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A descriptor-based method combined with a partition approach is proposed to reconstruct three-dimensional
(3D) microstructures based on a set of two-dimensional (2D) scanning electron microscopy (SEM) images. The
features in the SEM images are identified and partitioned into small features using the watershed algorithm. The
watershed algorithm first finds the local gray-level maxima, and partitions the features through the gray-level
local minima. The 3D size distribution and radial distribution of the small spherical elements are inferred,
respectively, based on the 2D size distribution and radial distribution using stereological analysis. The 3D
microstructures are reconstructed by matching the inferred size distribution and radial distribution through a
simulated annealing-based procedure. Combining with the proposed partition approach, the descriptor-based
method can be applied to complex microstructures and the computational efficiency of the reconstruction can be
largely improved. A case study is presented using a set of 2D SEM images with nanoscale pore structure from
the low-density CSH (calcium silicate hydrate) phase of a hardened cement paste. Cross sections were randomly
selected from the reconstructed 3D microstructure and compared with the original SEM images using the pore
descriptors and the two-point correlation function with satisfactory agreement. Using the 3D reconstructed
model, the properties of the sample material can be investigated on such a small scale as demonstrated in this
paper on quantifying the absolute permeability.
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I. INTRODUCTION

Microstructure characterization and reconstruction have
been widely applied to investigate the properties of hetero-
geneous materials. Microstructure characterization describes
the material systems statistically with statistical functions
or descriptors. Microstructure reconstruction builds vir-
tual models statistically equivalent to microstructures of
the material systems [1]. With the microstructure charac-
terization and reconstruction, the material microstructures
can be investigated quantitatively, the properties of ma-
terials can be predicted using numerical simulations, and
the structure-property relationships of material systems can
be built. Several methods including the statistical correla-
tion function method, descriptor-based method, and machine
learning method have all been successfully applied to char-
acterize and reconstruct the microstructures of material
systems.

The statistical correlation function method uses statistical
correlation functions such as the two-point correlation func-
tion, lineal-path function, and two-point cluster function to
characterize the microstructure information from sample im-
ages and reconstruct the microstructure models by matching
the characterized correlation functions. The two-point cor-
relation function S2(r) measures the probability of finding
two points in the same phase. The lineal-path function L(r)
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describes the probability that an entire line with length r lies
in the same phase and the two-point cluster function C2(r)
measures the probability of finding two points with distance r
in the same cluster [2]. Using these correlation functions, sta-
tistically equivalent three-dimensional (3D) microstructures
can be reconstructed based on the two-dimensional (2D)
sample images. The 3D microstructure reconstruction using
the statistical correlation function method normally assumes
that the 3D correlation functions are the same as the cor-
responding 2D correlation functions characterized from the
sample images. After that, the voxels will be swapped based
on optimization procedures to match the target correlation
functions [3,4]. It has been reported by using certain corre-
lation functions that the reconstructed 3D microstructure can
reach sufficient accuracy. Yeong and Torquato used the two-
point probability function and lineal-path function measured
from 2D images to reconstruct the 3D microstructure of a
Fontainebleau sandstone, and the 3D properties including spe-
cific surface area, pore size distribution, and permeability can
be evaluated accurately from the reconstructed pore structures
[5,6]. Guo et al. used the Yeong-Torquato procedure and the
dilation-erosion method to reconstruct 3D microstructures of
austenitic-ferritic cast duplex stainless steel with a percolating
filamentary ferrite phase. The two-point correlation function
characterized from 2D images is used for the reconstruction,
and it can reach the same level of accuracy with the case
considering 3D correlation functions [7]. Sumanasooriya et al.
used the two-point correlation function method to reconstruct
3D pore structures of concrete from planar images [8]. Pore
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structure features and permeability were estimated based on
the reconstructed 3D pore structures and the results agreed
well with the experimental results. However, one critical issue
of the statistical correlation function method is that during
the procedure of matching objective correlation functions,
pixels or voxels of the microstructure need to be swapped
constantly to transform the configuration from “high energy”
to “low energy”, which leads to high computational cost [9].
Speeding-up techniques have been proposed to reduce the
computational time, such as an adaptive schedule to achieve
high cooling speed, swapping the pixels or voxels at the two-
phase interface [10,11], the different-phase-neighbor based
pixel selection approach [12,13], and the hierarchical anneal-
ing method with rescale of the correlation functions [14].
However, even with these techniques, the work still focuses
on the permutation of pixels or voxels, and this requires a
noncheap computational cost. Additionally, the microstruc-
ture is characterized by higher-order dimensional correlation
functions. Although the correlation functions can contain the
information of microstructure characters such as volume frac-
tion or specific surface area, and the correlation function can
be linked to the effective properties with rigorous bounds, it
does not link the properties directly to the low-dimensional,
physically meaningful descriptors, such as the volume frac-
tion, pore size distribution, or other geometrical descriptors.
Therefore, comparing with the descriptor-based microstruc-
ture characterization and reconstruction method, the statistical
correlation function method is less suitable to analyze the
structure-property relationship [1,15,16].

The machine learning method uses microstructure images
to train the machine learning models and uses the trained
models to reconstruct statistically equivalent microstructure
samples [17]. The stochastic microstructures can be learned
and reconstructed with relatively low computational cost. The
machine method can also achieve the reconstruction of a
3D model based on 2D section image samples. Deep learn-
ing based generative adversarial networks (GANs) have been
trained and used to reconstruct 3D microstructure based on
2D image samples [18,19].

The descriptor-based method uses physically meaningful
descriptors to characterize the microstructures, and recon-
struct microstructure models by matching the target descrip-
tors stochastically. The descriptor-based method enables high
computational efficiency and physically meaningful, low-
dimensional microstructure characterization compared with
other microstructure reconstruction methods [1,20]. Physi-
cal descriptors used for microstructure characterization and
reconstruction include volume fraction; spatial descriptors
such as radial distribution functions; and shape descriptors
such as size distribution, aspect ratio, and roundness. The
2D and 3D relationships of these descriptors can be inves-
tigated with stereological analysis, and 3D descriptors can
be inferred from the corresponding 2D descriptors. This en-
ables the 3D microstructure reconstruction with 2D image
samples. Compared with the correlation function method, the
descriptor-based method focuses on matching the descriptors
of objects rather than every pixel or voxel of the microstruc-
ture, which can highly increase the computational efficiency.
The microstructure features are characterized using physi-
cally meaningful descriptors, which provide the potential to

build the structure-properties relationship and design of the
microstructure [15,16].

The advantages of the descriptor-based method are obvious
when characterizing and reconstructing regular microstruc-
tures with regular features, such as voids or reinforcing
particles. However, considering some complex microstruc-
tures, such as the microstructures of porous materials, the
direct application of the descriptor-based method will have
some limitations. The pore features in the porous materials are
highly irregular, highly tortuous, and well connected, which is
difficult to characterize with a few descriptors. Adding more
descriptors means increasing the complexity of reconstruction
and increasing the computational cost. The 2D and 3D rela-
tionships of some descriptors such as connectivity, tortuosity,
and aspect ratio are difficult or impossible to investigate.
These limitations restrict the application of the descriptor-
based method on some complex microstructures such as the
microstructure of porous materials.

In this study, a partition approach is proposed to com-
bine with the descriptor-based microstructure reconstruction
method to reconstruct 3D complex microstructures. The
objective is to reconstruct 3D microstructures statistically
equivalent to the information from 2D images. The 2D infor-
mation can be characterized from one single image sample
or a set of image samples. Using a set of image samples
is intended to improve the representativity and accuracy of
the data. The 3D microstructure information can be charac-
terized and the material properties can be investigated using
the 3D reconstructed model. Compared with the previous
work using the descriptor-based microstructure reconstruction
method directly in the literature, the proposed method par-
titions the original features into small features first. In this
way, the partition approach can capture the irregularity, tor-
tuosity, and connectivity of complex pore structure in porous
materials and achieve high computational efficiency with the
descriptor-based method. The proposed method can be ap-
plied to reconstruct 3D irregular microstructures of materials
under the scale of which only 2D images can be characterized
with sufficient resolution.

Circles or spheres have been successfully used as the ba-
sic elements to reconstruct the microstructure of composites
or porous materials. Random sphere packing has been in-
volved in the Laguerre-Voronoi tessellation method, which
has been used to generate the microstructure of open-cell
foams [21,22]. Sphere packing has also been used to recon-
struct the microstructures directly. Steriotis et al. [23] used
random sphere packing to reconstruct the digital represen-
tation of silica gel. Stiapis et al. [24] proposed the method
starting from a random spatial distribution of spheres, then
expanding and moving the spheres to nonoverlapping or
partially overlapping spheres, to reconstructing the Ti2AlC
ceramic foams. Thovert and Adler have proposed a method
using polydisperse spheres to generate the pore structure of
sandstone, with the probability density of sphere radii derived
from the two-point correlation function measured on a 2D
thin section [25,26]. These applications of the sphere pack-
ing method have considered the genesis of the material. For
example, silica gel was considered as the agglomeration of
silica microspheres and the sedimentary rock was considered
as the deposition of grains followed by the consolidation. In

015316-2



DESCRIPTOR-BASED METHOD COMBINED WITH … PHYSICAL REVIEW E 104, 015316 (2021)

this case, the spheres were randomly located and the spa-
tial correlations were not considered. Politis et al. proposed
a hybrid method combining the process-based method and
the statistical correlation function method. It first generates
nonoverlapping spherical particles with random sequential de-
position, then uses the simulated annealing method to match
the statistical correlation functions characterized from 2D
images [27]. Different from the process-based method, the
proposed method here is a geometrical method. It does not
consider the formation process of the material, and is not
limited to the materials with the sphere packing by genesis.
The proposed method artificially partitions the original feature
into separated features. The intention of this is to achieve flex-
ible reconstruction which can be applied to a broader range
of materials. In this case, the spheres cannot be randomly
inserted; the spatial correlation of the spheres needs to be
quantified with the pair correlation function to recompose the
integrated features. As a case study, the proposed method
has been applied to reconstruct the nanopore structure from
the low-density CSH (calcium silicate hydrate) phase of a
hardened cement paste.

Cement and concrete are broadly used as construction
materials. As porous materials, their pore structure has a
close relationship with the mechanical and transport prop-
erties of cementitious materials. Different types of pores
are linked to certain properties of cement pastes [28]. The
compressive strength of a cement paste is significantly con-
trolled by the porosity of its capillary pores [29]. It is also
sensitive to the pore size of capillary pores ranging from
10 nm to 1 μm [30]. Transport properties will be affected
more by the capillary pores ranging from 50 nm to 10 μm
than other pore size ranges [31]. The effects of nanorein-
forcements on the properties of cementitious materials are
related to the nanopores in the microstructure. Besides the
reinforcing effect, nanomaterials also improve the properties
of cementitious materials by modifying the pore structures
[32,33]. After adding nanomaterials, capillary pores and gel
pores will decrease significantly, especially capillary pores
above 50 nm [34–36]. The connectivity of capillary pores
will be reduced and pore tortuosity will be increased [31,37].
With regard to the material properties, after adding nano-
materials, permeability and chloride diffusivity are reduced,
compressive strength is increased, and durability is improved
[31,34,35,38–42].

Several methods can be utilized to characterize the pore
structures of cementitious materials including mercury in-
trusion porosimetry (MIP), scanning electron microscopy
(SEM), and x-ray computed tomography (x-ray CT). MIP can
obtain the porosity and pore size distribution of cementitious
materials [30,43], but it cannot provide the direct information
of pore morphology or the connectivity of pores which are
critical to the transport properties. Some research suggested
that the MIP method cannot provide actual pore size distri-
bution for cement-based materials [44]. X-ray CT can obtain
the 3D images of cement pore structures directly [1,45–48].
However, the resolution is insufficient to analyze the nanopore
structures of cementitious materials. The low resolution will
cause the underestimation of capillary porosity because it can-
not cover the whole size range of capillary pores [46,49]. SEM
has been widely used to characterize the microstructure of

FIG. 1. Overview of the proposed reconstruction method.

cementitious materials. The focused ion beam plus scanning
electron microscopy (FIB SEM) technique has been applied
to cement-based materials to obtain the 3D image [50,51].
However, the FIB SEM technique milling process can be
destructive, the microscope can see below the cutting sur-
face which makes the image segmentation difficult, and this
method has a high cost and is time consuming which can limit
the size of the sample [52]. By using the centrifugation-based
low-melting-point metal intrusion technique (CLMI), high-
resolution and contrast 2D SEM images of hardened cement
paste pores can be obtained [32,53]. These images may not
be perfect for accurate pore structure analysis, but compared
with x-ray computed tomography and FIB SEM, the 2D SEM
method can achieve higher resolution with lower cost, which
is suitable to investigate the cement paste microstructure at
the nanoscale. Applying the proposed descriptor-based recon-
struction method combined with the partition approach, the
3D microstructure of hardened cement pastes with nanopores
with descriptors statistically equivalent with real samples was
reconstructed. The reconstructed microstructure enables the
characterization of 3D nanopore structures of cement pastes
and the estimation of properties at the nanoscale.

II. METHOD

The overview of the proposed method is shown in Fig. 1.
The method is composed of 2D image processing including
the partition of the features, 3D size distribution inference,
3D radial distribution inference, and 3D microstructure re-
construction procedure. The overall concept of the proposed

015316-3



LI, CHEN, DUAN, AND YAN PHYSICAL REVIEW E 104, 015316 (2021)

FIG. 2. Illustration of a feature reconstruction. (a) An irregular
and tortuous pore in black from a 2D SEM image of a hardened
cement paste. (b) The pore was partitioned into small features with
the watershed algorithm. (c) The partitioned features were replaced
by the circles and the pore was formed by the connected circles in
2D. (d) A 3D pore formed by connected spherical elements in 3D,
which was created based on the descriptors inferred from 2D image
analysis.

method is described in Sec. II A. Details of the procedure are
presented in the sections after that.

A. Concept of the proposed reconstruction method

The descriptor-based method combined with a partition
approach is proposed to reconstruct 3D microstructures based
on the information from a set of 2D SEM images. In previous
applications of the descriptor-based method on regular mi-
crostructures, the regular features, such as voids or reinforcing
particles, were often treated as integrated parts [15,54]. The
pore structures of porous materials such as cement pastes
are highly irregular, highly tortuous, and well connected, as
shown in Fig. 2(a), and are difficult to characterize as inte-
grated parts with a few descriptors. The proposed partition
approach divides the irregular pore features into small parts, as
shown in Fig. 2(b). The spatial relationship of the partitioned
features is evaluated statistically and used to reconstruct the
3D pore structures. This makes it easier to characterize these
pore features with the small partitioned features and investi-
gate the 2D and 3D relationship, which achieves the flexibility
to reconstruct the microstructure with complex features. Fur-
thermore, the partitioned features are much smaller and show
much higher sphericity than the undivided pores. Therefore,
the partitioned features are assumed to be circular in 2D
and spherical in 3D, and the 3D features (pores) are formed
by the connected small spherical elements, as illustrated in
Figs. 2(c) and Fig. 2(d). There are two principles when per-
forming the partition. First, the partitioned features should
have high roundness. Second, the circular elements should
be much larger than the size of the unit pixel or voxel. The
size of the circular elements depends on the morphology

of the original features. It can be indicated by the parame-
ter roundness, which evaluates how close the shape of the
partitioned feature is to a circle. In general, the partitioned
features should reach satisfactory average roundness and be
much larger than the size of the unit pixel or voxel. The
shapes of circles and spheres are relatively simple compared
with other geometries and can be fully defined only using the
size descriptors. This simplifies the characterization process
and the 2D and 3D relationship investigation. The connected
circular and spherical elements can capture the tortuosity,
irregularity, and connectivity of the cementitious material pore
structure. The partitioned features are characterized through
the descriptors including 2D area fraction, 2D size distribu-
tion, and 2D radial distribution. The 3D volume fraction is
inferred directly from the 2D area fraction because the 2D area
fraction is an unbiased estimator of the 3D volume fraction
[55]. With stereological analysis, the 2D and 3D relationships
of these elements are investigated and the 3D size distribu-
tion and 3D radial distribution of these spherical elements
are inferred. The 3D structure is formed by these spherical
elements following the inferred 3D size distribution and 3D
radial distribution.

B. 2D image processing

The 2D image processing identifies the features, partitions
the original features into small partitioned features, and char-
acterizes the size and radial distribution of the partitioned
features. IMAGEJ FIJI software [56] was used for 2D image
processing. The SEM image of a hardened cement paste pore
structure is shown in Fig. 3(a) and a 1 μm × 1 μm sample
is extracted from the marked area for the demonstration. The
2D SEM image was obtained through the low-melting-point
metal intrusion method, using a nontoxic Field’s metal as an
intrusion material to fill the pores in the cement samples. The
intruded samples were polished using diamond pastes. The
SEM image was taken from the cross section of the sample
by the backscatter detector (BSE). The bright area represents
the pores filled by the metal; the dark area represents the CSH
solid. The pore phase and solid phase were first identified by
applying a threshold, which processed the gray-scale images
to binary images as shown in Fig. 3(b). In this process, pixels
with gray level higher than the threshold were identified as
the pore phase, shown as the black area in Fig. 3(b), and
those lower than the threshold were defined as the solid phase,
shown as the white area in Fig. 3(b). The threshold was
determined by the ISODATA method [57], which calculated
the average value of the integrations on the two sides of the
threshold until the threshold value is equal to the average
value. After the pore phase was identified, the pores were
partitioned into smaller and more regular partitioned features
with the watershed algorithm [58]; the partitioned features are
shown in Fig. 3(c). The watershed algorithm can achieve the
partition of connecting or overlapping objects automatically
[59–61]. A single pore was composed of connected circles
in the 2D images. The watershed algorithm first found the
centers of these circles based on the local gray-level maxima.
The pore objects were partitioned through the gray-level lo-
cal minima between the two circle centers. When choosing
the local maxima, the noise tolerance was applied. Only the
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FIG. 3. (a) The SEM image of the low-density CSH phase of
a hardened cement paste with nanopores obtained with the low-
melting-point metal intrusion. The white area represents the pore
phase, the black and gray area represents the solid phase. (b) A
binarized sample image extracted from the marked area in (a) with
the size 1 μm × 1 μm. The black area represents the pore phase and
the white area represents the solid phase. (c) The sample image with
the pore phase partitioned by the watershed algorithm.

local maxima with the gray level higher than the surrounding
local maxima were preserved to prevent overpartition. The
choosing of noise tolerance was based on the roundness of
the partitioned features to make it closer to the circles. After
finishing the partition of pores, the size distribution and radial
distribution of these partitioned features were characterized.
The size distribution was characterized by the equivalent cir-
cle diameter, which was the diameter of the circle with an
equivalent area of the partitioned feature. The radial distribu-
tion function was used to characterize the spatial relationship
of the partitioned features.

C. 3D pore size distribution inference

The 3D sphere size distribution was inferred from the
characterized 2D circle size distribution using stereological
analysis, the Saltykov method [62]. This method infers the 3D
size distribution based on the probability of obtaining different
2D profile sizes when randomly cutting a sphere with a section
[63]. This method assumes the cutting probability along the
vertical axis (z) is equal; therefore, the probability of cutting
at a certain vertical level z is dz/R. The relationship between
the radius of the sphere R, the radius of the 2D profile r at
a certain vertical level z, and the cutting level z is shown in
Fig. 4(a) and in Eq. (1).

z(r) =
√

R2 − r2. (1)

A certain range of vertical level dz can be represented by
the difference of corresponding z(r−dr) and z(r), as shown

FIG. 4. (a) Illustration of a sphere cut by a plane; the red bar
represents the radius of cross-section profile r at vertical level z, the
blue bar is the radius of the sphere R. (b) The relationship between
a certain range vertical level dz, the radius of the sphere R, and the
radius of the 2D circle profile.

in Fig. 4(b) and Eq. (2) [63].

dz = z(r − dr) − z(r). (2)

Combining Eqs. (1) and (2), the relationship between the
vertical difference dz, the radius of the sphere R, and the
radius of the 2D circle profile is [63]

dz =
√

R2 − (r − dr)2 −
√

R2 − r2. (3)

For a sphere with the radius R, when cutting by a section
randomly, the probability of getting a 2D circle profile with
the radius between (r−dr) and r can be calculated by [63]

Pr {r > ri > (r − dr)R}
= 1

R
[
√

(R2 − (r − dr)2) −
√

(R2 − r2)]. (4)

Next, considering a group of spheres with diameter D, the
relation of 3D particle number density NV and 2D particle
number density Na is given by

Na = DNV . (5)

The 3D particle number density NV is the number of sphere
centers per unit volume of the cube and 2D particle number
density Na is the number of profiles within the unit area of the
section.

The Saltykov method assumes that the diameter of the
largest sphere Dmax is equal to the largest circle in the cross-
section area. The 2D and 3D size ranges are divided into
the same number of discrete identical intervals [64]. The size
interval � is determined by the largest sphere diameter Dmax

and the number of the intervals m; i.e.,

� = Dmax

m
. (6)

Let i be the number of size intervals in 3D and j be the
number of size intervals in 2D. Na( j) is the particle number
density of 2D cross-section circle profiles which are obtained
from the SEM images. P( j, i) is the probability of cross sec-
tions produced by 3D spheres in size interval i falling into
2D size interval j. The 2D circle profiles in the cross section
can only come from the 3D spheres with a radius equal to
or larger than the radius of the 2D circle profiles. Therefore,
the number of 2D circle profiles in the size interval Na( j)
is the summation of the product of the number of spheres
in size interval i, NV (i), and the diameter of the sphere Di,
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and the probabilities of cross-sectional profiles produced by
3D spheres in this interval i fall into the 2D size interval j,
P( j, i); i.e., [65]

Na( j) =
m∑

i= j

P( j, i)DiNV (i). (7)

Based on the aforementioned stereological method,
Eq. (4), the probability of obtaining 2D profiles in 2D size
interval j from 3D sphere size interval i is given by [65]

P( j, i) = 1

Di

[√
Di

2 − (d j − �)2 −
√

Di
2 − d j

2
]

= 1

i
[
√

i2 − ( j − 1)2 −
√

i2 − j2]. (8)

With the 2D profile size distribution obtained from the
image processing step, the 3D size distribution of the elements
can be inferred by solving the linear relationship in Eq. (7).

D. 3D radial distribution inference

The radial distribution function g(r), also called the pair
correlation function, describes the spatial correlation and the
dispersion of elements. It is defined as the probability of
finding any particle at a radial distance r from the center
of another particle [66]. Rintoul and Torquato used it to re-
construct the dispersions of particles [67]. In the proposed
method, the 3D radial distribution is inferred by analyzing
the position relationship of two elements in 3D space based
on the 2D radial distribution characterized from SEM images.
The periodic boundary condition is applied for both 2D radial
distribution characterization and 3D radial distribution match-
ing to overcome the boundary effect of the sample [68]. In
2D cases, the radial distribution function g(r) is the number
density inside a ring with the radius r and the thickness �r,
i.e., [66]

g(r) = 1

2πNrρ0

N∑
j=1

N∑
i = 1
i �= j

δ(r − ri j )

= 1

πNrρ0

N∑
j=1

N∑
i> j

δ(r − ri j ), (9)

where ρ0 = N/A is the average number density. N is the
number of elements in the entire sample, A is the area of the
sample, and δ is the Dirac delta function.

In 3D cases, radial distribution function g(r) represents the
number density inside a spherical shell with the radius r and
the thickness �r, i.e., [66]

g(r) = 1

4πNr2ρ0

N∑
j=1

N∑
i = 1
i �= j

δ(r − ri j )

= 1

2πNr2ρ0

N∑
j=1

N∑
i> j

δ(r − ri j ), (10)

where ρ0 = N/V , N is the number of elements in the entire
sample, and V is the volume of the sample.

FIG. 5. Illustration of the relation of the distance between two
sphere centers to the projection distance between two circle centers.
(a) Two sphere centers located at the opposite side of the cutting
plane. (b) Two sphere centers located at the same side of the cutting
plane. The yellow line represents the projection distance l on the
cutting plane between two circle centers and the blue line represents
the 3D distance L between two sphere centers.

To infer the 3D radial distribution function from the 2D
radial distribution function characterized from SEM images,
the spatial relationship between two elements is analyzed.
Two cases are considered, one where the two sphere centers
are located at the opposite side of the cutting plane, as shown
in Fig. 5(a), and one where the two sphere centers are located
at the same side of the cutting plane, as shown in Fig. 5(b).

The distance between two circle centers seen in the 2D
images is the projection of the real distance between the two
spheres in 3D. As seen in Fig. 5, there may be some vertical
distance between the center of the spheres and the center of
the circles on the section plane. To infer the real distance
between the centers of two spheres, the probabilities of ob-
taining different vertical distances Hi and Hj are analyzed.
It is assumed that the position of the section plane is equal
throughout the vertical direction, the two vertical distances for
the two elements between the center of circles in the section
profile and the center of spheres are independent, and there
is an equal probability of having the center of the spheres in
the same side of the section plane and the opposite side of the
section plane.

The real distance between two sphere centers L is deter-
mined by the projected distance on section plane l , and the
vertical distance Hi and Hj gives

L =

⎧⎪⎨
⎪⎩

√
l2 + (Hi + Hj )2 (spheres on the same side)√
l2 + |Hi − Hj |2 (spheres on the opposite side)

.

(11)
The range of the vertical distance is constrained by the size

of the spheres. If the vertical distance between the center of
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the sphere and the section plane is larger than the radius of the
sphere, there will be no cross-sectional profile shown on the
section plane. Therefore, the highest possible vertical distance
is the radius of the sphere. The probability of getting different
vertical distance Hi and Hj is related to the radius of the
spheres and the probability of the size of the spheres. Based
on the assumption of equal cutting probability in the vertical
direction, for a sphere with a given radius, the probability of
getting a certain vertical distance H is the inverse value of the
radius, i.e.,

P2(Hi ) =
∫ Rmax

Hi

1

x
P1(x)dx, (12)

P2(Hj ) =
∫ Rmax

Hj

1

y
P1(y)dy, (13)

where x and y are the radii of the two spheres, P1(x) is
the probability function of the sphere radius, and P2(H ) is
the probability function of the vertical distance between the
sphere center and the circle center on the section plane.

Assuming that it takes independent events to get two ver-
tical distances, the probability of having Hi and Hj for the
two spheres P3(Hi, Hj ) is equal to the product of having the
probability of vertical distance Hi and Hj .

P3(Hi, Hj ) = P2(Hi )P2(Hj )

=
∫ Rmax

Hi

1

x
P1(x)dx

∫ Rmax

Hj

1

y
P1(y)dy

=
∫ Rmax

Hj

∫ Rmax

Hi

1

xy
P1(x)P1(y)dxdy. (14)

The probability function of the inferred distance between
two sphere centers P5(L) is the product value of the proba-
bility of having Hi and Hj for the two spheres and l for the
projected distance on the section plane. The corresponding
value of L is given by

P5(L) = P3(Hi, Hj )P4(l ), (15)

where P4(l ) is the probability function of the distance between
the center of two circle profiles on the section plane, which
can be characterized on 2D images.

The radial distribution function is calculated based on the
probability of the inferred 3D distance between sphere centers
and the volume of the sample, i.e.,

g(r) = 1
dv
V

∑N
j=1

∑N
i = 1
i �= j

δ(r − ri j )

N2
. (16)

The volume of the sample is assumed to be equal to a torus
with the radius r, width �r, and height 2Rmax.

In 3D cases, P5(L) is the distribution of the radial distance
between two sphere centers, i.e.,

P5(L) =

∑N
j=1

∑N
i = 1
i �= j

δ(r − ri j )

N2
. (17)

The 3D radial distribution function can be represented by
the inferred 3D probability function of the radial distance be-
tween two sphere centers P5(L) divided by the volume density

FIG. 6. Pore structure reconstruction flowchart using the inferred
3D information.

of the torus; i.e.,

g(r) = 1
dv
V

P5(L). (18)

E. 3D model reconstruction procedure

The flowchart of the reconstruction procedure is shown in
Fig. 6. The 3D microstructure was reconstructed stochasti-
cally by matching the volume fraction, 3D size distribution,
and 3D radial distribution of the spherical elements. Firstly,
the target volume fraction φ, element size distribution d̄ , ob-
jective radial distribution function ḡ(r), number of elements
in each group N , and maximum number of random moving
iterations Imax were set, as shown in step 1 in Fig. 6. The
elements were generated by groups. For each group, the 3D
size distribution and radial distribution were matched with the
objective value. Secondly, N radii were generated based on
the size distribution d̄; after that random positions for these
elements were generated, as shown in step 2 in Fig. 6, and
the radial distribution function ḡ(r)′ was calculated for all
the centers generated. The radial distribution function was
obtained by calculating the distance between every two cen-
ters of the elements, which can be time consuming. However,
the calculations of the distances between the elements are
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independent and do not affect each other. Therefore, parallel
computing was applied which can calculate the distances be-
tween elements simultaneously. The computational load was
divided into discrete tasks and allocated to different CPUs.
With parallel computing, the computational time was signifi-
cantly reduced.

The simulated annealing optimization procedure was ap-
plied to optimize the position of the elements to match the
radial distribution. Based on the simulated annealing method,
the difference E between the radial distribution function of
generated elements ḡ(r)′ and the objective radial distribution
function ḡ(r) was calculated as [69]

E =
∑

i

|ḡ(r)′ − ḡ(r)|, (19)

as shown in step 3 in Fig. 6.
The positions of some of the elements were moved ran-

domly and the differences between the radial distribution
functions were recalculated, as shown in step 4 in Fig. 6. The
randomly moved positions were compared with the previous
positions by calculating the energy difference �E ; i.e.,

�E = E ′ − E . (20)

Whether the random move will be accepted or not will
depend on the acceptance probability p�E as shown in steps
5 and 6 in Fig. 6, i.e., [67]

p�E =
{

1 �E � 0

exp
[− �E

kBT

]
�E > 0

, (21)

where kB is the Boltzmann’s constant and is set to equal 1
for simplicity; T is the temperature controlling the simulated
annealing process [69].

The simulated annealing procedure can prevent the opti-
mization from being trapped in local minima. The maximum
randomly moving iteration is defined and this value will de-
crease as the group of elements increases. This value ensures
the convergence of energy difference. It also ensures the en-
ergy difference is small enough to make the radial distribution
of the reconstructed model and the target radial distribution
match. If the distributions of the reconstruction model cannot
match the target distributions, the maximum randomly mov-
ing iteration should be increased. After reaching the maximum
randomly moving iteration, the random movement is termi-
nated and the procedures are repeated for the next group of
elements until the volume fraction of the model reaches the
target volume fraction.

III. RESULTS AND DISCUSSION

As a case study, the proposed method was applied to re-
construct the microstructure of the low-density CSH phase
of hardened cement pastes with nanoscale pores. Original
2D image samples with the size 1 μm × 1 μm were ran-
domly selected from the SEM image in Fig. 3(a). The mean
equivalent pore diameter was 45 nm. This sample size was
chosen based on the cement paste pore size of interest. With
the sample size 1 μm × 1 μm, the pores inside the range of
10–100 nm can be observed clearly. The reconstructed 3D
microstructure is presented and evaluated in the following
subsections.

FIG. 7. (a) Reconstructed 3D model of the low-density CSH
phase of a hardened cement paste with nanopores. The size of the
model is 1 μm × 1 μm × 1 μm. (b),(c) Binarized original 2D image
samples from the 2D SEM. (d),(e) Cross sections cut randomly from
the reconstructed 3D model.

A. 3D reconstructed microstructure

The reconstructed 3D microstructure of the hardened ce-
ment pastes with nanoscale pores is shown in Fig. 7(a). The
size of the model is 1 μm × 1 μm × 1 μm. The blue solid
part in the model represents the solid phase of hardened ce-
ment pastes and the voids in the model are the pores. The
pores are well connected in 3D space and the shapes of
the pores are highly irregular and tortuous. The pores are
distributed uniformly across the 3D model without overcon-
centration or overdispersion.

Two binarized original 2D sample images are shown in
Figs. 7(b) and 7(c) and two cross sections cut randomly from
the reconstructed model are shown in Figs. 7(d) and 7(e). Sim-
ilar to the original images, it can be observed from Figs. 7(d)
and 7(e) that large irregular and connected pores are formed
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FIG. 8. (a) Comparison of element radius frequency in the reconstructed model with the objective element radius frequency. (b) Compari-
son of element radial distribution in the reconstructed model with the objective element radial distribution function.

in the reconstructed model. The pore profiles in the original
images and cross sections from the reconstructed model show
similar size and spatial distribution. As the partitioned pore
features are assumed to be circular in 2D and spherical in
3D to achieve the reconstruction flexibility, when comparing
in details, the reconstructed model does not match perfectly
the irregularity and tortuosity of the pore profiles in the SEM
image.

B. Verification of the reconstruction procedure

To verify the reconstruction procedure, the 3D size distri-
bution and radial distribution function of the reconstructed
model were compared with the objective 3D size distribu-
tion and radial distribution function, respectively, as shown
in Figs. 8(a) and 8(b). Clearly, the size distribution and radial
distribution function agree well with their objective functions.
The maximum randomly moving iteration is enough to ob-
tain the small and convergence results of energy difference.
The reconstruction procedure can build the 3D pore structure
model statistically equivalent to the objective distributions.

C. Evaluation of 3D reconstructed microstructure

To evaluate the accuracy of the reconstructed model, cross
sections from the reconstructed model were randomly se-
lected, and compared with the original SEM sample images
quantitatively. Pore descriptors including equivalent pore di-
ameter, circularity, solidity, aspect ratio, and the Skvortsova’s
shape factor were used to quantify the size and shape of
pore profiles on 2D images. These shape factors had been
applied to evaluate the shapes of soil pores or cement pores
in the literature [70]. The two-point correlation function and
lineal-path function were used to evaluate the pores on the 2D
images.

1. Pore profile size and shape

The pore descriptors used to evaluate the pore profiles are
introduced as follow. Pore profile size is described by the
equivalent pore diameter dp, which represents the diameter
of a circle with the same area of the pore, given as

dp =
√

4A

π
, (22)

where A is the area of the pore. Equivalent pore diameter
actually is a one-dimensional descriptor of the area of the
pores.

The shape of the pore profile is described by circularity, so-
lidity, aspect ratio, and Skvortsova’s shape factor. Circularity
is a shape descriptor describing the relationship between the
area and perimeter of the pores, given as

C = 4πA

P2
, (23)

where P is the perimeter of the pore cross section. The maxi-
mum value of circularity is 1, which means the pore profile is
a circle. The more irregular the pore profile is, the smaller the
value of circularity [28].

Solidity is another pore shape descriptor, which is defined
as the ratio of the pore profile area to the corresponding
convex area, given as [32]

S = A

AConvex
, (24)

where Aconvex is the convex area. Convex area refers to the
area of the convex polygon which can enclose the pore profile,
and all interior angles of the polygon are less than 180◦.
Solidity describes the density of the geometry. Solidity equal
to 1 means that the geometry is fully solid. Solidity less than 1
means the boundary of the geometry is irregular or the inside
of it has voids [71].

Aspect ratio (RA) is the parameter used to describe the
elongation of pores. The definition is the ratio of the major
axes length to the minor axes length of the fitted ellipse, i.e.
[32],

RA = Lmajor axis

Lminor axis
, (25)

where Lmajor axis and Lminor axis are the lengths of the major and
minor axes of the fitted ellipse. The aspect ratio of a circle is
1. A higher aspect ratio means the pore profile is elongated
over a particular direction.

Skvortsova’s shape factor is defined as

F =
(

4πA

P2
+ D

L

)/
2, (26)
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FIG. 9. (a)–(e) Comparison of pore descriptors between original images and randomly selected cross sections from the reconstruction
model: (a) equivalent pore diameter; (b) circularity; (c) aspect ratio; (d) solidity; (e) Skvortsova’s shape factor.

where D is the width of the circumscribing rectangle; L is the
length of the circumscribing rectangle.

The Skvortsova’s shape factor puts other shape factors
together, with the first term reflecting the roundness of the
shape and the second term reflecting the isometry of the
shape. It can reflect fissurelike shapes with F ∈ (0, 0.2),
elongated dissected shapes with F ∈ (0.21, 0.4), isometric
dissected shapes with F ∈ (0.41, 0.6), isometric slightly dis-
sected shapes with F ∈ (0.61, 0.8), and rounded shapes with
F ∈ (0.81, 1.0) [72,73].

The results of the comparisons are shown in Fig. 9. The
five original sample images used for reconstruction and five
randomly cut cross sections from the reconstructed model
were selected. The relative frequency of the aforementioned

pore descriptors from the five original sample images and the
five reconstructed model cross sections were calculated and
compared.

With regard to the size distributions shown in Fig. 9(a),
the original images and reconstructed model cross sections
both have the highest relative frequency of equivalent pore
diameter in the class 0–25 nm, with the relative frequency
0.46 for the original images and 0.37 for the reconstructed
model cross sections. The second highest relative frequency
is the class 25–50 nm for both original images and recon-
structed model cross sections, with relative frequency 0.26
for the original images and 0.35 for the reconstructed model
cross sections. Concerning both cases, it shows that more
than half of the pores are within the equivalent pore diameter
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TABLE I. Comparison of microstructure descriptors between the original images and reconstructed model cross sections. “SD” represents
standard deviation.

Original Images Reconstructed model cross sections Difference

1. Porosity (%) 35.71 35.75 0%
2. Equivalent pore diameter dp (nm) Mean 44.85 42.08 6%

SD 50.31 34.84 36%
3. Circularity Mean 0.72 0.83 15%

SD 0.27 0.22 19%
4. Solidity Mean 0.83 0.88 7%

SD 0.13 0.08 46%
5. Aspect Ratio Mean 1.80 1.38 26%

SD 0.84 0.44 63%
6. Skvortsova’s shape factor Mean 0.74 0.84 13%

SD 0.19 0.16 17%

range smaller than 50 nm. For the following equivalent pore
diameter classes from 50 to 200 nm, the original images and
reconstructed model cross sections have a similar value of
relative frequency. When considering large equivalent pore
diameter classes above 200 nm, the original images do have
a few pores falling inside these ranges, but this cannot be
observed in the reconstructed model. Generally, the original
images and reconstructed model cross sections show a similar
size distribution pattern of pore profiles, but the original im-
ages have a few large pore profiles that cannot be observed in
reconstructed model cross sections.

As shown in Fig. 9(b), the circularities of pore profiles from
original images and reconstructed model cross sections have
a similar pattern of distribution. Both distributions have the
highest relative frequency inside the range 0.95–1, and both
cases have low relative frequency inside the ranges from 0.1
to 0.9. The spread of the circularity for both cases is wide,
from less than 0.2 to 1, which indicates both the original
images and reconstructed model cross sections have irregular
pore profiles. Compared with the pore profiles in the original
images, the pore profiles in the reconstructed model cross
sections have a higher relative frequency for high circular-
ity from 0.9 to 1, which means the pore profile boundaries
on reconstructed model cross sections are more regular and
smoother; the pore profile boundaries in the original images
are more tortuous. Overall, the circularity still shows a similar
distribution for pore profiles from the original images and
reconstructed model cross sections.

As shown in Fig. 9(c), the aspect ratios of pore profiles
from original images and reconstructed model cross sections
have a similar pattern of distribution. Both cases have the
highest relative frequency in the range 1–2, with the relative
frequency 0.65 for the original images and 0.83 for the re-
constructed model cross sections, followed after that by the
second highest range, 2–3, with the relative frequency 0.19
for original images and 0.09 for the reconstructed model cross
sections. For the pore profiles with aspect ratio 1, the original
images have the relative frequency 0.087 and reconstructed
model cross sections have the relative frequency 0.07. Con-
cerning both cases, over 90% of the pore profiles have the
aspect ratio under 3, with no extreme elongation. However, the
original images have one extreme outlier with an aspect ratio

of 10. In the reconstructed model, there are no pore profiles
with the aspect ratio larger than 4.

As shown in Fig. 9(d), the solidities of pore profiles for
both original images and reconstructed model cross sections
have a similar pattern of distribution and they are concen-
trated inside the range 0.8–1. They have very similar relative
frequency inside the range 0.8–0.85, 0.85–0.9, and 0.95–1.0.
However, the highest solidity relative frequency of the original
images is in the range of 0.85–0.9, and the corresponding
relative frequency of reconstructed model cross sections is in
the range of 0.9–0.95. The spread of pore profile solidity is
wider for the original images than the reconstructed model
cross sections, which means the boundary of pore profiles in
the original images is a little bit more irregular. Generally,
besides the difference in solidity class 0.9–0.95, the solidity
shows a similar distribution for pore profiles from the original
images and reconstructed model cross sections.

As shown in Fig. 9(e), the Skvortsova’s shape factor for
both original images and reconstructed model cross sections
has a similar pattern of distribution. Both cases have the
highest relative frequency at 0.95–1, and a similar relative
frequency for classes except 0.7–0.75, 0.9–0.95, and 0.95–1.
For both cases, elongated dissected pores, isometric dissected
pores, isometric slightly dissected pores, and rounded pores
can be found. However, few fissurelike pores can be found in
the original images, which are not found in the reconstructed
model cross sections. The reconstructed model cross sections
have more rounded pores than the original images, and the
original images have more isometric, slightly dissected shape
pores than the reconstructed model cross sections. Generally,
a similar pattern of Skvortsova’s shape factor distribution is
achieved for the original images and reconstructed model
cross sections.

The pore profiles of the original images and reconstructed
model cross sections were compared using the mean value
and standard deviation of the aforementioned descriptors, and
the porosity was also compared. The results are shown in
Table I. The average porosity of the original images is 35.8%,
and the reconstructed model cross sections have the same
average porosity of 35.8%. The mean value of equivalent
pore diameter for the original images is 44.9 nm, and for
the reconstructed model, it is 42.1 nm, with a difference of
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6%. The standard deviation of equivalent pore diameter from
the original images is 50.3 nm and the reconstructed model
cross section is 34.8 nm, with a difference of 36%. It shows
that the average size of pore profiles is similar comparing
the original images and reconstructed model cross sections,
but the original images have a wider spread of pore profile
size. With regard to the shape of the pore profile, the mean
values of circularity for the original images and reconstructed
model cross sections are 0.72 and 0.83, for solidity they are
0.83 and 0.88, for aspect ratio they are 1.80 and 1.38, and for
Skvortsava’s shape factor they are 0.74 and 0.84. The standard
deviations of circularity for the original images and recon-
structed model cross sections are 0.27 and 0.22, for solidity
they are 0.13 and 0.08, for aspect ratio they are 0.84 and
0.44, and for Skvortsava’s shape factor they are 0.19 and 0.16.
The mean values of the pore shape descriptors are similar
comparing the original images and reconstructed model cross
sections, but the standard deviations are higher for the original
images, which means the original images and reconstructed
model cross sections have a similar pattern in general, but the
original images have more irregular pore profiles.

Generally, the comparisons of the aforementioned de-
scriptors show similar statistical patterns, which means the
reconstructed model can achieve overall statistical equivalent
shape descriptors of the original SEM images. However, to
achieve the flexibility of the reconstruction, the partitioned
pore features are assumed to be circular in 2D and spherical
in 3D. Therefore, when comparing in detail, the reconstructed
model cannot achieve the same irregularity and tortuosity of
pore profiles as the SEM images. Considering the objective
of the reconstruction is to build pore structure models statisti-
cally equivalent to the characters on SEM images, the overall
results are satisfactory.

2. Comparison with statistical correlation functions

The two-point correlation function and lineal-path function
of the original images and the reconstructed model cross sec-
tions are calculated. These correlation functions are used to
investigate the point to point relation of the pore phase in the
original images and the reconstructed model cross sections.
Two-point correlation function describes the probability of
finding two points in the same phase, which focuses on the
relative position between points in the pore phase. The two-
point correlation function S(i)

2 (r) is defined as follows,

S(i)
2 (r) = S(i)

2 (x1, x2) = 〈I (i)(x1)I (i)(x2)〉, (27)

where 〈· · · 〉 denotes the ensemble average, r represents the
separation between two points defined as r = |x1 − x2|, I (i)(x)
is the phase characteristic function which is defined as

I (i)(x) =
{

1, if x ∈ υi

0, otherwise
, (28)

where υi is Euclidean space with phase i [2,74].
By using the two-point correlation function, the relative

positions between every two pixels of the original images and
reconstructed model cross sections are evaluated.

The lineal-path function describes the probability that a
line segment with length z is entirely within the same phase
j in the sample [13,66]. It is an important descriptor related to

FIG. 10. Comparison of original images and reconstructed
model cross sections with statistical correlation functions: (a) Two-
point correlation function; (b) lineal-path function.

the transport properties of heterogeneous materials [75]. The
lineal-path function is given as

L( j)(z) =
{

(l − z)/N, 0 � z � l

0, otherwise
, (29)

where N is the sample size; l is the total length of the chord.
As shown in Figs. 10(a) and 10(b), the two-point cor-

relation functions and lineal-path functions of the original
images and reconstructed model cross sections agree well
with each other, which means the reconstructed model has sta-
tistically equivalent correlation functions of the SEM images.
Two-point correlation function and lineal-path function are
commonly used correlation functions when reconstructing 3D
microstructure using the conventional statistical correlation
function method [5,13]. The match of the correlation func-
tions can verify the accuracy of the proposed reconstruction
method comparing with the conventional method.
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TABLE II. Absolute permeability results of the five reconstructed pore structures obtained by numerical simulation using the fluid viscosity
of ethanol.

Direction Absolute Permeability k (μm2)

Simulation results Model 1 X 1.31 × 10−6

Y 1.39 × 10−6

Z 1.19 × 10−6

Model 2 X 1.18 × 10−6

Y 1.15 × 10−6

Z 1.22 × 10−6

Model 3 X 1.24 × 10−6

Y 1.13 × 10−6

Z 1.58 × 10−6

Model 4 X 9.57 × 10−7

Y 1.06 × 10−6

Z 1.25 × 10−6

X 1.15 × 10−6

Model 5 Y 1.20 × 10−6

Z 1.33 × 10−6

Experimental results 1.30 × 10−6 to 5.72 × 10−6 [79]

D. Absolute permeability estimation

Permeability is a critical property of cementitious materi-
als, which describes the ability of pore structures that allow
fluid to flow through them. Absolute permeability describes
the permeability of a porous medium when saturated with a
single-phase fluid; it is an intrinsic property of materials and
is only determined by the pore structures. Numerical meth-
ods such as a voxel-based solver and a pore network model
can be used to estimate the absolute permeability from pore
structures. Based on the literature, the pore network model
simplifies the pore structures to spherical pore chambers and
cylindrical pore throats, which can achieve higher computa-
tional speed. However, compared with a voxel-based solver,
the simplification of the pore network model leads to less
accuracy of the absolute permeability [76]. A voxel-based
finite volume method was used in this work to estimate the
absolute permeability using the reconstructed pore structures.
AVIZO XLABSUITE EXTENSION software was used. The fluid
was assumed to be incompressible and a Newtonian fluid,
which meant density and dynamic viscosity were constant.
The flow was assumed to be steady state and laminar flow,
which meant the velocity did not change over time and no
turbulence was produced. Four side faces of the model were
assumed to be sealed and the no-slip boundary condition was
applied on the interface. A pressure drop was applied to the
two opposite faces to simulate the flow along one direction.
A channel and a diverging part were added on the faces
perpendicular to the main flow direction, which was used
to stabilize the flow and ensured the spread of the flow on
the input surface. Under the aforementioned assumptions and
boundary conditions, the Stokes equation was simplified and
solved, and Darcy’s law was used to determine the absolute
permeability.

Five models are reconstructed based on the same statistical
correlation characterized from the 2D images. The input pres-
sure of the simulation is 1.3 × 105 Pa and the output pressure
is 1.0 × 105 Pa. The fluid viscosity μ is 1.082 × 10−3

Pa s, which is the dynamic viscosity of ethanol at 25 ◦ [77].

Ethanol as an organic liquid is believed to be chemically
neutral compared to water and will cause the least damage
to the microstructure of the cementitious materials; it can be
assumed to be the absolute permeability which is only related
to the pore structure [78]. The absolute permeabilities of the
five reconstructed models are shown in Table II. The average
absolute permeability of the five models is 1.22 × 10−6 μm2;
the standard deviation is 0.15 × 10−6μm2. As the standard
deviation is about 12% of the averaged permeability, it
indicates that the developed approach can construct 3D
microstructures with statistically consistent properties. The
experimentally measured ethanol permeability from the liter-
ature is 1.30 × 10−6 μm2 to 5.72 × 10−6 μm2 for different
samples [79]. The numerically predicted permeability is
close to the experimentally measured ethanol permeability.
It should be noticed that the flow in this small scale has
the potential to exhibit some slippage and may affect the
accuracy of the results [80,81]. However, the slippage will not
be further investigated here. The purpose of the permeability
calculations is to demonstrate that the reconstructed 3D model
can be used to predict material properties. The comprehensive
prediction of permeability for heterogeneous materials such
as cementitious materials needs further investigation on the
representativity of the reconstructed models [82]. Instead
of validating the prediction, the comparison between the
prediction and the experimental results is used to confirm that
the predicted results are reasonable.

The fluid flow in the pore structure of model 1 is visualized
through the velocity field streamlines as shown in Fig. 11.

IV. CONCLUSIONS

A descriptor-based reconstruction method combined
with a partition approach was proposed to reconstruct
3D microstructures based on a set of 2D SEM images.
The descriptor-based method has the advantages of
low-dimensional and high computational efficiency. The
proposed partition approach extends the application of the
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FIG. 11. Velocity field streamlines of fluid flow through the pore structure of model 1 from different directions: (a) X direction; (b) Y
direction; (c) Z direction.

descriptor-based method to complex microstructures with
features highly irregular and highly tortuous. The proposed
partition approach uses the watershed algorithm to divide
the irregular and connected features into small and regular
partitioned features based on the gray-level gradient of the
images and the roundness of the partitioned features. The
partitioned features are characterized with the area fraction,
size distribution, and spatial distribution. With stereological
analysis, the 3D microstructure reconstruction based on infor-
mation from the 2D images can be achieved for the complex
microstructures. This enables the investigation of 3D features
and properties of the microstructures, especially for the
materials on the scales where only 2D images are available.

The proposed method was applied to reconstruct a 3D
model from the 2D SEM images of the low-density CSH
phase of a hardened cement paste. The comparisons between
the original images and the reconstructed model cross sec-
tions showed an overall statistical equivalence with the pore
descriptors. The statistical correlation functions of the recon-

structed model cross sections agree well with the original
images. The pores in the reconstructed 3D model are well
connected and the shapes are highly irregular and tortuous.
The absolute permeability was estimated from five recon-
structed models using the voxel-based finite volume method.
The numerically calculated absolute permeability results are
close to the experimentally measured ethanol permeability
of cementitious materials. This research provides a way to
build the relationship between microstructures and properties
directly and efficiently for material systems with complex
microstructures, which can be further applied to optimize
and design the microstructure based on the properties of the
materials.
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