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The smoothed particle hydrodynamics (SPH) method is used in this paper to model micropolar fluids, with
emphasis on their dissipation mechanisms. To this aim, a dissipation function is defined at the particle level
which depends on the relative velocity between particles but also on an additional spin degree of freedom, which
modifies such relative velocity as well as introduces spin-related intrinsic dissipation mechanisms, comparable to
those related to the rate of deformation tensor in Newtonian fluids. This dissipation function is then incorporated
within the Lagrangian formalism, leading to a set of SPH particle equations to describe the dynamics. A
continuous integral SPH version of the scheme is obtained with a bottom-up derivation which guarantees the
consistency of the SPH term. The model is then enriched with two additional terms based exclusively on the spin
derivatives, which grant it the maximal generality as an isotropic model for micropolar fluids. Finally, numerical
verification and validation tests are documented that show that SPH is capable of accurately modeling this type
of dynamics.
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I. INTRODUCTION

Smoothed Particle Hydrodynamics (SPH) is a numerical
technique that can simulate macroscopic flows through a La-
grangian description of the fluid dynamics [1,2]. In regard to
the application of the method to different types of fluids, as ex-
pected due to their prevalence, Newtonian fluids have received
much attention (see, e.g., Refs. [3–6]). Beyond, there have
been successful attempts to model more complex fluids with
SPH, such as, e.g., Oldroyd type [7–10], Jaumann-Maxwell
[11], and inelastic non-Newtonian [12]. Such attempts have
been complemented by the addition of thermal fluctuations
to the SPH model to describe mesoscopic scales (known as
SDPD), which allowed to model polymer molecules in sus-
pension [13,14] and blood flow [15]. As the complexity of
the fluid behavior increases, there is major concern about
how the extensions of the SPH method affect fundamental
aspects of fluid motion, such as the conservation of linear and
angular momentum, and any other property inherited from the
underlying microscopic physical reality.

In Refs. [16,17], the introduction of dissipation functions
at the particle level, with the appropriate symmetries related
to Galilean invariance, rotational invariance and tensorial ob-
jectiveness [18], allowed us to derive the SPH form of the
Newtonian viscous terms from first principles of conservation
and thermodynamic consistency. This bottom-up approach is
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proven capable of producing new force terms to model an
arbitrary bulk viscosity, independent of the shear viscosity,
the latter modeled through the usual Monaghan and Gingold’s
term [19], for example. The objective of present research is to
apply this technique to derive SPH equations for more com-
plex fluids, in particular micropolar ones, with the maximal
generality. The application of this method, in addition, has
allowed us to critically review some of the existent approaches
within the SPH framework, which is also of physical interest.

Micropolar fluids are fluids with microstructure, reflected
in these fluids having an additional local degree of freedom,
the spin, for which a time evolution equation can be set,
evolution which affects the dissipation characteristics of the
flow. The polarity refers to the fact that the spin dynamics is
connected to the presence of torques at the microscopic level.
The reader is referred to references [18,20–22] for extensive
descriptions of the physical models for these fluids. In regards
to their practical applications, a review is provided by Ariman
et al. [23]. Lubrication modeling appears as an important area
because the presence of additives and dirt in the lubricating
fluids deviates their physical behavior from the Newtonian
model [24]. More recently, even this kind of microrotation
related diffusion processes has been investigated in the context
of the transport of coronavirus in body fluids [25].

Even though the nature of micropolar fluids seems to in-
trinsically match with the basis of a particle method such as
SPH, they have scarcely been treated in the SPH literature. In
the context of computer graphics, a number of authors have
recently incorporated a spin degree of freedom to their SPH
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model, with the aim of tuning the intensity of turbulent struc-
tures [26–30]. In SDPD, analogous to SPH but with thermal
fluctuations, Müller et al. [31], inspired by previous works
in the Voronoi particle dynamics method [32], incorporated a
spin degree of freedom to construct a model in which the an-
gular momentum is conserved despite the fact that the forces
between particles are not central, i.e., torques are exerted on
the particles. An example of noncentral forces is the type
introduced by Morris [33] for the translational motion of the
particles which, if no description of the rotational dynamics
is introduced, leads to the nonconservation of the total angu-
lar momentum. However, although the formulation of Müller
et al. [31] restores the conservation of angular momentum,
the dynamics of the particle spin is very restrictive, as is
applicable to Newtonian fluids only.

In this article we show, in the first place, that the spin inertia
is of molecular size in the continuum limit and, therefore,
is negligible in most of the possible practical cases. This
implies the well known result for Newtonian fluids that the
particle spin follows the local vorticity and has no independent
dynamics. As a consequence, the role of the spin in this SPH
formulation is scale-dependent, and its importance vanishes
in the continuum limit. Secondly, we propose a method to
assign a moment of inertia to the model particles which re-
flects such scale-dependence. With this prescription, we show
that the fluid conserves angular momentum even if there are
noncentral interparticle forces inducing net torques. Without
the explicit description of the spin, such tangential forces are
forbidden if angular momentum is to be conserved, as we
demonstrated [16,17].

In the third place, we generalize the spin dynamics beyond
Newtonian fluids, by introducing new dissipation terms into
the SPH bottom-up formulation that have not been modeled
at the discrete level and validated, so far. These new terms
eventually induce spatial derivatives of the spin variable in the
continuum limit. Within this model, even though the moment
of inertia is of molecular size (vanishingly small from the SPH
perspective), still the spin is not enslaved by the vorticity, but
it behaves as an independent field, coupled to the translational
dynamics of the fluid. Our scheme will, by construction, con-
serve angular momentum, a property which is desirable in any
numerical scheme, particularly if free surfaces are involved
(see, e.g., Refs. [34–36]), and which has received particular
attention in the SPH literature [37–39]. We show that the new
terms included in the SPH description permit to model the
general micropolar fluid described by the pioneering work of
Condiff and Dahler [21] in the continuum limit. Therefore, the
new SPH model presented in this article can be considered as
the most general particulate description for micropolar fluids.

The paper is organized as follows: in Sec. II we introduce
the SPH framework, and derive the new contribution to the
dissipation force for a general system with an additional spin
degree of freedom. The hydrodynamic limit of the model is
derived in Sec. III and is shown to be equivalent to a particular
micropolar fluid viscous term, which has no effect on steady-
state solutions of the problem for common macroscopic fluid
conditions. The model is then, in Sec. IV, enriched to account
for dissipation mechanisms based on spin variations that even-
tually lead to a general model for micropolar fluid dynamics.
Numerical verification and validation cases are proposed in

Secs. V and VI. Some conclusions are enumerated and future
work threads proposed to close the paper.

II. DERIVATION OF A SPH FORMULATION WITH SPIN

A. The SPH approximation to the hydrodynamic fields

Let us consider an ensemble of N isotropic particles rep-
resenting fluid elements located at positions ri, i = 1, . . . , N
with velocities ui, masses mi, and volumes Vi. Since the parti-
cles are considered as macroscopic objects, we can define the
internal energy per unit of mass ei and the particle entropy per
unit of mass si. To model micropolar fluids, we assume that
the particles are isotropic but that they can rotate. The case of
nonisotropic particles will be treated elsewhere. In SPH, fields
are associated to corresponding physical properties carried by
particles, or defined from the immediate neighborhood. The
main example of the latter is the particle mass density [40]:

ρi = mi

N∑
j=1

W (ri j ; h), (1)

where W is a weight function referred to as kernel. Here, ri j =
ri − r j and ri j = |ri j |. The particle volume Vi is estimated as

Vi = mi

ρi
. (2)

The kernel W is a positive definite, monotonously decreas-
ing, integrable function with a characteristic length h (see
Ref. [41] for a recent discussion on the choice of kernels’
characteristic length), which will be omitted in the notation
where no confusion could occur. In this article, this kernel is
isotropic and its volume integral is normalized, i.e.,∫

drW (r) = 1. (3)

The spatial gradient of the kernel satisfies

∇iW (ri j ) = ei j
dW

dri j
= −ri jF (ri j ) = −∇ jW (ri j ), (4)

where ei j = ri j/ri j is a unit vector, and F is defined from this
equation, being a positively definite function by construction.

In SPH, to reproduce smooth fields, insensitive to the un-
derlying particulate nature of the description, it is required
that Vi � hn, i.e., that the number of particles ν in a given
particle environment, determined by the range of the kernel
h, must be large enough. Here n is the dimensionality of the
space. Otherwise, the local fields show large fluctuations at
short wavelengths of the fields, revealing the aforementioned
particulate nature of the model. Moreover, to recover the
hydrodynamic behavior, as described by the Navier-Stokes
equation, the so-called hydrodynamic limit must be invoked
[42]. The latter states that the characteristic wavelengths of the
fields must be much larger than h so that spatial variations of
the fields up to O(k2) are sufficient to describe the dynamics,
k being the field wave number. Hence, if L ∼ 1/k is the
characteristic length for the variation of a hydrodynamic field,
then the continuous limit description should be reached when
h/L ∼ kh → 0 with Vi/hn → 0 [43–45]. The latter limit will
be discussed in the next section.
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FIG. 1. Schematic representation of two interacting particles,
with internal rotation, including all the variables necessary to
define u∗

i j .

Following the approach of Ref. [16], the conservative dy-
namics of the system can be derived from the Lagrangian

L[ṙi, ri, θ̇i, θi] =
∑

i

[
1

2

(
mi ṙ 2

i + mi Ii θ̇i
2)

− mi U (t, ri ) − miV(t, θi ) − mi e(ρi, si )

]
,

(5)

where the first term on the right-hand side of this equation is
the kinetic energy of the particles, which includes a transla-
tional and a rotational term. The rotational term is computed
considering an additional rotational degree of freedom, θi,
with units of angular displacement, and the particle inertia per
unit mass, Ii. In Eq. (5), U is a general external potential field
such as gravity, V is an external potential field leading to a
body torque, ṙi = ui, and we denote �i = θ̇i, referring to it as
the spin, from now on. e is the internal energy, which is con-
sidered to be a function only on the particle thermodynamic
properties (density, ρi, and entropy, si) in the present model.

To introduce the dissipative forces for rotating particles,
let us first consider that the viscous dissipation is generated
due to friction at the contact point, defined as the mid point
between the centers of the two interacting particles i, and j.
The composition of the translational velocity and the velocity
induced by the spin (see Fig. 1) at such contact point leads to
the following velocity difference at contact

u∗
i j = ui j − �i j × ri j, (6)

with ui j = ui − u j and �i j := (�i + � j )/2.
The assumption that the contact point can be considered

as the mid point is the result of assuming that the boundaries
between two adjacent particles are placed at the mid point, and
therefore there is where the friction is located. Other options
could be considered but one expects they would not signifi-
cantly affect the long-wavelength behavior of the system.

Together with the Lagrangian, following Refs. [16,17,46]
we define the dissipation function, often referred to as
Rayleighian, summing all over the particles’ pairs, as

�D =
∑
i, j>i

u∗
i j · Ai j (ri j ) · u∗

i j, (7)

with a definite positive bilinear form:

Ai j (ri j ) = F (ri j ) (ζ1 ei j ⊗ ei j + ζ2 I)ViVj, (8)

in which the coefficients ζ1, ζ2 have dimensions of dynamic
viscosities.

The introduction of the spin degree of freedom leads to
major differences with respect to [16,17], thus justifying the
need for the derivations that follow next.

The right-hand side of Eq. (8) is the more general form
for a second rank objective tensor, constructed from particle
coordinates [18]. So defined, and considering the form of
the u∗

i j , this dissipation function is as general as it can be in
regards to being invariant to translations and rigid rotations, a
property which is crucial in numerical methods for inducing
no spurious dissipation. These imposed symmetries in the
dissipation function are analogous to the symmetries of the
Lagrangian. Effectively, if the dissipation function is invariant
under translations and solid body rotations, the total momen-
tum as well as the total angular momentum of the system
will be unaffected by the dissipative forces derived from the
former.

Applied to u∗
i j , it leads to

�D = ζ1

2

∑
i, j �=i

F (ri j ) (ei j · ui j )
2 ViVj

+ ζ2

2

∑
i, j �=i

F (ri j ) (ui j − �i j × ri j )
2 ViVj, (9)

where the summation takes now each pair twice, a convention
which is possible due to the symmetry of the interactions, and
that facilitates some of the deductions later on. Since F (0) =
0 for common kernels, the restriction j �= i in the summation
in this equation, and in the ones that follow in the rest of the
paper, could ultimately be removed.

The second term in Eq. (9) is the new contribution pro-
posed, and represents the friction between two particles due to
the velocity difference in the mid point between the particles,
induced by the translational velocities and the spin induced
ones.

Notice that in Eqs. (5) and (9) we have made the distinction
between the independent variables in the Lagrangian ṙi, ri,
θ̇i, θi and the ones in the Rayleighian ui, �i, although one
assumes that ṙi = ui and θ̇i = �i, at the end. Moreover, the
dissipation function must be a quadratic function of the veloc-
ities. Under these conditions, the dynamics of the system is
given by

d

dt

(
∂L
∂ ṙi

)
− ∂L

∂ri
= QV

i ,

d

dt

(
∂L
∂ θ̇i

)
− ∂L

∂θi
= TV

i ,

(10)

where QV
i , TV

i are, respectively, the generalized dissipative
forces and torques acting among the particles, which are ob-
tained from differentiation of �D with respect to ui and �i,
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respectively, i.e.,

QV
i = − ∂

∂ui
�D = −ζ1

∑
j

F (ri j )(ui j · ei j )ei jViVj

− ζ2

∑
j

F (ri j )(ui j − �i j × ri j )ViVj,

(11)
TV

i = − ∂

∂�i
�D = ζ2

2

∑
j

F (ri j )ri j × (ui j − �i j × ri j )ViVj .

(12)

Equation (11) can be written as

QV
i = − ∂

∂ui
�D = −ζ1

∑
j

F (ri j )(ui j · ei j )ei jViVj

− ζ2

∑
j

F (ri j )ui jViVj

+ ζ2

∑
j

F (ri j )(�i j × ri j )ViVj . (13)

With this notation, as discussed in Ref. [16], the first contri-
bution corresponds to the Monaghan and Gingold’s viscous
term [19], and the second to the Morris et al. viscous term
[33]. However, the first term conserves angular momentum
while the second does not. As will be seen later in the paper,
the third term, the contribution due to the spin and the related
spin derivative equation, will allow to correct this matter.

The equation of motion for the rototranslational dynamics
of the ensemble of particles obtained from Eq. (10) reads

mi
dui

dt
= mi f C

i + migi + mi f V
i , mi f V

i := QV
i ,

miIi
d�i

dt
= mitC

i + miGi + mitV
i , mitV

i := TV
i ,

(14)

where mi f C
i is the interparticle conservative force, gi the

acceleration due to the conservative body forces, i.e., gi =
−∂U/∂ri, and f V

i are particle accelerations due to the con-
sidered dissipative forces. The second equation of Eqs. (14)
governs the particle spin dynamics. In analogy with the first
equation, the terms on the right-hand side are: mitC

i , the in-
terparticle conservative torque, Gi, the angular acceleration
due to the body torque field linked to the potential V, i.e.,
Gi = −∂V/∂θi and finally tV

i is torque per unit of particle
mass due to the considered dissipative torques.

Making use of the properties of internal energy e and
translational invariance, one can write mi f c

i in Eqs. (14) (see
Ref. [16] for details) as

mi f C
i ≡ −

∑
j

m j
∂e j

∂ri
= −

∑
j

m j
∂e j

∂ρ j

∣∣∣∣
s

∂ρ j

∂ri

=
∑

j

[
p jV 2

j + piV 2
i

ViVj

]
ri jF (ri j )ViVj,

(15)

where we have used the fact that the particle pressure is linked
to the internal energy: p = ρ2∂e/∂ρ|s. In this derivation we
have considered that the entropy s is intrinsically carried by

the particles and is not a function of the environment, as the
local mass density ρ is. Considering that the density field
is affected by the particle positions and not by the spatial
rotations, in the present model tC

i is assumed equal to zero.
Equations (14) are integrated in time to describe the dy-

namics of the system, including the formulated dissipative
forces and torques.

B. Conservation of angular momentum

As discussed after introducing Eq. (13), the terms in Eq. (9)
lead to two distinct contributions to the viscous force consid-
ered. The first one is the Monaghan and Gingold’s force:

mi f MG
i = −ζ1

∑
j

F (ri j )(ui j · ei j )ei jViVj . (16)

The second contribution is the Morris et al. [33] one, but
applied to the spin corrected velocity difference Eq. (6):

mi f �
i = −ζ2

∑
j

F (ri j )(ui j − �i j × ri j )ViVj, (17)

This contribution results from the mutual influence between
the spin dynamics and the particle translational motion.

According to Eqs. (16) and (17), by permuting the indices
we arrive to the conclusion that the contribution of particle j
to the force applied to particle i, mi f v

i j , and viceversa, verify

mi f v
i j = −mj f v

ji. (18)

Thus, the total force on the center of mass of the pair is zero
and, therefore, the total linear momentum of the system will
be a conserved quantity under the action of this force.

Conversely, the torque induced by this force over the pair
is not zero, indeed:

ri × mi f v
i j + r j × mj f v

ji = ri j × mi f v
i j

= ri j × mi
(

f MG
i j + f �

i j

) = ri j × mi f �
i j �= 0, (19)

which indicates that the forces involved induce a net change in
angular momentum. However, it can be easily checked that the
torque contributions (mitv

i j + mjtv
ji ) in Eq. (14) cancel those

in Eq. (19), thus implying that angular momentum is globally
conserved.

C. Entropy production

Some energy considerations are necessary to compute the
dissipation rate of the model as well as to set reasonable limits
to the model’s parameters ζ1, ζ2.

The total energy of the system of particles is defined
through the following contributions:

E =
∑

i

[
1

2

(
miu2

i + miIi�
2
i

) + miU (t, ri )

+ miV(t, θi ) + mie(ρi, si )

]
. (20)

Assuming the system is isolated, differentiating Eq. (20) with
respect to the time and considering the conservation of E we
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get

Ė =
∑

i

[
miui · dui

dt
+ miIi�i · d�i

dt
− miui · gi

− mi�i · Gi + mi
dei

dt

]
= 0. (21)

As discussed when deducing Eq. (15):

pi = ρ2
i

∂ei

∂ρi

∣∣∣∣
s

. (22)

In addition, in accordance with the second law, the tempera-
ture Ti of a particle is obtained as the variation of the specific
internal energy as a consequence of variations of the entropy
field:

Ti = ∂ei

∂si

∣∣∣∣
V

. (23)

Considering this and the continuity equation,

dρi

dt
=

∑
j

[
∂ρi

∂r j
· u j

]
, (24)

the time derivative of the internal energy can be expressed as

dei

dt
= ∂ei

∂ρi

∣∣∣∣
s

dρi

dt
+ ∂ei

∂si

∣∣∣∣
V

dsi

dt
= pi

ρ2
i

∑
j

[
∂ρi

∂r j
· u j

]
+ Ti

dsi

dt
.

(25)
Multiplying the first equation of Eqs. (14) by ui and the second
equation by �i, substituting both and dei/dt in Eq. (21), one
finally gets

∑
i

[
mi f v

i · ui + mitv
i · �i + miTi

dsi

dt

]
= 0. (26)

If the forces and torques in Eq. (26) are dissipative, then by
the Second Law of Thermodynamics the entropy production
of the system must be positive, i.e.,

∑
i

[
miTi

dsi

dt

]
= −

∑
i

[
mi f v

i · ui + mitv
i · �i

]
� 0. (27)

If the right-hand side is expanded in its various terms, one gets

−
∑

i

[
mi f v

i · ui + mitv
i · �i

]

=
∑

i

[
ζ1ui ·

∑
j

F (ri j )(ui j · ei j )ei jViVj

+ ζ2ui ·
∑

j

F (ri j )(ui j − �i j × ri j )ViVj

− ζ2

2
�i ·

∑
j

F (ri j )ri j × (ui j − �i j × ri j )ViVj

]
. (28)

It can be seen (see Appendix A) that the right-hand side
of Eq. (28) is equal to dissipation function �d . Therefore,
Eq. (27) implies that

�D � 0. (29)

From the entropy production we can derive important con-
clusions about the restrictions on the values of the dissipative
coefficients in the present model. To do so, let us rewrite the
right-hand side of Eq. (28) as

�D = 1

2

∑
i, j

ViVjFi j[ζ1(ui j · ei j )
2 + ζ2(ui j − �i j × ri j )

2]

(30)

and introduce the unit vector τ i j normal to ei j , such that the
velocity field ui j is decomposed as follows:

ui j = (ui j · ei j )ei j + (ui j · τ i j )τ i j . (31)

Substituting the expression above inside the formula for �D

we find

�D = 1

2

∑
i, j

ViVjFi j{ζ1(ui j · ei j )
2 + ζ2[(ui j · ei j )ei j − hi j]

2},

where

hi j := (ui j · τ i j )τ i j − �i j × ri j . (32)

We observe that hi j · ei j = 0, since ei j is parallel to ri j and
τ i j · ei j = 0 by definition. Then, expanding the second term
inside the summation and rearranging, we find

�D = 1

2

∑
i, j

ViVjFi j[(ζ1 + ζ2)(ui j · ei j )
2 + ζ2‖hi j‖2].

To guarantee the positiveness of �D, it is sufficient to require

ζ2 � 0 and ζ1 � −ζ2. (33)

III. FROM THE DISCRETE TO THE CONTINUUM

A. Momentum equation

As demonstrated by the authors in Ref. [16], the continuous
equivalent of the integral form (the limit in which the volume
of each particle goes to zero) of the force f MG, Eq. (16), is
written in the continuum as a force per unit volume ρ f MG:

ρ f MG(r) = ζ1

2(n + 2)
∇2u(r)

+ ζ1

n + 2
∇ (∇ · u)(r) + O(h2), (34)

where n is the spatial dimensionality of the problem.
As for the other contribution to the dissipative force, f �,

Eq. (17), let us split it in two parts:

ρi f �′
i = −ζ2

∑
j

F (ri j )ui jVj, (35)

ρi f �′′
i = ζ2

∑
j

F (ri j )(�i j × ri j )Vj . (36)

Regarding f �′
i , also in Ref. [16] it is shown that the continuous

equivalent of Eq. (35) is

ρ f �′(r) = ζ2

2
∇2u(r) + O(h2). (37)
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Regarding f �′′
i , using the definition of �i j × ri j in Eq. (6),

Eq. (36) can be rewritten as

ρi f �′′
i = ζ2

2
�i ×

(∑
j

F (ri j )ri jVj

)

+ ζ2

2

∑
j

F (ri j )(� j × ri j )Vj . (38)

The first term is zero in the continuum, as it is an approx-
imation of the integral of the kernel derivative in a system
considered isotropic, while the second one is a discretization
of ∇ × � (see, e.g., Ref. [47]). Both are of order h2 in their
integral form. Therefore,

ρ f �(r) = ζ2

2
∇2u(r) + ζ2

2
∇ × � + O(h2). (39)

Collecting back the terms together and taking the limit when
the smoothing length, h, goes to zero, one gets

ρ f v (r) =
(

ζ1

2(n + 2)
+ ζ2

2

)
∇2u(r) + ζ1

n + 2
∇ (∇ · u)(r)

+ ζ2

2
∇ × �. (40)

The viscous force in Eq. (40) has the structure of the New-
tonian one plus a rotational term. Together with the pressure
term and the body force, they lead to the continuous momen-
tum equation:

ρ
du
dt

= −∇p + ρ f v + ρg. (41)

It is germane to mention that Müller et al. [31] proposed, for
their model, this same dissipative term Eq. (40) with, however,
three degrees of freedom: a shear, a second, and a rotational
viscosity, postulating a posteriori restrictions in their values.
In present paper, it has been shown that by deriving this
force with a bottom-up approach from the particle level, only
two coefficients are actually necessary to set the intensity of
the dissipation mechanisms involved due to the restrictions
imposed by the required symmetry of the dissipation function
in Eq. (9).

B. Spin equation

Let us recall the second Eq. in (14), making explicit its
right-hand side:

miIi
d�i

dt
= miGi + ζ2

2

∑
j

F (ri j )ri j × (ui j − �i j × ri j )ViVj .

(42)
To move to the continuum, let us divide Eq. (42) by the
particle volume Vi and split the second term in the right-hand
side in Eq. (42) in its two summands:

ρiIi
d�i

dt
= ρiGi + ζ2

2

[ ∑
j

F (ri j )(ri j × ui j )Vj

−
∑

j

F (ri j )ri j × (�i j × ri j )Vj

]
. (43)

The first term is a second order approximation to ∇ × u (see,
e.g., Ref. [47]) in the integral form, while for the second term
(see Appendix B):∑

j

F (ri j )ri j × (�i j × ri j )Vj = 2�i + O(h2). (44)

Combining both, and taking the limit when the smoothing
length, h, goes to zero, one gets the continuum analog of
Eq. (42),

ρI
d�

dt
= ρG − ζ2

2
(2� − ∇ × u). (45)

In Appendix C a discussion on the physical meaning of the
moment of inertia per unit of mass I is provided. A proposal
for assigning it a specific value in the numerical simulations
is also there included.

C. Identification of the present model with a continuous
micropolar model

The micropolar viscous force per unit volume in the mo-
mentum equation has the form (see Ref. [20], chap. 3):

ρ f mp = (μ + μr ) ∇2u + (μ + λ − μr )∇ (∇ · u)

+ 2μr∇ × �, (46)

where μ, λ and μr are the shear, second and microrotation
viscosities, respectively.

Comparing Eq. (46) with the force derived in present work
[Eq. (40)] one gets the following dependence of these param-
eters with the two independent coefficients of present model
ζ1, ζ2:

μ = ζ1

2(n + 2)
+ ζ2

4
,

λ = ζ1

2(n + 2)
,⇒ μr = μ − λ,

μr = ζ2

4
.

(47)

Since, as shown in Sec. II C, ζ1 � −ζ2, ζ2 � 0, the following
limits apply to μ, μr , and λ:

μ � 0,

μr � 0,

−2μ

n
� λ � μ,⇒ 0 � μr � μ

(
1 + 2

n

)
.

(48)

As for the bulk viscosity κB, defined as (see Ref. [48]):

κB = λ + 2μ

n
, (49)

the following limits apply for κB in the micropolar fluid model
developed herein, as a consequence of those of μ and λ:

0 � κB � μ

(
1 + 2

n

)
. (50)

The lower limit, κB = 0, corresponds to fluids which verify
the Stokes’ hypothesis. Contrary to the standard SPH viscous
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terms, which, as shown in our previous work [16], do not al-
low to model such fluids, the proposed model certainly allows
to reach that lower limit for the bulk viscosity.

Regarding the upper limit, it implies that with the present
fluid model, if a large bulk viscosity is necessary, then a large
shear viscosity, μ, will have to be considered too. Summa-
rizing, the bulk and shear viscosity are independent, but the
range of admissible bulk viscosities is a function of the shear
one. To overcome this limitation, the bulk viscosity model and
associated dissipation function, developed by the authors [17],
should be added to the present model, which is an alternative
that presents no additional difficulty, and remains in the same
theoretical framework.

It is interesting to point out at this stage that if Eq. (46) is
reshaped using that

∇2u = ∇ (∇ · u) − ∇ × (∇ × u), (51)

one gets

ρ f mp = μ ∇2u + (μ + λ)∇ (∇ · u) + μr∇
× (2� − ∇ × u). (52)

If the spin is equal to half the vorticity, then Eq. (52) becomes
the standard Navier-Stokes momentum equation for Newto-
nian fluids. Indeed, as discussed in Sec. II C, by inspecting
the spin evolution equation, Eq. (45), one can see that, in the
present model, the spin is equal to half the vorticity if the
inertial term on its left-hand side is zero, provided the external
body torque is zero. Under these conditions, the model devel-
oped so far reduces to that of a Newtonian fluid.

Also, under these conditions, the momentum Eq. (52) gets
decoupled from the spin evolution one, Eq. (45). A general
isotropic micropolar fluid model, in which the dissipation
function is enriched with terms depending on the spatial
derivatives of the spin, can be developed. For this model,
the referred uncoupling does not occur. This general isotropic
micropolar fluid model will be obtained and validated next.

It is important to note that the momentum equation for
micropolar viscous flows (46) adopted in this section is the
one proposed by Condiff and Dahler [21] and later used by
Lukaszewicz in his book [20]. However, authors like Eringen
[22] proposed alternative constitutive laws by redefining the
viscosity coefficients. Indeed, in Ref. [22] the following equa-
tion, equivalent to Eq. (46), was proposed:

ρ f mp = (μ + κ ) ∇2u + (μ + λ)∇ (∇ · u) + κ∇ × �,

(53)
with the corresponding, also equivalent, spin equation:

ρI
d�

dt
= ρG − κ (2� − ∇ × u). (54)

In this latter formulation the rotational viscosity is referred
to as κ . When this alternative formulation is used, the depen-
dence of its coefficients (μ, κ , λ) with ζ1 and ζ2 needs to be
consistently readjusted, changing Eqs. (47) accordingly. This
Eringen’s [22] alternative formulation is used in one of the
reference solutions considered in Sec. V.

IV. A GENERAL ISOTROPIC MICROPOLAR FLUID
MODEL IN SPH

Inspired by Condiff and Dahler [21], the following dissi-
pation function �′

D is now proposed, extending �D defined in
Eq. (7) to account for dissipation mechanisms based on spin
derivatives:

�′
D = �D + ��

D, (55)

with

��
D =

∑
i, j>i

�i j · Bi j (ri j ) · �i j, (56)

where �i j := �i − � j , and where B is an objective tensor
of second rank, with the same structure like A, as defined in
Eq. (8):

Bi j (ri j ) = F (ri j )(ξ1ei j ⊗ ei j + ξ2I)ViVj . (57)

This is the most general form that preserves translational and
solid-body rotational invariance of the dissipation function
in Eq. (56). It is noted that the dimensions of the viscosity
coefficients ζ1, ζ2 and ξ1, ξ2 are different.

From Eqs. (56) and (57), the following expression for ��
D

is obtained:

��
D = ξ1

2

∑
i, j �=i

F (ri j )(ei j · �i j )
2ViVj + ξ2

2

∑
i, j �=i

F (ri j )�
2
i jViVj .

(58)
Since ��

D depends only on the spin derivatives, it impacts
only on the viscous torque mitv

i , as computed with Eq. (14),
redefined now as

mitv
i = − ∂

∂�i
�D − ∂

∂�i
��

D

= ζ2

2

∑
j

F (ri j )ri j × (ui j − �i j × ri j )ViVj

− ξ1

∑
j

F (ri j )(ei j · �i j )ei jViVj − ξ2

∑
i

F (ri j )�i jViVj .

(59)

This viscous torque modifies the right-hand side in Eq. (14)
to get a general micropolar model. The first term in Eq. (59)
comes from �D and was already presented in Eq. (12). The
second and the third derive from ��

D .
It is important to highlight that the two additional terms

on ξ1 and ξ2 in Eq. (59) are antisymmetric for two generic
particles i and j. Therefore, they do not change the angular
momentum of the system, thus keeping the property of the
whole scheme of being angular momentum conservative.

To take the torque in Eq. (59) back to the continuum, the
same principles of Sec. III A are used, to which the result
for the torque in Sec. III B is added, leading to a modified
equation for the spin evolution at the continuous level:

ρI
d�

dt
= ρG − 2μr (2� − ∇ × u) + γ1∇2�

+ (γ1 + γ2)∇ (∇ · �), (60)
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where the additional spin-viscosity coefficients γ1 and γ2 are
linked to the parameters ξ1 and ξ2 through

γ1 =
[

ξ1

2(n + 2)
+ ξ2

2

]
, γ2 =

[
ξ1

2(n + 2)
− ξ2

2

]
, (61)

and where we have implicitly assumed that n � 3. For n =
2, namely, in the case that two-dimensional simulations are
performed (not to be confused with two dimensional flows
studied through three-dimensional simulations), vorticity and
spin are transported as scalars. Then, in Eq. (59), the term
proportional to ξ1 is exactly zero and should be ignored. In
terms of viscosity coefficients, this implies that γ2 = −γ1.
Hence, the transport coefficients given in Eq. (61), for two
dimensions correspond to the ones of Eq. (59) with ξ1 = 0.
In what follows, ξ1 should be set equal to zero or ignored if
two-dimensional simulations are to be considered.

The evolution equation for the spin derivative Eq. (60) in-
cludes the same additional terms (spin Laplacian and gradient
of spin divergence) like the corresponding one in the referred
seminal paper by Condiff and Dahler [21] [Eq. (13) there].

The entropy production is increased by these additional
terms (the procedure is similar to the one followed in
Sec. II C), with analogous restrictions for ξ1 and ξ2 as the ones
for ζ1 and ζ2, expressed in Eq. (33). Therefore, ξ2 � 0 and
ξ1 � −ξ2. It is worth noting that for planar flows (∇ · �) is
zero.

An important conclusion of this general model, as given in
Eq. (60), is that the micropolar effects can exist even if the
rotational inertia of the system is negligible in the continuum
description provided an external body torque is absent. Effec-
tively, for a fluid of small physical particles with no relevant
moment of inertia, I is vanishingly small. However, when
equating the left-hand side of Eq. (60) to zero, due to the
presence of the new dissipative terms still the spin field �

is not equal to the vorticity but satisfies a spatial differen-
tial equation. It is thus expected that this general micropolar
model can find application to the modeling of non-Newtonian
fluids, in which the microscopic structure of the molecules can
introduce this type of dissipative processes given in Eq. (58).
The general micropolar isotropic model proposed in this sec-
tion will be the one used in the verification and validation
cases that follow next.

V. NUMERICAL VERIFICATION AND VALIDATION

A. SPH scheme for micropolar fluid

The SPH equations described in the previous sections are
implemented numerically and validated against analytical and
numerical solutions available in the literature. For the sake of
clearness, the final SPH equations read

ρi
dui

dt
= −

∑
j

[
p jV 2

j + piV 2
i

ViVj

]
ri jF (ri j )Vj + ρigi

− (μ − μr )2(n + 2)
∑

j

F (ri j )(ui j · ei j )ei jVj

− 4μr

∑
j

F (ri j )(ui j − �i j × ri j )Vj

ρiIi
d�i

dt
= ρiGi + 2μr

∑
j

F (ri j )ri j × (ui j − �i j × ri j )Vj

− (γ1 + γ2)(n + 2)
∑

j

F (ri j )(ei j · �i j )ei jVj

− (γ1 − γ2)
∑

i

F (ri j )�i jVj . (62)

These correspond to the following continuous equations:

ρ
du
dt

= − ∇p + ρg + μ ∇2u + (μ + λ)∇ (∇ · u)

+ μr∇ × (2� − ∇ × u),

ρI
d�

dt
= ρG + γ1∇2� + (γ1 + γ2)∇ (∇ · �)

− 2μr (2� − ∇ × u), (63)

where λ = (μ − μr ), as implied by the SPH model (see the
discussion in the Sec. III C). Moreover, we recall that an
additional constraint, namely, γ2 = −γ1, needs to be imposed
when the flow is planar (see Sec. IV).

In this latter case, some authors, such as, for example,
Venkatadri et al. [49], provide the numerical solution of
Eq. (63) by using a vorticity-spin formulation. The vorticity
equation is obtained by performing the curl of the momentum
Eq. (63) and, for an incompressible fluid in a two dimensional
framework, the vorticity-spin formulation reads as follows:

ρ
dω

dt
= μ∇2ω − μr∇2(2� − ω),

(64)

ρI
d�

dt
= γ1∇2� − 2μr (2� − ω) + ρG,

where ω is the scalar vorticity field. Incidentally, Venkatadri
et al. [49] set

γ1 = μI, (65)

which allows to combine the two equations above in the fol-
lowing compact form:

ρ
dS

dt
= (μ + μr )�S − 4μr

I
S + 2ρ

I
G, (66)

where S = 2� − ω. In this form, S can be independently
evolved in time.

Moreover, as pointed out by Ahmadi [50], if the relation-
ship Eq. (65) holds (and assuming that G = 0), then the spin,
�, would fulfill the vorticity evolution equation in Eq. (64),
provided the initial and boundary conditions for both flow
fields are the same. However, such an assumption, Eq. (65), is
unnecessarily restrictive, preventing the model from covering
all the phenomenology it encompasses.

Before proceeding to the description of the test cases,
we address some aspects that are important for the numer-
ical implementation. In all the simulations μr/μ = O(1) is
considered and, according to the constraint in the Eq. (48),
μr/μ = 2 is selected as limiting case (zero bulk viscosity).
The chosen Reynolds numbers, namely, Re = ρUL/μ and
Re� = ρUI/(2μrL) where U and L are the reference veloc-
ity and length scales, correspond to moderate regimes. For
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FIG. 2. Micropolar Poiseuille flow. Left: snapshot of the velocity field in the fluid domain (μr = 0; a = ∞). Right: time histories of the
horizontal velocity recorded at the center of the fluid domain for three cases: (μr = 0; a = ∞), (μr = μ; a = 5), and (μr = 2μ; a = 2). The
spatial resolution is N = H/�r = 50.

confined flows (as for the selected test cases), these regimes
represent troublesome simulations for the SPH scheme.

Indeed, the particle spatial disorder generally increases
during the time evolution and induces large errors. It has to
be borne in mind that in the initial condition the particles are
placed in a lattice and that, due the Lagrangian nature of the
solver, they are transported by the flow, therefore breaking
that initial lattice. Under these conditions, the accuracy of the
differential operators degrades [44].

Furthermore, the development of the so-called tensile-
instability [51], which leads to nonphysical clustering of
particles, may even impede the attainment of an accurate
numerical solution. For the above reasons, the δ-ALE-SPH
scheme [52] has been adopted for integrating the SPH equa-
tions. In this model a Particle Shifting Technique (PST) is
used to regularize the particle positions during the time evo-
lution, thus improving the robustness and the accuracy of the
numerical scheme.

A Wendland C-2 kernel [53] has been used in all simula-
tions.

B. Poiseiulle flow with a micropolar fluid

In the literature on micropolar fluid flows there are a num-
ber of exact solutions that may be used for verification of
the generalized numerical scheme developed in present paper.
An extensive review is contained in Ariman et al. [23] and
some of these solutions are discussed in detail by Stokes
[18]. In particular, in Chapter 6, steady-state 2D flows be-
tween parallel plates in the absence of gravity were presented.
Among them we select a Poiseuille flow to be treated from the
practical point of view as a periodic flow in x. The flow fields
have the following form:

u = (u(y), 0), � = �(y). (67)

The steady-state form of the motion Eqs. (63) reads

−d p

dx
+ (μ + μr )

d2u

dy2
+ 2μr

d�

dy
= 0, (68)

γ1
d2�

dy2
− 2μr

du

dy
− 4μr� = 0. (69)

Let us denote the distance between the plates as 2H . The
boundary conditions read

u(±H ) = 0, �(±H ) = 0. (70)

The general solution of Eqs. (68) and (69) is (see Ref. [18])

U (ξ ) = u(ξ )

u0
= 1 − ξ 2 −

(
2μr

μ + μr

)

× cosh a

a sinh a

[
1 − cosh(aξ )

cosh a

]
, (71)

ω(ξ ) = u0

H

[
2ξ −

(
2μr

μ + μr

)
sinh(aξ )

sinh a

]
, (72)

�(ξ ) = u0

H

[
ξ − sinh(aξ )

sinh a

]
, (73)

with

ξ = y

H
, u0 = − H2

2μ

d p

dx
, a = H

l
, l2 = γ1

4μ

[
1 + μr/μ

μr/μ

]
.

(74)

Incidentally, we observe that the analytical solution depends
on the choice of two parameters, namely μ/μr and a (or,
equivalently, γ1/μ).

The Reynolds number adopted for the numerical simu-
lations is Re = ρu0H/μ = 1000. The fluid starts from rest
conditions and, after a certain transient, reaches a steady state
condition. The computational fluid domain is depicted in the
left panel of Fig. 2 at the steady state for (μr = 0; a = ∞),
while the right panel of the same figure shows the velocity
profiles recorded at the center of the fluid domain during
the transient for three choices of the parameters (μr, a). The
case (μr = 0; a = ∞) corresponds to the classic Poiseuille
flow with a parabolic profile for the velocity field. As can be
expected, an increase of the viscous parameter μr leads to a
decrease of the steady-state velocity.

Figure 3 displays the profiles of the velocity, vorticity and
spin during the transient and at the steady state for the cases
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FIG. 3. Micropolar Poiseuille flow: Profiles of the velocity (left), vorticity (middle), and spin (right) during the transient (red/orange dots,
time instants tU/H = 0, 100, 200, 400, 1000, 2500) and the steady-state (green dots, tU/H = 3000) for (μr/μ = 1, a = 5) (top panels) and
(μr/μ = 2, a = 2) (bottom panels). Black-diamond dots indicate the analytical solution.

(μr/μ = 1, a = 5) (top panels) and (μr/μ = 2, a = 2) (bot-
tom panels). The comparisons with the analytical solution are
good in all the cases. In comparison with the classic Poiseuille
flow, the velocity profile remains similar to a parabola and
only minor changes are observed close to the walls. However,
the vorticity deviates significantly from the Newtonian solu-
tion linear profile close to the solid boundaries (see the right
panel of Fig. 3).

Despite the steady-state numerical solutions are not af-
fected by the value of the micropolar inertia, this plays
an important role during the time integration. In all the
simulations we adopted I/H2 = 2 which corresponds to a re-
laxation time τU/H = Re� = ρUI/(2μrH ) = 1000 for the
test case (μr/μ = 1) and τU/H = 500 for the second test
case (μr/μ = 2) (see the Appendix C for details).

Table I shows a convergence analysis for the chosen cases.
Specifically, it displays the relative errors for the velocity
recorded at the center of the domain:

εU =
∣∣U N

C − U ana
C

∣∣
U ana

C

and the relative errors for the kinetic energy on the whole
domain:

εK =
∣∣EN

K − Eana
K

∣∣
Eana

K

.

The spatial resolution is indicated through N = H/�r, where
�r is the initial particle distance. Apart from the case with
(μr/μ = 2, a = 2), the SPH model predicts a convergence
rate between 1 and 2, in agreement with the usual convergence

TABLE I. Micropolar Poiseuille flow: Convergence toward the analytical solution for the three test-cases simulated. Here εU is the relative
error on velocity recorded at the center of the fluid domain and εK is the relative error on the global kinetic energy. The spatial resolution is
N = H/�r, where �r is the initial particle distance.

μr = 0; a = ∞ μr = μ; a = 5 μr = 2μ; a = 2

N εU (%) εK (%) N εU (%) εK (%) N εU (%) εK (%)

25 0.21 0.52 25 1.28 2.60 25 0.41 0.54
50 0.12 0.27 50 0.75 1.51 50 0.22 0.12
100 0.09 0.18 100 0.42 0.83 100 0.55 0.47
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FIG. 4. Lid-driven cavity. Left: Sketch of the problem and of the boundary conditions. Right: time histories of the kinetic energy for K = 0
and K = 3. The spatial resolution is N = L/�r = 400.

rate observed in standard fluid simulations. For (μr/μ =
2, a = 2) both relative errors increase for the finest resolution
but remain below 1%.

C. Lid-driven cavity with a micropolar fluid

The lid-driven cavity is a well-known benchmark case for
validating numerical solvers on viscous flows. Its physical
characteristics resemble those typical of lubrication processes,
a field in which micropolar fluids have received great attention
in the literature (see, e.g., Refs. [23,24,54]).

In 2012 Chen et al. [55] showed numerical simulations of
a lid-driven cavity with a micropolar fluid. Since they did
simulations for a limited range of parameters and since no
velocity profiles were provided, their study is not suitable for
validation purposes. More recently, Venkatadri et al. [49] stud-
ied the same problem providing the velocity profiles, which
makes their study adequate for a 2D validation of the present
SPH scheme.

Venkatadri et al. [49] adopted the momentum Eq. (53) for
modeling this problem. They studied the influence of selecting
different values of K = κ/μ on the lid-driven cavity flow.

Here, for the sake of brevity the cases K = 0 (that is standard
Newtonian fluid) and K = 3 are treated with the proposed
SPH model.

In the left panel of Fig. 4 the setup of the problem is
shown along with the conditions on the walls. The Reynolds
number is Re = ρUL/μ = 400 and the spatial resolution is
N = L/�r = 400 where �r is the initial particle distance.
The right panel of the same figure displays the time history
of the kinetic energy for K = 0 and K = 3. In this latter case,
we observe a decrease of the kinetic energy at the steady state,
as a consequence of an increase of dissipation due to the spin.

In Fig. 5 the streamlines for the two selected cases are
shown. For K = 3, a positive vertical displacement of the cen-
tral vortex is visible, as well as a mitigation of the recirculation
vortex at the bottom right corner.

Finally, Fig. 6 shows the comparison between the midsec-
tion velocity profiles as predicted by the present SPH model,
by the finite difference schemes in Venkatadri et al. [49] and
by the classic reference of Ghia et al. [56] for the Newtonian
case. As can be appreciated, the SPH simulation is in quali-
tative fair agreement with the reference results of the referred
Eulerian schemes.

FIG. 5. Lid-driven steady-state streamlines for Re = 400, μr/μ = 0 (left), and μr/μ = 2 (right).
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FIG. 6. Lid-driven cavity. Steady-state midsection velocity profiles for Re = 400. Left: horizontal velocity component. Right: vertical
velocity component.

VI. CONCLUSIONS

In this paper we have extended the previous bottom-up
approaches [16,17] to construct a smoothed particle hy-
drodynamics (SPH) model to describe the hydrodynamic
behavior of general micropolar fluids, with emphasis on their
dissipation mechanisms. To this aim, a dissipation func-
tion has been defined at the particle level which depends
on the relative velocity between particles but also on an
additional spin degree of freedom, which modifies such
relative velocity and introduces spin-related intrinsic dissi-
pation mechanisms, comparable to those related to the rate
of deformation tensor in Newtonian fluids. This dissipa-
tion function is invariant under translations and solid-body
rotations, which ensures that the resulting forces and torques
will respect the conservation of the total momentum and an-
gular momentum of the system. The dissipative forces derived
from the dissipation function have been then incorporated
to balance the expression obtained from the minimization
of the Lagrangian of the system, leading to a set of SPH
particle equations to describe the dynamics. The bottom-up
approach has also allowed us to discuss in depth the na-
ture of the moment of inertia per unit of mass of the SPH
particles.

The obtained discrete model has been taken to the con-
tinuum and compared with micropolar models from the
literature, establishing the corresponding relationships be-
tween their coefficients and the ones of the dissipative terms
considered at the particle level.

The developed discrete model has been enriched with ad-
ditional terms based exclusively on the spin derivatives that
were not present in previous SPH models, and that have been
obtained with the same bottom-up approach.

Finally, numerical verification (micropolar Poiseuille flow)
and validation (micropolar lid-driven cavity) tests have been
documented that show that SPH is capable of accurately mod-
eling this type of dynamics.

Future work will include using the developed scheme for
problems dealing with micropolar fluids in which the SPH
method can be competitive, such as those involving free-
surface flows and/or complex physics.
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APPENDIX A: CONTRIBUTIONS TO THE ENTROPY PRODUCTION

The terms in Eq. (28) can be expanded to give

−
∑

i

[
f v

i · ui + qv
i · �i

] = ζ1

∑
i, j �=i

F (ri j )(ui j · ei j )(ei j · ui ) ViVj

+ ζ2

∑
i, j �=i

F (ri j )(ui j · ui )ViVj − ζ2

∑
i, j �=i

F (ri j )(�i j × ri j ) · uiViVj

− ζ2

2

∑
i, j �=i

F (ri j )�i · (ri j × ui j ) + ζ2

2

∑
i, j �=i

F (ri j )�i · [ri j × (�i j × ri j )]ViVj . (A1)
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Let us analyze each one of them:

{1} = ζ1

∑
i, j �=i

F (ri j )(ui j · ei j )(ei j · ui )ViVj = ζ1

∑
i, j<i

(·) + ζ1

∑
i, j>i

(·) = ζ1

∑
i, j<i

(·) + ζ1

∑
j,i< j

(·). (A2)

We can rename the indices in the second summation:

{1} = ζ1

∑
i, j<i

F (ri j )(ui j · ei j )(ei j · ui )ViVj + ζ1

∑
i, j<i

F (r ji)(u ji · e ji )(e ji · u j )VjVi. (A3)

Since F (r ji) = F (ri j ), ui j = ui − u j = −u ji, and ei j = −e ji, one can write:

{1} = ζ1

∑
i, j<i

F (ri j )(ui j · ei j )
2ViVj . (A4)

As for the second term, a similar arrangement leads to

{2} = ζ2

∑
i, j<i

F (ri j )(ui j )
2ViVj . (A5)

The third term is a crossed one between spin and velocity:

{3} = −ζ2

∑
i, j �=i

F (ri j )(�i j × ri j ) · uiViVj = ζ2

∑
i, j<i

(·) + ζ2

∑
j,i< j

(·). (A6)

Renaming indices in the second summand:

{3} = −ζ2

∑
i, j<i

F (ri j )(�i j × ri j ) · uiViVj − ζ2

∑
i, j<i

F (r ji )(� ji × r ji ) · u jViVj, (A7)

and taking into account that �i j = � ji, one gets

{3} = −ζ2

∑
i, j<i

F (ri j )(�i j × ri j ) · ui jViVj . (A8)

Term {4} is also crossed:

{4} = −ζ2

2

∑
i, j �=i

F (ri j )�i · (ri j × ui j ) = ζ2

2

∑
i, j<i

(·) + ζ2

2

∑
j,i< j

(·). (A9)

Renaming indices in the second summand:

{4} = −ζ2

2

∑
i, j<i

F (ri j )�i · (ri j × ui j ) − ζ2

2

∑
i, j<i

F (r ji )� j · (r ji × u ji ), (A10)

and due to the antisymmetry of ri j and ui j , one gets

{4} = −ζ2

∑
i, j<i

F (ri j )�i j · (ri j × ui j ) = −ζ2

∑
i, j<i

F (ri j )(�i j × ri j ) · ui jViVj = {3}. (A11)

Therefore,

{3} + {4} = −2ζ2

∑
i, j<i

F (ri j )(�i j × ri j ) · ui jViVj . (A12)

Term {5} is only on spin:

{5} = ζ2

2

∑
i, j �=i

F (ri j )�i · [ri j × (�i j × ri j )]ViVj . = ζ2

2

∑
i, j<i

(·) + ζ2

2

∑
j,i< j

(·). (A13)

Renaming indices in the second summand:

{5} = ζ2

2

∑
i, j<i

F (ri j )�i · [ri j × (�i j × ri j )]ViVj + ζ2

2

∑
i, j<i

F (r ji )� j · [r ji × (� ji × r ji )]ViVj . (A14)

Taking into account the symmetry properties already used in previous terms, one gets:

{5} = ζ2

∑
i, j<i

F (ri j )�i j · [ri j × (�i j × ri j )]ViVj . (A15)

Using the properties of the mixed product, one gets

{5} = ζ2

∑
i, j<i

F (ri j )(�i j × ri j )
2ViVj . (A16)
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Collecting terms 2–5 together, one gets

{2} + {3} + {4} + {5} = ζ2

∑
i, j<i

F (ri j )(ui j − �i j × ri j )
2ViVj . (A17)

Adding them all:

−
∑

i

[
f v

i · ui + qv
i · �i

] = ζ1

∑
i, j<i

F (ri j )(ui j · ei j )
2ViVj + ζ2

∑
i, j<i

F (ri j )(ui j − �i j × ri j )
2ViVj

= ζ1

2

∑
i, j �=i

F (ri j )(ui j · ei j )
2ViVj + ζ2

2

∑
i, j �=i

F (ri j )(ui j − �i j × ri j )
2ViVj

= �D,

(A18)

as defined in Eq. (9).

APPENDIX B: SPIN EQUATION: RIGHT-HAND SIDE
FROM DISCRETE TO CONTINUUM

The term in Eq. (B1) can be approximated by an integral,
as Vi ∼ dr, i.e.,∑

j

F (ri j )ri j × (�i j × ri j )Vj

≈
∫

F (|r − r′|)(r − r′) ×
[
�(r) + �(r′)

2
× (r − r′)

]
dr′.

(B1)

Let us define �r′ := r′ − r. Then, one can propose a multipo-
lar expansion of the fields around the point r:

�(r′) = �(r) + ∇� · �r′ + 1
2∇∇� : �r′�r′ + . . . . (B2)

Due to the fact that the range of the function F within the inte-
gral is of O(h) every �r′ in the integrand brings a contribution
of this order. Therefore, we only have to retain up to first order
in the gradient in the expansion in Eq. (B2). Moreover, due to
translational invariance, we can write dr′ → d�r′. With this,
Eq. (B1) can be written as∫

F (|�r′|)�r′ ×
[(

�(r) + 1

2
∇� · �r′ + · · ·

)
×�r′

]
d�r′

=
∫

F (|�r′|)�r′ ×[�(r) × �r′]d�r′ + O(h2). (B3)

The linear term in the gradient of the spin vanishes because we
integrate an odd-rank tensor with respect to �r′ isotropically.
Then, to the lowest order in h we have only the term on the
right-hand side of Eq. (B3). Due to the fact that F is of the
order of 1/h3 [see Eqs. (3) and (4)] the remaining integral is
overall of O(h0) and the neglected corrections are O(h2).

To carry on the remaining integral, we introduce here the
cartesian components of the tensor and index them with Greek
letters. Furthermore, we will assume the Einstein convention
of implicit summation over repeated indices. Hence, we can
write, for the α component:∫

F (|�r′|)(�r′ × [�(r) × �r′])αd�r′

=
∫

F (|�r′|)εαβγ �rβ[εγμν�μ�rν]d�r′

=
∫

F (|�r′|)(δαμδβν − δανδβμ)�rβ�μ�rνd�r′

= (δαμδβν − δανδβμ)δβν�μ = 2�α, (B4)

where we have used the fact that the remaining isotropic
integral is the identity tensor 1, due to the normalization of
the kernel W and the definition of F , namely,∫

d�r′F (�r′)�r′�r′ = 4π

3
1

∫ ∞

0
d�r′F (�r′)(�r′)4

= − 4π

3
1

∫ ∞

0
d�r′(�r′)3 dW (�r′)

d�r′

= 1. (B5)

Therefore, in the continuous integral limit we have∑
j

F (ri j )ri j × (�i j × ri j )Vj ≈ 2� + O(h2) (B6)

�

APPENDIX C: PHYSICAL MEANING OF THE MOMENT
OF INERTIA PER UNIT OF MASS I

A discussion with regards to the physical meaning of the
left-hand side of Eq. (45), as well as on the value of the
moment of inertia per unit of mass I is in order. To address
this problem, we have to consider that the SPH particles are
in fact coarse-grained lumps of Nα physical particles, the
movement of which is summarized into its overall linear and
angular momenta. Let us then take all particles in one of these
lumps of characteristic size �ri ∼ V 1/3

i and index them with
Greek letters. The total momentum is then pi = ∑

α pα , while
the total mass is mi = ∑

α mα . The velocity of the lump is then
defined from the relation ui = pi/mi. This ratio remains finite
in the limit �ri → 0, provided that there are always many
particles inside the lump for the hydrodynamic limit to make
physical sense. For the rotational motion we have that the cell
angular momentum contains two terms:

l i =
Nα∑
α

((rα − ri ) × pα + lα ), (C1)

where lα is the angular momentum of the physical molecules
or particles of microscopic size. The first term on the right-
hand side of Eq. (C1) is the contribution to the angular
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momentum of the SPH particle due to the motion around the
lump center, while the second term stands for the angular
momentum due to the rotation of the constituent particles
around their own center of mass. In analogy with the case of
linear momentum, we can define the tensor of inertia per unit
of mass of the isotropic, homogeneous lump, Ii, to be such
that

miIi =
Nα∑
α

[mα (rα − ri ) ⊗ (rα − ri ) + mαIα], (C2)

where Iα is the intrinsic tensor of inertia of the molecules, per
unit of mass. In homogeneous isotropic systems, the tensor of
inertia is proportional to the identity matrix I, miIi = miIiI,
with

miIi =
Nα∑
α

[mα (xα − xi )
2 + mαIα], (C3)

and the same symmetry is considered for Iα , i.e., Iα = II,
where we have assumed that all the molecules are equal and
thus dropped α. Again, the rotational velocity of the lump is
given by the ratio �i = l i/(miIi ), which remains finite in the
limit �ri → 0. To develop it further, assuming that the lump
is large (it contains many molecules), let us approximate the
summation by an integral, i.e.,∑

α

mα · · · �
∫

Vi

drρ . . . (C4)

Then, the right-hand side of Eq. (C3) can be written as

miIi �
∫

Vi

drρ[|r − ri|2 + I], (C5)

Then, dividing both sides of Eq. (C5) by the volume Vi and
assuming that the density is nearly constant inside the particle,
we have that

ρIi � cρV 2/3
i + ρI, (C6)

where

c ≡
∫

Vi
dr|r − ri|2

V 5/3
i

(C7)

is a geometric dimensionless factor of the order of 1 that
depends on the geometrical shape of the SPH particle. For
example, if we consider homogeneous spheres, then c �
2/13, while for cube particles c = 1/6. In the general case
of a n-dimension fluid, the proper scaling should be of the
form

Ii = cV 2/n
i + I. (C8)

For example, in a bidimensional context with particles having
a disk shape we got c = 1/(2π ) while for squared particles
c = 1/6. Because of these small differences from the point

of view of the simulation the choice of the constant c is not
critical, but it can be chosen to better suit the system under
scrutiny.

Equation (C8) indicates that the moment of inertia of a
SPH simulation of a micropolar fluid depends on the degree
of coarse-graining used, due to the fact that the property Ii

depends on the volume Vi of the SPH particle. However, as far
as the continuum limit leading to Eq. (45) is concerned, we
should take the limit Vi → 0 in Eq. (C8), i.e., Ii ∼ I. What
Eq. (C8) indicates is that, in taking the continuous limit what
remains as moment of inertia is molecular in nature or, in other
words, is proportional to molecular dimensions. Notice that
the same limit taken for the mass, produces a macroscopic
property, the mass density, which is independent of such
molecular dimensions. Therefore, the ultimate value I will
be vanishingly small in normal fluids and typical applications.
For the this reason I is called microinertia. As pointed-out in
Ref. [55], I is in general of order l2, being l a hidden length
scale, which can be a molecular scale or, in other contexts, the
Kolmogorov microscale or the Taylor microscale.

Moreover, it is also interesting to investigate under which
conditions the spin inertia is physically relevant for the phe-
nomenology that we aim at describing. From Eqs. (45) and
(47), we can estimate the relaxation time of the spin by a
dominating balance between the inertia, on the left-hand side,
and the second term on the right-hand side, i.e., τ = ρI/2μr .
If L is a characteristic dimension of the system and U a
characteristic velocity of the fluid, then the rotational inertia
will be relevant if τU/L � 1. We can rewrite this condition
as

τ
U

L
= Re� � 1, Re� := ρUI

2μrL
, (C9)

where we defined the Reynolds number Re� linked to the spin
dynamics. This condition is favored in systems of small size
with small μr and large ratio I/L2, e.g., fluids having large
particles with a significant I. In this condition it is expected
that the rotational relaxation cannot be ignored. Conversely
for flow conditions where τ is small, for the explicit time
integration of Eq. (43), we need to ensure that the time step
�t is always enough smaller than τ .

To end this analysis, let us consider again Eq. (45). If I de-
pends on molecular dimensions, it implies that the continuum
limit of the micropolar model presented so far has negligible
rotational inertia for all these flows with no extreme condi-
tions as the ones expressed in Eq. (C9), in which Id�/dt is
not negligible. For the rest of the cases where such extreme
situations do not occur, we can neglect the inertia term in the
left-hand side of Eq. (45). Under the latter circumstances the
spin of the fluid is enslaved by the vorticity, in the absence of
external torques, i.e.,

� = 1
2∇ × u. (C10)

We discuss the implications of this statement in Sec. III C.
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