λ (in units
of kT/L2). (c) and (d) Molecular dynamic simulations results for the
soft-sphere fluid. (c) The relative shift of the wall �L/L = |〈xw〉/L|
as a function of λp—the mean rate of energy added per particle. 〈xw〉
is the mean value of xw at the end of the simulation run. (d) �U/N—
the deviation of energy per particle (in units of the amplitude ε of
the interaction potential) from its initial value established before the
shift of the wall (black circles) and after the shift (red squares) as a
function λp.

of particle density ni ≡ Ni/Vi for the larger subsystem is com-
pensated with a higher overall temperature, whereas larger ni

in the smaller system is compensated with a lower overall tem-
perature. This compensation can occur because the heat flux
of the movable wall model is proportional to the volume Vi

(inverse proportional to ni). An example of three solutions is
shown in Fig. 2(a) (zeros of the red curve). Among these three
solutions, further analysis show that x(2)

w (and x(3)
w ) are stable,

whereas x(1)
w is unstable. As we can see from Fig. 2(a), the

red curve is no longer monotonic and exhibits zero crossing at
three points. Suppose now that the constraint is pushed away
from the steady state, in one case to the position between x(1)

w

and x(2)
w , and in the other case beyond x(2)

w . In both situations,
the pressure difference will push the constraint towards x(2)

w .
Due to symmetry, the same argument holds for x(3)

w when the
starting point of the constraint is xw > 0. Note that the total
energy of the system U1 + U2 has minimum always at xw = 0,
see Fig. 2(b).

The diagram showing the position of stationary states in the
parameter space xw − λ space (at fixed T, V, N) is presented
in Fig. 3(a). One can see that upon increasing λ the transition
from one steady state to another is continuous. The transition
point occurs at λcL2/kT ≈ 4.55344 (see Appendix B). The
steady state energy of the total system U = U1 + U2 is plotted
in Fig. 3(b). Interestingly, the energy of the stable steady states
is higher than the unstable steady state. The same is valid
for the total entropy production rate Ṡtot = A

∫ L
−L σs(x)dx,

where σs = k[∂T (x)/∂x]2/[T (x)]2, see Fig. 4. In Fig. 5 we

FIG. 4. Total entropy production rate Ṡtot (in units of kV/L2) as a
function of the flux per unit volume λ (in units of kT/L2). Stable (s)
and unstable (u) stationary states are indicated in black (red).

demonstrate that the transition cannot be predicted from the
extremum of the total entropy production rate as a function
of xw. Ṡtot has a single minimum at xw = 0 for the values
of λ above the transition. The two minima occur at some
λ∗, which is much larger than λc, but the positions of these
minima do not correspond to the stable positions of a movable
wall. Above λc, the temperature and number density profiles
develop discontinuity at the movable wall as shown in Fig. 6.

This phase transition diagram is obtained based on the
assumptions that may fail far from equilibrium. In order to
test our analytical results, we performed molecular dynamics
(MD) simulations [29] of the soft-sphere fluid where no as-
sumptions concerning local equilibrium or constancy of heat
conductivity are made. MD simulations provided qualitatively
the same results for the energy storage as a function of the
mean rate of energy added per particle λp and the phase
transition is retrieved [see Figs. 3(c) and 3(d)]. Simulations
are performed for fixed N = 153 600 particles enclosed in
the rectangular box of a size Lz = Ly = 275.8σ, Lx ≡ 2L =
658.3σ , where the molecular size unit σ is set to 1, with
periodic boundary conditions applied along y and z axis. The
energy flux is proportional to the density, i.e., the same amount
of energy is added to the same volume and equally shared
between all particles in that volume (for more details of sim-
ulations see Appendix C).

For a system with a volume V and a fixed number of
particles N in contact with a heat bath at temperature T and

FIG. 5. Total entropy production rate Ṡtot (in units of kV/L2) for
(a) λ = 10 and (b) λ = 50. The vertical lines mark the position of the
steady states, which differ from the positions of the extremes of Ṡtot.
λ is in units of kT/L2.
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FIG. 6. (a) Temperature T (x) (in units of T ) and (b) number
density n(x) (in units of neq = N/V ) profiles for λ = 5.0, slightly
above the transition point. The stable position of the wall −x(2)

w =
x(3)
w = 0.278564 is marked by vertical lines. Stable (s) and unstable

(u) stationary states are indicated in black (red).

driven out-of-equilibrium by external control parameter λ, we
propose a nonequilibrium state function B that is minimized
for stable steady states, and provide its expression. We will
demonstrate the use of this potential using the movable wall
model, and show that it predicts the correct stable steady
states. The development of the nonequilibrium state function
is based on the assumption that the relevant parameters are
the thermodynamic variables T, V, N , and the parameter
λ that accounts for the nonequilibrium. In the limiting case
λ → 0, this state function should agree with the equilibrium
free energy limλ→0 B(T,V, N, λ) = Feq(T,V, N ), which is the
correct state function of an equilibrium system. Moreover, in
analogy to the equilibrium free energy, we postulate that B
satisfies

dB = −SdT − PdV + μdN − Xdλ, (7)

where P(T,V, N, λ), S(T,V, N, λ), μ(T,V, N, λ), and
X (T,V, N, λ) are state functions conjugate to V, T, N , and
λ, respectively. Equation (7) defines the steady state pressure
P, the steady state entropy S, and the steady state chemical
potential μ, which should retrieve their equilibrium values as
λ → 0; X is the new variable purely due to nonequilibrium,
which has no equilibrium counterpart. Note that the first three
terms are analogous to the differential form of the equilibrium
free energy dFeq = −SeqdT − PeqdV + μeqdN . Finally, we
postulate that X is of the form of

X ∝
(

U − Ueq

λ

)
. (8)

This is inspired by our earlier observations [24–26] that for
several seemingly different systems, a quantity T = (U −
Ueq)/JU is minimized for steady states, where JU is the to-
tal heat flow. The two quantities X and T are similar since
λ is quantitatively the total heat flow per unit volume. The
proportionality constant is obtained through an argument of
consistency that we describe below. Now we proceed to
demonstrate the use of B in the movable wall model. Tak-
ing the energy expression (1), we have used consistency
relations analogous to the Maxwell relations of equilibrium
thermodynamics in order to obtain the expression for the
nonequilibrium potential and the steady state functions of the
unconstrained system (see Appendix D); the proportionality

constant in Eq. (8) equal to 1/3 restores the pressure correctly.
We found

B(T,V, N, λ) = Feq(T,V, N ) −
∫ λ

0
X (T,V, N, λ′)dλ′, (9)

S = NkB

2

∫ λ

0
[ f (λ′L2/kT ) − 1]

dλ′

λ′

− NkB

2
[ f (λL2/kT ) − 1] + Seq, (10)

P = NkBT f [λ(L2/kT )]

V
= 3

2

U

V
, (11)

μ = kBT

2

∫ λ

0
{ f [λ′(L2/kT )] − 1}dλ′

λ′ + μeq. (12)

Note that as λ → 0, f → 1. It is then obvious that from these
four expressions we retrieve the correct corresponding equi-
librium potentials in the limit of λ → 0. From Eqs. (10)–(12)
we also obtain the integral form of B of the unconstrained
system as

B = U − T S − 4Xλ, (13)

consistent with Eq. (9). This form is again analogous to the
equilibrium free energy expression Feq = Ueq − T Seq. The ad-
ditional term is the conjugate pair due to nonequilibrium Xλ

with a coefficient 4.
For the constrained system, the nonequilibrium potential of

movable wall system is given by

B(T,V, N1, N2, xw, λ) = Feq(T,V, N1, N2, xw )

−
∫ λ

0
X (T,V, N1, N2, xw, λ′)dλ′,

(14)

where

X (T,V, N1, N2, xw, λ) = 1

3

U1 + U2 − Ueq

λ
. (15)

The extremum condition at fixed T, V, N1, N2, and λ reduces
to the condition of matching pressure:

∂B

∂xw

∣∣∣∣
x∗
w

= 0 ⇔ −A(P1 − P2) = 0, (16)

where

P1 = N1kBT

V1
f

(
λ

(L + xw )2

kT

)
, (17)

P2 = N2kBT

V2
f

(
λ

(L − xw )2

kT

)
. (18)

Thus, we have demonstrated that the extremum points cor-
rectly predict the steady states in the movable wall model.
Furthermore, analysis shows that x∗

w = 0 corresponds to a
local maximum and x∗

w �= 0 local minimum (see Appendix E).
In conclusion, for the movable wall case, we have retrieved

the three steady states as the extremum of B, and the minimum
of B predict correctly the stable steady state. In a general
case of N1 �= N2 the system still exhibits a second-order
phase transition under certain circumstances. The behavior
is more complex as it involves an additional variable and
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needs further study. The movable wall model studied here
analytically exhibits second-order nonequilibrium phase tran-
sition. The transitions in out-of-equilibrium states that can be
fully characterized by analytical calculations are extremely
rare. Therefore, the transition that we have found can be used
as a paradigm of such transitions. We have provided a full
thermodynamic description of the transition introducing the
Helmholtz-like function for stationary states. We think that
such a description analogous to ordinary thermodynamics has
great potential in the description of stationary states and could
push forward nonequilibrium thermodynamics.

Concerning the physical realization of the volumetric en-
ergy supply, the following example of “gedanken” experiment
shows that in principle it is possible to deliver the same
amount of energy per unit volume into the system. Such de-
livery requires a microwave device. The total flux of photons
is IV (each of energy e), and it enters a given volume V .
IV is adjustable and the microwave device is constructed in
such a way as to deliver a predetermined flux to the chosen
subvolume of our system. Some external device measures
(e.g., by fluorescence) the number of molecules NV in a given
volume V . The external device is coupled to the microwave
device. This coupling allows us to change the flux at will,
depending on the number of molecule NV . Each molecule has
a fixed probability to capture one photon given by p. Now
λ = IV × NV × p × e/V = const. For a fixed V , it is sufficient
to keep IV × NV constant, so λ will be constant in the system.

P.J.Z. would like to acknowledge the support of a project
that has received funding from the European Union’s Horizon
2020 research and innovation programme under the Marie
Skłodowska-Curie Grant Agreement No. 847413 and was a
part of an international co-financed project founded from the
programme of the Minister of Science and Higher Education
entitled “PMW” in the years 2020–2024; Agreement No.
5005/H2020-MSCA-COFUND/2019/2.

APPENDIX A: DERIVATION OF THE ENERGY
EXPRESSION

Here we provide a derivation of the energy of the system
Eq. (1) and of subsystems Eq. (5).

As stated in the main text, the energy density satisfies
Eq. (3). By moving the temperature profile to the left-hand
side [as T (�r) > 0] and integrate over the whole volume, the
dependence over the particle density profile n(�r) is eliminated,

ε

∫
V

d3�r
T (�r)

= 3

2
kB

∫
V

d3�rn(�r) = 3

2
NkB. (A1)

From this relation an expression of the energy density can be
obtained,

ε = 3

2
NkB

1∫
V

d3�r
T (�r)

. (A2)

Analogously, the energy density of the subsystem is

εi = 3

2
NikB

1∫
Vi

d3�r
Ti (�r)

. (A3)

The temperature profile is obtained from Eq. (2) with
the appropriate boundary conditions. Since the movable wall

model is assumed to be infinite in y and z directions, it is
sufficient to consider the dependence in x direction, so one
has

−k
∂2

∂x2
T (x) = λ. (A4)

The boundary conditions prior to the constraint are T (±L) =
T0, giving

T (x) = − λ

2k
x2 + λ

2k
L2 + T0. (A5)

The additional boundary conditions under the constraint is
∂xTi(xi ) = 0, giving

Ti(x) = − λ

2k
(x − xw )2 + λ

2k
(L − xw )2 + T0. (A6)

Inserting Eq. (A5) into Eq. (A2), and Eq. (A6) into
Eq. (A3), the final expressions of energy are obtained:

U = Ueq f

(
λ

L2

kT

)
= 3

2
NkBT f

(
λ

L2

kT

)
, (A7)

Ui = Ui,eq f

(
λ

L2
i

kT

)
= 3

2
NikBT f

(
λ

L2
i

kT

)
, (A8)

where L1 = L + xw, L2 = L − xw, and f (x) ≡√
x(x + 2)/[2 Arctanh

√
x/(x + 2)], as in Eqs. (1) and (5).

APPENDIX B: DERIVATION OF THE PHASE TRANSITION
POINT λcL2/kT

Here we provide a derivation of the transition point
λcL2/kT of the movable wall model with N1 = N2 = N/2,
where it is stated that λcL2/kT ≈ 4.55344.

We start by rewriting Eq. (A8) using the normalized vari-
ables λ̃ ≡ λL2/kT and xw = xw/L, and let Ni = N/2. Next,
a new function is defined as the negative difference between
energy densities,

G(xw ) ≡ −(ε1 − ε2) ≡ −3NkBT

2V
[g(xw ) − g(−xw )], (B1)

g(xw ) = f (̃λ(1 + xw )2)
1 + xw

. (B2)

The negativity of G(xw ) is not necessary, but it is chosen here
so that it would simplify the explanation in a later section.
Since the function is odd with respect to xw, it is sufficient to
look at half of the axis, say xw ∈ [0, 1).

Consider the range xw � 0. For this movable wall model
with equal subsystem particles, the phase transition occurs
when the number of solutions transit from 1 to 2. Equivalently,
this means that the number of times ε1(xw ) crosses with ε2(xw )
in xw � 0 transit from 1 to 2, which is then equivalently the
crossings of G(x) with the x axis.

More precisely, in the range xw � [0, 1), G(0) = 0 is fixed
and limx→1 G(x) → ∞. Therefore, when G′(0) > 0, G(x) is
monotonic and have only one crossing point at x = 0; when
G′(0) < 0, G(x) will have two crossing points; the transition
point is G′(0) = 0 = −2g′(0). Explicitly,

dg

dx

∣∣∣∣
x=0

= 1

2 + λ̃
− λ̃2 Arctanh[

√
λ̃/(̃λ + 2)]

[̃λ(̃λ + 2)]3/2
= 0. (B3)
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Solving this implicit equation numerically, the solution is
λ̃c = λcL2/kT ≈ 4.55344.

APPENDIX C: MOLECULAR DYNAMICS SIMULATION

The simulations are performed using molecular dynamics
method [29] for systems of N = 153 600 particles of mass
m = 1 enclosed in the rectangular box and interacting via the
following potential:

Vrep(r) = ε
(σ

r

)12
, (C1)

where r is the interparticle distance and both the energy ε and
the size σ parameter are set to one. The equations of motion
are solved applying the Verlet method [29] for the time step
δt = 0.0025σ (m/ε)1/2. The gas of particles is enclosed in the
rectangular box of the edges: Lz = Ly = 275.8, Lx ≡ 2L =
658.3. The periodic boundary conditions were applied only
along z and y axis. The xth direction was restricted by two
walls that repulse the particles with the potentials Vrep(−L −
x) and Vrep(L − x), where −L � x � L. The movable wall of
the mass M = 32m is perpendicular to xth axis and interacts
with the surrounding particles with the potential

Vw(x) =
⎧⎨
⎩

Vrep(xw + 1 − x), for x � xw − 1,

Vrep(x − xw − 1), for x � xw + 1,

∞, for xw − 1 � x � xw + 1,

(C2)
where xw denotes the position of the wall. At the beginning
of each simulation run xw = 0 and the particles are equally
distributed between the two parts.

Energy is added to the system once per time interval
0.1σ (m/ε)1/2 and removed from the system by keeping the
boundary temperature T0 constant (=0.5) by applying Brow-
nian simulations [29]. For this purpose, the Verlet scheme
is completed with the stochastic term [30] for x < −L + xT

and x > L − xT where xT = 3.0. The system for −L + xT <

x < L − xT is imaginary divided into 20 equal size layers
perpendicular to the xth axis. The energy flux is proportional
to the density [24], i.e., the same amount of energy is added to
the same volume (here, the layer) and equally shared between
all particles in the layer. As the initial state for all simulation
runs we adopted the system at the equilibrium state at the tem-
perature T = T0 = 0.5. The simulations are run for minimum
100 000δt to assure that the steady state is achieved, see Fig. 7.

FIG. 7. The relative shift of the wall �L/L = |〈xw〉/L| as a func-
tion of time for the mean rate of energy added per particle λp = 0.01.

APPENDIX D: DERIVATION OF THE STEADY-STATE
FUNCTIONS FOR THE MOVABLE WALL MODEL

Using the movable wall model, in particular Eqs. (1)
and (5), we provide the derivation of the expressions for B,
S, P, and μ [Eqs. (9)–(12), respectively]. This is done by
using consistency relations, which are analogs of Maxwell
relations in equilibrium thermodynamics. Furthermore, we
derive the integration form of B [Eq. (13)].

In analogy to the Maxwell relations of equilibrium ther-
modynamics, in order for the proposed three postulates
concerning state function B (described in the main text) to be
valid, the following six relations of mixed derivatives must be
satisfied:

∂2B

∂T ∂λ
= ∂2B

∂λ∂T
⇔ ∂S

∂λ
= ∂X

∂T
, (D1)

∂2B

∂V ∂λ
= ∂2B

∂λ∂V
⇔ ∂P

∂λ
= ∂X

∂V
, (D2)

∂2B

∂N∂λ
= ∂2B

∂λ∂N
⇔ −∂μ

∂λ
= ∂X

∂N
, (D3)

∂2B

∂T ∂V
= ∂2B

∂V ∂T
⇔ ∂S

∂V
= ∂P

∂T
, (D4)

∂2B

∂T ∂N
= ∂2B

∂N∂T
⇔ − ∂S

∂N
= ∂μ

∂T
, (D5)

∂2B

∂V ∂N
= ∂2B

∂N∂V
⇔ − ∂P

∂N
= ∂μ

∂V
. (D6)

From Eq. (D1), the steady state expression of entropy S can
be obtained from

S(T,V, N, λ) =
∫ λ

0

∂X

∂T
dλ′ + Seq(T,V, N )

= NkB

2

∫ λ

0

[
f

(
λ′ L2

kT

)
− 1

]
dλ′

λ′

− NkB

2

[
f

(
λ

L2

kT

)
− 1

]
+ Seq(T,V, N ),

(D7)

which is Eq. (10). Furthermore, from postulate Eq. (7) that
∂B/∂T ≡ −S, B is given by

B(T,V, N, λ) − B(Tref,V, N, λ)

= −
∫ T

Tref

SdT ′

= −
∫ T

Tref

dT ′
(∫ λ

0

∂X

∂T ′ dλ′ + Seq(T ′,V, N )

)
. (D8)

Changing the order of integration, the above expression
becomes

B(T,V, N, λ) − B(Tref,V, N, λ)

= Feq(T,V, N ) − Feq(Tref,V, N )

−
∫ λ

0
X (T,V, N, λ′)dλ′ +

∫ λ

0
X (Tref,V, N, λ′)dλ′.

(D9)
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Thus, we conclude:

B(T,V, N, λ) = Feq(T,V, N ) −
∫ λ

0
Xdλ′. (D10)

Next, from Eq. (D2) we obtain P,

P =
∫ λ

0

∂X

∂V
dλ′ + Peq(T,V, N ) = NkBT

V
f

(
λ

L2

kT

)
, (D11)

as given by Eq. (11). This expression is consistent with the
ideal gas law where P = 3U/2V , and with the definition from
P ≡ −∂B/∂V where B is given by Eq. (D10).

Third, from relation Eq. (D3), we obtain μ,

μ(T,V, N, λ) = −
∫ λ

0

∂X

∂N
dλ′ + μeq(T,V, N )

= kBT

2

∫ λ

0

[
f

(
λ′ L2

kT

)
− 1

]
dλ′

λ′ + μeq(T,V, N ),

(D12)

as shown in Eq. (12). Similarly, this expression is consistent
with the definition μ ≡ ∂B/∂N .

Now we consider the rest of the relations, i.e., Eqs. (D4)–
(D6). Using the above expressions of the state functions, we
obtain

∂S

∂V
= ∂P

∂T
= NkB f

V
− NkB

V

λL2

kT

df

dy
, (D13)

− ∂S

∂N
= ∂μ

∂T
= −kB

2

∫ λ

0

f − 1

λ′ dλ′ + kB

2
( f − 1) + ∂μeq

∂T
,

(D14)

− ∂P

∂N
= ∂μ

∂V
= −kBT

V
f , (D15)

where y = λL2/kT , and we have used the equilibrium relation
∂Seq/∂N = −∂μeq/∂T .

Finally, using postulate Eq. (8) and the above obtained
Eqs. (D7), (D11), and (D12), the integration form of B can
be written as

B = U − T S − 4Xλ, (D16)

which is Eq. (13), in order to be consistent with Eq. (D10).

APPENDIX E: ANALYSIS OF THE EXTREMA OF B

Here we check the properties of the extrema of B of the
movable wall model with N1 = N2 = N/2. Equivalently, it
is to check the second-order derivative ∂2B/∂x2

w at extrema
x∗
w, which are solutions to ∂B/∂xw = 0. In other words, x∗

w

are local maxima if (∂2B/∂x2
w )(x∗

w ) < 0, and local minima if
(∂2B/∂x2

w )(x∗
w ) > 0.

Using G(xw ) in Eq. (B1), the comparison between the
second derivative of B and 0 simplifies to comparison between

− ∂
∂xw

( f (̃λ(1+xw )2 )
1+xw

− f (̃λ(1+xw )2 )
1−xw

)|x∗
w

and 0 or, equivalently, be-

tween G′(xw )|x∗
w

and 0. As shown earlier, beyond the transition
point we have G′(0) < 0, suggesting that x∗

w = 0 corre-
sponds to a local maximum. Moreover, since G(1) > G(0),
the derivative at the crossing point x∗

w > 0 must be positive,
G(x∗

w > 0) > 0, suggesting that this solution is a local min-
imum. Finally, since G(x) is an odd function, G′(−xw ) =
G′(xw ) and the crossing point x∗

w < 0 is also a local minimum.
The above discussion shows that x∗

w = 0 is the local maximum
and x∗

w �= 0 are local minima.
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