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Lattice Boltzmann method for adsorption under stationary and transient conditions:
Interplay between transport and adsorption kinetics in porous media
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A numerical method based on the Lattice Boltzmann formalism is presented to capture the effect of adsorption
kinetics on transport in porous media. Through the use of a general adsorption operator, canonical models such as
Henry and Langmuir adsorption as well as more complex adsorption mechanisms involving collective behavior
with lateral interactions and surface aggregation can be investigated using this versatile model. By extending
the description of adsorption phenomena to kinetic regimes with any underlying adsorption model, this effective
technique allows assessing the coupled dynamics resulting from advection, diffusion, and adsorption in pores
not only in stationary conditions but also under transient conditions (i.e., in regimes where the adsorbed amount
evolves with time due to diffusion and advection). As illustrated in this paper, the development of such an
approach provides a simple tool to determine the reciprocal effect of molecular flow and dispersion on adsorption
kinetics. In this context, the use of a Lattice Boltzmann-based approach is important as it allows considering
porous media of any morphology and topology. Beyond fundamental implications, this efficient method allows
treating real engineering conditions such as pollutant dispersion or surfactant injection in a flowing liquid in soils
and porous rocks.
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I. INTRODUCTION

While fluid transport and dispersion in restricted geome-
tries such as in porous media have been broadly considered
in physics, the impact of fluid transport on adsorption
phenomena remains puzzling in many aspects [1–9]. Situ-
ations corresponding to a flowing liquid (solvent) carrying
adsorbable molecules (solute) in a porous material have
been treated extensively under static conditions (stationary
regime) [10,11]. In contrast, transient regimes, which are
observed for times shorter than the typical time needed to
reach local equilibrium between the adsorbed and free solute
concentrations, display complex behaviors to be unraveled.
Formally, addressing this challenge requires to better un-
derstand the interplay of molecule transport and adsorption
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kinetics in confining materials. To do so, it is important to
integrate adsorption kinetics into physical transport models
but also to consider different phenomena involved (mass
transfer, diffusion, and adsorption). Besides the different ad-
sorption and transport regimes, the porous medium structure
is another ingredient that significantly influences the trans-
port behavior of adsorbing molecules (since adsorption is
also sensitive to the geometry and structure of the solid-fluid
interface) [12–14]. In particular, depending on the porous
structure, features such as constrictions or low-porosity zones
(reduced flow) induce strong coupling between fluid transport
and molecular adsorption [9,15,16]. Therefore, understand-
ing the interplay between the structural heterogeneity of the
porous medium and the adsorption thermodynamics and ki-
netics is considered as a key fundamental challenge [17,18].
Beyond basic science implications, increasing attention is
also paid in applied research to such adsorption and trans-
port coupling as it is seen as an efficient means to improve
existing processes. For instance, in addition to conventional
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applications such as air and water purification, adsorption
processes are now widely used in the oil and petrochemical
sectors as well as in the preparation of industrial gases. In
particular, for purification, it is necessary to better assess and
understand the migration of pollutants into natural or synthetic
porous media [19,20].

From a theoretical viewpoint, such interplay between ad-
sorption kinetics and flow can be taken into account using
numerical methods (e.g., [21]). The latter are considered as
efficient and robust as they provide information on both the
adsorption and transport properties. Indeed, experimentally,
detailed information on adsorbed quantities is not easily ac-
cessible since only adsorbate free concentrations in solution
are assessed (adsorbed concentrations and their distribution
in pores are not known a priori). Moreover, conducting
an experimental parametric study—by considering constants
such as adsorption and desorption coefficients—is not sim-
ple as there is no direct access to adsorbed quantities at the
pore scale. In contrast, numerical methods allow the deter-
mination of any relevant quantities even at the nanometer
scale. Among available numerical frameworks, several Lat-
tice Boltzmann methods accounting for adsorption have been
proposed to probe dispersion and diffusion under no-flow
conditions. For instance, Guo et al. [22] have proposed a
computational scheme to model adsorption. By using spe-
cific equations of state, these authors have considered various
adsorption isotherm types. Using a somewhat similar ap-
proach, Xu et al. [23,24] have simulated gas adsorption in gas
shale by considering two-phase separation and adsorption in
nanopores. These Lattice Boltzmann studies account only for
adsorption under no-flow conditions with adsorbable particles
subjected only to diffusion. To consider adsorption effects
in transport situations, Ning et al. have introduced a Lattice
Boltzmann method with a multiple relaxation time scheme
coupled with adsorption to simulate gas flow in confining
organic nanopores [25]. In their work on the impact of gas
slippage and adsorption on flow, these authors used the ad-
sorptive force introduced by Sukop and Or [26] to model
the surface and adsorbate interactions. Similar approaches ac-
counting for fluid transport combined with adsorption effects
were proposed by Agarwal et al. [27] and Manjhi et al. [28]. In
these works, a first-order adsorption kinetics corresponding to
the Henry regime was considered so that these models apply
to the low-concentration regime only (where the adsorbed
amount is proportional to the bulk concentration). Typically,
in Ref. [28], an advection-diffusion equation with a term ac-
counting for adsorption was solved using a Lattice Boltzmann
method. The algorithm in these different studies relies on
imposing a constant dispersion coefficient, therefore prevent-
ing from studying the influence of adsorption on dispersion
and other transport regimes. Last but not least, Rotenberg
and coworkers have developed a Lattice Boltzmann scheme
to determine the impact of adsorption on solute and solvent
dynamics [6,7,29]. In this approach, adsorption occurs on
fluid nodes directly in contact with neighboring solid nodes.
At each position or node, free and adsorbed quantities are de-
fined to describe equilibrium properties after each adsorption
step. The transport behavior is described using the moment
propagation method by introducing propagators for both the
free and adsorbed phases [30,31]. This allows computing the

dynamical properties of the dispersed solute in the flowing
fluid.

In the studies above, these robust techniques were used to
address the effect of fluid flow on adsorption in stationary
regimes (i.e., a long-time limit where thermodynamic equi-
librium is reached). However, it is also relevant to investigate
transient regimes where the adsorbed amount evolves with a
time constant that can be either large or small compared to
the typical transport time. To fill this gap, Vanson et al. [8,9]
extended the method by Levesque et al. [6] to describe the
adsorption and transport interplay in the kinetics regime via
kinetic rules resulting in a Langmuir isotherm. Here we build
up on a similar formalism to extend the description of such
coupling to any underlying adsorption kinetics and, hence, any
adsorption isotherm model. We implement a general adsorp-
tion operator and illustrate its versatility for the description of
any complex adsorption mechanism in the case of collective
adsorption involving lateral interactions between adsorbed
particles and surface self-aggregation [32]. In addition to such
complex adsorption phenomena, the proposed algorithm is
implemented in a Lattice Boltzmann framework relying on
the two relaxation time (TRT) approach, which offers a ro-
bust technique to solve the advection, adsorption, or diffusion
problem at stake. The implementation of the TRT scheme is
as simple as the Bhatnagar-Gross-Krook (BGK) method while
ensuring the improved numerical accuracy and stability of the
multiple relaxation time (MRT) approach. In particular, the
TRT scheme is a very efficient operator for low Reynolds
number flow with computational costs equivalent to those
relying on the single relaxation time approach. This opens the
way to the exploration of a broad range of thermodynamic and
kinetic conditions (in terms of both fluid flow and adsorption).
As illustrated in this paper, this extended Lattice Boltzmann
approach allows considering, for any adsorption model (i.e.,
beyond Henry and Langmuir adsorption), the transport of
adsorbing molecules at any stage along the adsorption kinetics
(from the early adsorption stage at an adsorbate-free surface
to the long-time, i.e., equilibrium, limit). In particular, the dif-
ferent following stages can be investigated in detail: diffusive
regime, advection-dominated regime, and dispersive regime
(with results validated against simple known physical limits
such as Taylor dispersion modified to include adsorption).

In brief, our extended Lattice Boltzmann method relies
on the formal treatment of the advection or diffusion phe-
nomenon, which is augmented to include adsorption. For this
reason, the approach derived in this article can be seen as
equivalent to solving the diffusion, advection, or adsorption
equation but using a Lattice Boltzmann technique. The use
of a Lattice Boltzmann approach allows us to harness the
full power of this general method; combining a robust hy-
drodynamic framework compatible with statistical mechanics
aspects while treating complex porous media through the use
of a lattice approach [33–35]. In practice, the advection or
diffusion part is solved using an already available Lattice
Boltzmann method implemented with the TRT scheme; this
algorithm consists of performing a collision step followed by
a propagation step for the solute molecules within the flow-
ing fluid [36,37]. Adsorption is included within this robust
formalism by adding a third step—between the collision and
propagation steps—by updating the free and adsorbed tracer
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concentrations using a given adsorption kinetic equation. Like
with other Lattice Boltzmann methods, the Stokes flow is
precalculated and assumed to remain unaffected as adsorption
proceeds. As already stated, the use of this generic approach
allows considering any adsorption mechanisms from well-
known regimes such as Henry, Langmuir, or Sips adsorption
isotherms to more complex behaviors with collective adsorp-
tion phenomena.

The remainder of this article is organized as follows. In
Sec. II we introduce this extended Lattice Boltzmann method
that accounts for adsorption thermodynamics and kinetics in
a flowing fluid. After providing the main key ingredients
and steps, we write formally the resulting equations to be
solved numerically for different adsorption regimes: the Lang-
muir adsorption model (which includes the Henry adsorption
regime as it corresponds to the low concentration limit of
the Langmuir model) and a recently published model which
includes cooperative adsorption [32]. In this section we also
provide details about the simulation setup and procedure as
well as a flow chart to illustrate how a typical simulation is
conducted. In Sec. III we validate our approach by consider-
ing adsorption kinetics under no-flow conditions for different
regimes: Henry, Langmuir, and cooperative adsorption. For
different concentrations, using a prototypical slit pore geom-
etry, we show that our method provides an exact description
of the known solution to these problems (as theoretical treat-
ments are available for such simple adsorption examples in
ideal pore geometries). In Sec. IV we extend this validation
by considering more complex situations where adsorption
equilibration proceeds from an initial injection configuration
within the flowing fluid (typically, a constant concentration is
injected at a well-defined position for a given time period).
It is shown that the results obtained using our method match
the exact solution derived for a slit pore treated with Henry
adsorption conditions [38]. In Sec. V we provide some con-
cluding remarks.

II. EXTENDED LATTICE BOLTZMANN METHOD:
KINETICS IMPLEMENTATION

A. Problem statement

Lattice Boltzmann methods are known to be very ro-
bust techniques to investigate complex phenomena involved
in porous media such as multiphase flow [39] and dissolu-
tion [40] (see also Ref. [41]). Let us consider a discretized
porous material made up of solid sites coexisting with porous
sites that are accessible to the carrying fluid and dispersing
tracers (Fig. 1). All fluid sites adjacent to a solid site adsorb
tracer molecules. In what follows, two populations will be
considered: free and adsorbed tracers with their corresponding
concentrations c(r, t ) and ca(r, t ) at a time t and position
r. The adsorbed tracer concentration in porous sites not in
contact with the solid phase is assumed to be zero (physically,
this approximation is justified by the fact that the mesoscopic
lattice spacing used in Lattice Boltzmann extends far beyond
the typical range of intermolecular forces responsible for ad-
sorption). For the sake of simplicity, throughout this article,
a simple slit pore geometry is considered, but the method de-
rived here can be extended to any pore geometry. While such
a simple, i.e., slit, geometry fails to capture morphological

FIG. 1. Schematic representation of the simulation setup used in
our Lattice Boltzmann calculations. (a) A slit pore having a length
Lx and a width L is used as a simple reference system to validate our
Lattice Boltzmann method. In the geometry mesh shown here, each
site is either a fluid site (white) or a solid site (black). Fluid sites
directly in contact with a solid site adsorb tracers (gray). (b) The
molecule concentration within the geometry is monitored as a func-
tion of time t . These molecules are carried along the pore direction
by a flowing liquid whose velocity field corresponds to Stokes flow
(corresponding for this simple pore geometry to a Poiseuille velocity
profile with a maximum velocity umax). Starting from a concentration
peak injected at a given time t = 0 in a slice located in x0, the density
broadens as molecular diffusion leads to tracer dispersion within the
pore. The different colors denote different times which increase from
left to right as the carrying fluid is transported along this direction).
Under laminar flow conditions, the concentration distribution in the
long-time limit is given by Taylor regime where tracer dispersion
leads to a concentration distribution with a Gaussian shape.

(pore shape) and topological (pore connectivity) disorders,
it allows illustrating how the specificities of the adsorption
thermodynamics and kinetics at play affect tracer molecule
dispersion in porous media. In particular, by considering
such a regular model, our approach allows identifying the
role of surface saturation (Langmuir adsorption) and collec-
tive adsorption (cooperative adsorption) compared to simple
Henry-type adsorption. Moreover, as shown in this paper, the
use of the slit geometry allows verifying that our approach
recovers known analytical limits (e.g., Taylor dispersion with
and without adsorption). All Lattice Boltzmann simulations
are performed for 2D systems to ensure that the computational
burden remains reasonable. In practice, this means that the
porous system shown in Fig. 1 corresponds to a slice of a slit
pore.

The porous system depicted in Fig. 1(a) is subjected to a
stationary, laminar liquid flow—the so-called carrying fluid—
which is assumed to be entirely described through its Stokes
velocity field u(r). The latter is precalculated using regular
Lattice Boltzmann simulations which do not account for the
presence and, a fortiori, for adsorption of the tracer molecules.
In practice, the resulting Stokes flow is assumed to remain
constant or independent upon subsequent injection, diffusion,
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and adsorption of the tracer molecules. As shown in Fig. 1(b),
at a given time t = 0, the free tracers are injected for a given
duration �t0 which can be varied from a single to several time
steps �t0 = n�t (with n an integer defined strictly positive
and �t the Lattice Boltzmann integration time step). Different
spatial distributions can be injected during the injection time
�t0: either a homogeneous distribution c(r) = c0, ∀r or a het-
erogeneous distribution like a concentration slice c(r0) = c0

with r0 = (x0, y) such that x0 is a given lateral position within
the slit pore.

As described below, the coupled dynamics resulting from
advection, diffusion, and adsorption can be determined by
following the evolution in time of the free and adsorbed
tracer distributions. The variance σ 2

x (t ) of the free tracer
distribution c(r, t ) along the direction x provides a direct
measurement of the dispersion coefficient D(t → ∞) with
D(t ) ∼ dσ 2

x (t )/2 dt . On the other hand, the time evolution
of the adsorbed tracer distribution ca(r, t ) allows determining
the resulting adsorption kinetics f (t ) ∼ ca(r, t ). In practice,
while our Lattice Boltzmann calculations are performed using
local volume concentrations c(r, t ) and ca(r, t ), most of our
results will report adsorbed quantities expressed as surface
concentrations �(r, t ). Considering that �(r, t ) = ca(r, t )�x
where �x is the lattice spacing used in the Lattice Boltzmann
calculations, the two quantities are strictly equivalent. In par-
ticular, when expressed in Lattice Boltzmann units (�x = 1),
the surface and bulk concentrations of adsorbed tracers follow
the same evolution �(r, t ) ∼ ca(r, t ) [for the sake of clarity,
in what follows, the different evolution equations are reported
using bulk concentrations c(r, t ) and ca(r, t )].

B. Algorithm and flow chart

Figure 1 in the Supplemental Material [42] shows a flow
chart presenting the algorithm corresponding to our extended
Lattice Boltzmann approach. Once the pore geometry has
been defined, the Stokes flow of the carrying fluid is calculated
using an independent Lattice Boltzmann simulation. The pre-
sentation of this first step is skipped here as it corresponds to
conventional Lattice Boltzmann simulations for Stokes flow
(leading to the conventional Poiseuille flow for the slit pore
geometry). In practice, as a first-order approach, the Stokes
field is assumed to remain constant as adsorption proceeds.
While this corresponds to a simplified problem description, it
is considered reasonable in many situations (see, for instance,
Ref. [43] where the distribution of water was found to be
only very weakly sensitive to ion adsorption). In particular,
this allows disentangling important effects such as the role
of specific adsorption regimes (thermodynamics and kinetics)
at constant flow field. In contrast, this prevents us from in-
vestigating more complex situations such as when adsorption
modifies the wetting or hydrodynamic boundary properties of
the solid surface [44] or when adsorption can lead to pore
blockage [45]. In any case, while this is beyond the scope
of the present paper, we note that the approximation of a
constant stokes flow could be released by recalculating after
each adsorption or diffusion step below the modified Stokes
field.

Once the Stokes field has been determined, tracers are
injected at a time t = 0 according to a well-defined time and

space distribution as shown in Fig. 1(b). For a given Stokes
flow, starting from such initial conditions, the dispersion and
adsorption kinetics of the free and adsorbed tracers are com-
puted by incrementing the time t in a discretized manner
t → t + �t . Each time increment �t involves three interme-
diate steps which redistribute the free and adsorbed tracers
due to collision, adsorption, and propagation. The collision
and propagation steps, which are identical to those used in
conventional Lattice Boltzmann calculations, apply only to
the free tracer distribution c(r, t ). On the other hand, the
adsorption step applies to both the free and adsorbed tracer
molecules as it corresponds to a kinetic equation that redis-
tributes molecules between c(r, t ) and ca(r, t ). In practice, as
described hereafter for each step, these different intermediate
steps apply to the free molecule subdistribution gq(r, t ) which
corresponds to the density of free tracers having a velocity
vq along the direction q at a position r and time t (we re-
call that the tracer velocity vq should not be confused with
the Stokes field u corresponding to the carrying liquid). We
perform our simulations with the D2Q9 lattice classification
so that the particles are allowed to stream in nine directions
following the velocity set vq (with q ∈ {0, . . . , qm = 8}). The
immobile (zero velocity) population corresponds to the index
0. The D2Q9 velocity set involves four “coordinate” veloci-
ties vq = (±1, 0), (0,±1) and four “diagonal” velocities vq =
(±1,±1).

Let us introduce the different free tracer distributions
gq(r, t ), g̃q(r, t ) and ˜̃gq(r, t ) obtained after the propaga-
tion, collision, and adsorption steps, respectively. Because
these different functions are normalized, the concentrations
in free tracers after the collision, adsorption, and propa-
gation steps are readily obtained as c̃(r, t ) = ∑

q g̃q(r, t ),
˜̃c(r, t ) = ∑

q
˜̃gq(r, t ), and c(r, t ) = ∑

q gq(r, t ). For reasons
that will become clearer below when introducing the dif-
ferent intermediate steps, we do not need to introduce the
molecule distributions for the adsorbed tracers (for these
molecules, we consider only the total concentration ca which
is directly linked to c because of overall density conser-
vation). Moreover, while the q-components gq(r, t ) of the
distribution g(r, t ) are redistributed during the collision and
propagation steps (as physically expected), their fraction
x̃q(r, t ) = g̃q(r, t )/c̃(r, t ) = g̃q(r, t )/

∑
q g̃q(r, t ) remains un-

affected during the adsorption step [i.e., x̃q(r, t ) = ˜̃xq(r, t )].
This approximation consists of assuming that the velocity dis-
tribution vq among the different components q is not changed
during the adsorption step despite the change in the total
number of free tracers within the overall time step �t , i.e.,
�c(r, t ) = −�ca(r, t ) (where the symbol � indicates that
the difference is taken between the collision step ·̃ and the
adsorption step ˜̃· ). This approximation can be also rational-
ized by invoking that, regardless of their velocity, all tracers
get adsorbed with the same adsorption rate. Reciprocally, this
approximation also implies that all desorbing tracers are rein-
troduced in the free tracer population according to a velocity
distribution that verifies the current q-component distribution.

1. Collision

At a given time step t , the components gq(r, t ) at each
site r are redistributed among the site populations to mimic
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molecule collisions [46,47]:

g̃q(r, t ) = �[g(r, t )]q, (1)

where g(r, t ) denotes the set of q-components gq(r, t ) and
�[g(r, t )]q the collision operator which transfers momen-
tum between the different q-components. The two relaxation
time (TRT) method is an extended Lattice Boltzmann scheme
where the collision operator involves different relaxation rates
for the symmetric and antisymmetric components. The sym-
metric and antisymmetric components are defined as g+

q =
(gq + gq̄)/2 and g−

q = (gq − gq̄)/2 for q ∈ {1, . . . , qm/2} (for
q = 0, we have g+

0 = g0 and g−
0 = 0). In the TRT approach,

the update rule for the symmetric and antisymmetric equi-
librium components e±

q is performed separately with two
relaxation parameters: λ+ for all symmetric nonequilibrium
components n+

q = g+
q − e+

q and λ− for all antisymmetric
nonequilibrium components n−

q = g−
q − e−

q . For the zero ve-
locity, e+

0 = e0 and e−
0 = 0. The collision update rule for the

TRT scheme is given by the following equations applied to
q ∈ {1, . . . , qm/2} [48]:

g̃q(r, t ) = gq(r, t ) + λ+n+
q + λ−n−

q ,

g̃q̄(r, t ) = gq̄(r, t ) + λ+n+
q − λ−n−

q ,

g̃0(r, t ) = g0(r, t ) (1 + λ+) − λ+e0. (2)

The equilibrium components for the D2Q9 scheme are [48]

e+
q (r, t ) = c(r, t )E+

q

e−
q (r, t ) = c(r, t )E−

q

e+
0 (r, t ) = e0 = c(r, t )E0

e−
0 (r, t ) = 0 (3)

with

E+
q = t∗

q ve + t∗
q

2
[3(u · vq)2 − u2]

E−
q = t∗

q (u · vq)

E0 = 1 −
qm∑

q=1

E+
q (r, t ), (4)

where the diffusion-scale equilibrium parameter ve is de-
fined as ve = (Dxx + Dyy)/2. In the above equation, t∗

q =
{1/3; 1/12} are the isotropic weights while u = {ux, uy} is the
advective velocity with u2 = u2

x + u2
y . The diffusion coeffi-

cients are taken as Dxx = Dyy = Dm/�−.
With the TRT scheme, two important relaxation numerical

parameters �± and � must be chosen to ensure that the solu-
tions correspond to a stable algorithm leading to a physically
correct picture. These parameters are linked to the relaxation
constants λ± as follows [48]:

� = �+�−

�± = −(1/2 + 1/λ±) for − 2 < λ± < 0
. (5)

As mentioned by Ginzburg et al. [48], an optimal TRT sub-
class requires us to choose �+ and �− such that � = 1/4

(in this work, we use �+ = 4 and �− = 1/16). The veloc-
ity field u is obtained from the Stokes simulation results at
equilibrium. At the end of this collision step, the local free
tracer molecule concentration is readily obtained as c̃(r, t ) =∑

q g̃q(r, t ).

2. Adsorption

The treatment used for the adsorption step depends on the
exact adsorption mechanism and underlying kinetics consid-
ered. The different regimes considered in this article—Henry,
Langmuir, and cooperative adsorption—will be described
specifically in the following section. From a very general
viewpoint, the adsorption step simply follows the first-order
kinetic equation which leads to the adsorption isotherm. In
practice, starting from the free and adsorbed tracer concen-
trations [c̃(r, t ) and c̃a(r, t )] obtained after the collision step
at time t , the adsorption step leads to updated concentrations
˜̃c(r, t ) and ˜̃ca(r, t ). As already mentioned, the distribution
ratio ˜̃xq between the different q-components is assumed to
be unaffected during the adsorption step. Using the concen-
tration definition, i.e., ˜̃c(r, t ) = ∑

q
˜̃gq(r, t ), we choose to

redistribute the variation induced by the adsorption operator
A(c̃, c̃a) = �c(r, t ) = ˜̃c(r, t ) − c̃(r, t ) between the different
˜̃gq components in a homogeneous and proportional manner.
The latter implies that the molecule distributions ˜̃gq(r, t ) after
the adsorption step obey the following evolution equation:

˜̃gq(r, t ) = g̃q(r, t ) − x̃q(r, t )A(c̃, c̃a), (6)

where x̃q(r, t ) = g̃q(r, t )/c̃(r, t ) is the fraction of particles
following a velocity set vq at time t and position r. The explicit
expression for the adsorption operator A(c̃, c̃a) will be detailed
in Sec. II C as it specifically depends on the adsorption kinet-
ics under consideration.

3. Propagation

At a given time step t , after the collision and adsorption in-
termediate steps described above, the distribution components
˜̃gq(r, t ) at each site r are redistributed among the neighboring
sites [46,47]. The change induced by this propagation step
in the free tracer distribution between t and t + �t can be
expressed as

gq(r + vq�t, t + �t ) = ˜̃gq(r, t ). (7)

This simple propagation scheme displaces the molecule distri-
bution ˜̃gq(r, t ) using the velocity set {vq}. In more detail, the
molecules still located at node r at time t after the collision
and the adsorption steps are transferred to node r + vq�t at
the end of each iteration.

C. Adsorption mechanisms and kinetics

Adsorption kinetics is known to significantly impact the
transport of molecules in porous media. Here, in an attempt
to shed light on the interplay of tracer adsorption and trans-
port, we employ the Lattice Boltzmann approach introduced
above to consider different adsorption models. We consider
the Henry, Langmuir, and cooperative adsorption models in-
troduced in our recent work on surfactant adsorption [32].
While the Henry adsorption isotherm is effective in the low
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concentration range, the Langmuir adsorption isotherm ac-
counts for site saturation as the surface concentration of
adsorbed tracers increases. The cooperative model allows ac-
counting for adsorbate molecule interactions as well as for
possible cooperative effects on adsorption thermodynamics
and kinetics (as will be discussed in more detail below, co-
operative refers in this context to adsorbate collective effects
upon adsorption such as lateral interactions and surface aggre-
gation). In what follows, we present the adsorption and kinetic
equations that should be specifically implemented to consider
these different regimes in our extended Lattice Boltzmann
approach.

1. Henry adsorption

The Henry model is the simplest adsorption isotherm. The
adsorbed amount is assumed to be proportional to the bulk
concentration of adsorbate molecules. The underlying kinetics
for this adsorption isotherm is defined as

∂�

∂t
= kAc�∞ − kD�, (8)

where kA and kD are the adsorption and desorption rates,
respectively, and �∞ the surface density of adsorbing sites.
The solution resulting from Eq. (8) is given by

�(t ) = �∞kc[1 − e−kDt ] with k = kA/kD. (9)

With this simple model, the adsorbed amount increases lin-
early with the bulk molecule concentration c. To mimic Henry
adsorption, the adsorption step in the extended Lattice Boltz-
mann method proposed here simply follows the first-order
kinetic equation leading to a linear adsorption isotherm. Start-
ing from the free and adsorbed tracer concentrations obtained
after the collision step—c̃(r, t ) and c̃a(r, t )—the adsorption
kinetics can be written as

˜̃ca(r, t ) = pAc̃(r, t ) + [1 − pD]c̃a(r, t ), (10)

˜̃c(r, t ) = c̃(r, t ) − pAc̃(r, t ) + pDc̃a(r, t ), (11)

where pA and pD are the adsorption and desorption rates in
Lattice Boltzmann units. The symbols ·̃ and ˜̃· indicate
quantities obtained after the intermediate collision and ad-
sorption steps, respectively. Physical values for pA and pD

can be obtained from the comparison with the physical ki-
netic equation, i.e., ∂�(r, t )/∂t = kAc(r, t ) − kD�(r, t ) [with
the surface concentration readily obtained from the adsorbed
tracer concentration, i.e., �(r, t ) = ca(r, t )�x]. Considering
that kA is in m s−1 and kD in s−1, such a comparison shows
that pA = kA�t/�x and pD = kD�t . The expression of the
operator A(c̃, c̃a) for the definition of the molecule distribu-
tions ˜̃gq(r, t ) in Eq. (6) becomes for the Henry adsorption

A(c̃, c̃a) = [pAc̃(r, t ) − pDc̃a(r, t )]. (12)

2. Surface saturation

To cover a wider concentration range, we now turn to the
Langmuir adsorption model in which molecules are assumed
to adsorb on well-defined sites at the solid surface. All sites
are identical, and each site can adsorb only one molecule
so that adsorption leads only to monolayer adsorption. The
energy of each adsorbed molecule is independent of the

neighboring sites (no lateral interactions between neighboring
adsorbed molecules). For very small concentrations c, the
Langmuir model is equivalent to the Henry model. The un-
derlying kinetic equation for Langmuir adsorption is defined
as

∂�

∂t
= kAc(�∞ − �) − kD�, (13)

whose solution is given by

�(t ) = [1 − e−kD (1+kc)t ]
�∞kc

1 + kc
with k = kA/kD. (14)

The Langmuir adsorption model is a simple nonlinear equa-
tion which accounts for surface saturation upon adsorption;
the adsorbed concentration ca(r, t ) cannot exceed c∞

a . Ad-
sorption increases rapidly with concentration in the low
concentration range and then reaches a plateau asymptotically
as the surface sites become saturated with already adsorbed
molecules. Implementing the Langmuir model in our Lattice
Boltzmann approach simply requires us to modify Eqs. (10)
and (11) to account for surface saturation:

˜̃ca(r, t ) = pAc̃(r, t )

[
1 − c̃a(r, t )

c∞
a

]
+ (1 − pD)c̃a(r, t ), (15)

˜̃c(r, t ) = c̃(r, t ) − pAc̃(r, t )

[
1 − c̃a(r, t )

c∞
a

]
+ pDc̃a(r, t ),

(16)

where c(r, t ) and ca(r, t ) denote the free and adsorbed tracer
concentrations. As already stated, the symbols ˜ and ˜̃
indicate quantities obtained after the intermediate collision
and adsorption steps, respectively. Like for the Henry regime,
the adsorption parameters pA, pD and c∞

a can be derived by
formally writing the analogy with the Langmuir adsorption
kinetics ∂�(r, t )/∂t = [1 − �(r, t )/�∞]kAc(r, t ) − kD�(r, t )
(where the maximum surface concentration is defined as
�∞ = c∞

a �x). This leads to the same definition for pA and
pD as with the Henry model: pA = kA�t/�x and pD = kD�t .
Moreover, due to mass balance condition, the q-components
of the free tracer distribution ˜̃gq(r, t ) after the adsorption step
are generated by an adsorption operator A(c̃, c̃a) in Eq. (6)
defined as

A(c̃, c̃a) = pAc̃(r, t )

[
1 − c̃a(r, t )

c∞
a

]
− pDc̃a(r, t ). (17)

3. Cooperative adsorption

A cooperative adsorption model was recently introduced
to describe the adsorption of complex molecules such as
surfactants. Full details can be found in Ref. [32] so that
we provide only the main ingredients here. One defines a
surface critical concentration cs, which corresponds to the
minimum concentration to observe the formation of aggre-
gated (self-assembled) structures at the solid surface. While
only adsorption of individual monomers m occurs below cs,
both individual monomers m and aggregated monomers m′
adsorb on the surface sites s for c � cs. The adsorption of
the individual monomers follow the Henry or the Langmuir
adsorption kinetics as defined above. In contrast, a different
kinetic equation for the adsorption or desorption of aggregated
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monomers is introduced:

∂�m′ (c, t )

∂t
= k′

A(�m′ )c[�∞ − �m(c,∞)

−β�m′ (c, t )] − k′
D(�m′ )�m′ (c, t ), (18)

where �m′ (c, t ) is the surface concentration in aggregated
monomers m′ while �m(c,∞) is the surface concentration of
individual adsorbed monomers m. The parameter β accounts
for the fact that the adsorption of a single monomer in ag-
gregated objects occupies only a fraction β of the surface
site. The adsorption and desorption rates k′

A and k′
D explicitly

depend on the surface concentration �m′ . At equilibrium, this
kinetic equation leads to the following solution for a bulk
concentration c:

�m′ (c,∞) = [�∞ − �m(c,∞)]
k′(�m′ )c

[1 + βck′(�m′ )]
, (19)

where k′(�m′ ) = k′
A(�m′ )/k′

D(�m′ ).
To implement the cooperative adsorption model into the

Lattice Boltzmann approach introduced above, we distinguish
two adsorbed concentrations: the concentration of adsorbed
isolated monomers ca,m(r, t ) and the concentration of ad-
sorbed aggregated monomers ca,m′ (r, t ). The total surface
concentration of adsorbed monomers is simply the sum of
the two concentrations: ca(r, t ) = ca,m(r, t ) + ca,m′ (r, t ). For
c < cs, the situation is simple as only isolated monomers
get adsorbed so that the interplay of adsorption kinetics and
molecule transport can be described using the Lattice Boltz-
mann approach using either the Henry or Langmuir regime
(depending on the type of adsorption isotherm observed). In
contrast, for c(r, t ) � cs, both the adsorption of individual and
aggregated monomers must be considered.

To simplify the problem, we assume that the adsorption of
isolated monomers is an instantaneous process: ca,m(r, t ) =
ca,m(r,∞) ∀t . With this approximation, we can recast the ad-
sorption kinetics defined in Eq. (18) by ∂�m′ (r, t )/∂t = [1 −
(β�m′ (r, t ) + �m(r,∞))/�∞]k′

Ac(r, t ) − k′
D�m′ (r, t ) where

k′
A and k′

D depend on the adsorbed amount �m′ (r, t ) =
ca,m′ (r, t )�x. In practice, assuming β = 1 and constant ad-
sorption or desorption rates k′

A and k′
D allows recovering the

Langmuir adsorption model. This cooperative model can be
implemented in our Lattice Boltzmann approach by modify-
ing the kinetic evolution described in Eqs. (10) and (11) as
follows:

˜̃ca,m′ (r, t ) = p′
Ac̃(r, t )

[
1 − β c̃a,m′ (r, t ) + ca,m(r,∞)

c∞
a

]

+(1 − p′
D)c̃a,m′ (r, t ), (20)

˜̃c(r, t ) = c̃(r, t ) − p′
Ac̃(r, t )

[
1 − β c̃a,m′ (r, t ) + ca,m(r,∞)

c∞
a

]

+ p′
Dc̃a,m′ (r, t ), (21)

where c∞
a = �∞/�x, p′

A = k′
A�t/�x and p′

D = k′
D�t . Fi-

nally, at the end of the adsorption step, the adsorbed amount
˜̃ca(r, t ) = ca,m(r,∞) + ˜̃ca,m′ (r, t ) is obtained from Eq. (6)

with the operator A(c̃, c̃a) given by

A(c̃, c̃a) = p′
Ac̃(r, t )

[
1 − β c̃a,m′ (r, t ) + ca,m(r,∞)

c∞
a

]

− p′
Dc̃a,m′ (r, t ). (22)

III. ADSORPTION KINETICS UNDER
NO-FLOW CONDITIONS

In this section, we present the results from the Lattice
Boltzmann approach for different adsorption models: Henry
and cooperative adsorption models (for the sake of brevity,
the results for the Langmuir adsorption model are discussed
in detail in the Supplemental Material [42]). We consider
here static conditions, i.e., under no-flow condition, as we
first aim at validating the correct adsorption kinetics imple-
mentation for each model. In more detail, we check that
the Lattice Boltzmann approach introduced above correctly
generates the different adsorption isotherms �(c,∞) as well
as the underlying adsorption kinetics �(c, t ). In practice, for
such simulations performed in the absence of any liquid flow,
each fluid node is filled at a time t = 0 with a concentration
c0 [i.e., c(r, t = 0) = c0; ∀r]. The evolution of the surface
concentration � as a function of time t is then monitored
together with the asymptotic value of �(c,∞) at infinite time
as a function of the remaining free tracer concentration c.
At first, the influence of the initial concentration c0 on the
adsorption behavior is considered. The numerical adsorption
kinetics is then compared with the analytical solution of the
kinetics equation. Adsorption is considered only at an adsorb-
ing site located far from the pore entrance or exit to avoid
numerical instabilities and artifacts. Typically, for the slit pore
considered here having a length Lx = 1000�x, the adsorbed
amount in the slice located at x = 200�x is monitored.

A. Henry adsorption

As shown in Fig. 2, the Henry adsorption model predicts
a linear relationship between the adsorbed amount � and
the free tracer concentration c. Starting from different initial
concentrations c0, our Lattice Boltzmann approach converges
towards a final solution that perfectly matches the theoretical
prediction corresponding to the solid black line. For each
initial concentration c0, the dashed line indicates the time
evolution of the adsorbed amount which eventually reaches
the equilibrium value. Such time evolution indicates that the
adsorption kinetics follows nearly a vertical line (i.e., at con-
stant free tracer concentration c) even if a small inflection
towards the adsorption isotherm is observed when reaching
equilibrium. This result can be explained by the fact that the
adsorption or desorption ratio kH = 0.01 chosen here is very
low; therefore, the bulk concentration in such static simula-
tions does not change much since the adsorbed concentration
corresponds to a very small contribution of the overall bulk
concentration, ca ∼ kH c. Yet close inspection of the time evo-
lution of the free tracer concentration c at the adsorbing sites
(i.e., open circles) reveals an interesting behavior. Starting
from the initial concentration c0 at t = 0, c slightly decreases
in the first time steps due to rapid adsorption in the adsorb-
ing sites. However, after a number of iterations (i.e., time
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FIG. 2. Henry adsorption isotherm �(c) for a Henry constant
kH = pA/pD = 0.01 with pA = 0.0005 and pD = 0.05. The adsorbed
amount corresponds to the surface concentration �. The black solid
line is the theoretical prediction � = kH c while the open circles
are the results from the Lattice Boltzmann calculations. Each color
corresponds to a given initial concentration c0 as indicated. For each
color, the dashed line presents the time evolution of the adsorbed
amount �(t ). The insert shows the concentration of free tracers in
the adsorbing sites as a function of time.

steps), the depletion of free tracers near the surface due to
adsorption induces a diffusive flux of free tracers from the
bulk. This leads to an increase in the free tracer concentration
until equilibrium is reached (where, as expected, the final
bulk concentration is only slightly smaller than the initial
value c0 due to the large reservoir size in the considered pore
geometry). Overall, the results above indicate that the Henry
adsorption isotherm as implemented in our Lattice Boltzmann
scheme allows reproducing the thermodynamic equilibrium
described using this canonical model. Let us now consider
more specifically the adsorption kinetics as predicted using
the Lattice Boltzmann approach including adsorption and des-
orption. Figure 3 shows that the adsorption kinetics obtained
using the Lattice Boltzmann calculations matches within nu-
merical errors the known analytical solution corresponding to
Eq. (9). This result further validates our model by showing
that it provides an accurate and reliable description of the
Henry adsorption kinetics. As shown in the Supplemental Ma-
terial [42], the same agreement was obtained for the Langmuir
regime, which is not presented here for the sake of clarity (see
discussion under “Langmuir adsorption model under no-flow
conditions”).

B. Cooperative adsorption

To further validate the robustness of the implemented Lat-
tice Boltzmann approach, we now consider the cooperative
model introduced above. The model data used are taken
from Ref. [32] in which the adsorption of TX100 surfactants
in porous silica was considered. To make our validation as
complete as possible, the following packing fractions β will
be considered: β = 0.2, 0.5, and 1. We first test the ability
of the Lattice Boltzmann approach to generate adsorption
isotherms predicted using the cooperative adsorption model.
Like with the Henry and Langmuir regimes, this test is per-
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FIG. 3. Comparison between the adsorption kinetics �(t ) pre-
dicted using Lattice Boltzmann simulations and the analytical
expression for the Henry adsorption regime. These data are obtained
for an adsorption isotherm corresponding to the Henry regime with
a Henry constant kH = 0.01 (pA = 0.0005 and pD = 0.05). The ini-
tial concentration is c0 = 10. The open symbols correspond to the
numerical solution using the Lattice Boltzmann model, while the
dashed line indicates the analytical expression for Henry kinetics as
described in Eq. (9).

formed for a system taken under no-flow conditions. The
specificity of the cooperative adsorption model lies in its
ability to describe collective effects induced by lateral surface
interactions and surface aggregation of adsorbing molecules.
As already discussed, in this model, such cooperative effects
manifest themselves only for bulk concentrations above the
so-called critical surface concentration cs (below this value,
the model simply assumes that isolated monomer adsorption
follows a Henry or Langmuir adsorption isotherm). As a
first validation test, we aim at verifying the ability of the
Lattice Boltzmann approach to accurately predict the total
adsorbed amount �(c) = �m(c) + �′

m(c) in equilibrium with
a bulk concentration c [we recall that �m(c) and �′

m(c) are
the adsorbed amount of isolated and aggregated monomers,
respectively]. Figure 4 shows the adsorbed amount �(c) as a
function of the bulk concentration c. Both the results obtained
using the Lattice Boltzmann approach and the predictions of
the thermodynamic model are shown. In this figure, the col-
ored dashed lines indicate the time evolution of the adsorbed
amount �(c, t ). For different initial concentrations varying
between c0 = 50 and c0 = 700, the results of the Lattice
Boltzmann calculations are in perfect agreement with the the-
oretical predictions. As discussed above for the Henry regime,
the time evolution seems to follow a nearly vertical line—i.e.,
at constant bulk concentration—due to the very large reservoir
size with respect to the number of adsorbing sites. Indeed,
with the cooperative model, applied to the data of TX100
surfactant adsorption on quartz silica, the adsorption constant
is such that k′ < 0.02 so that the overall adsorbed amount
represents a very small fraction of the total bulk concentra-
tion. The blue, red, and green colors in Fig. 4 correspond
to different aggregation numbers and packing fractions β.
The influence of this important parameter was tested for the
same initial concentration. In more detail, two examples were
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FIG. 4. Cooperative adsorption model for the adsorption of
TX100 surfactants onto silica (all details can be found in Ref. [32]).
The adsorbed amount is expressed as the surface concentration � as
a function of the bulk concentration c. The black solid line denotes
the theoretical adsorption isotherm as predicted using the cooperative
model while the black circles denote the experimental data. The
colored symbols correspond to the kinetic results obtained using
the Lattice Boltzmann calculations. The different colors denote the
results of the cooperative model with different aggregation constants:
β = 0.2 (blue), β = 0.5 (red), and β = 1.0 (green). Each dotted
line indicates the time evolution of the adsorbed amount �(t ) for
a specific aggregation constant β and an initial concentration c0. cs

is the surface aggregation concentration while CMC is the critical
micelle concentration.

considered: c0 = 100 and c0 = 200, which are respectively
below and above the critical surface concentration cs ∼ 115.
The results in Fig. 4 show that, regardless of the aggregation
number considered, the Lattice Boltzmann model accurately
predicts the adsorbed amount derived using the cooperative
adsorption model.

To study the kinetics of the cooperative model using the
Lattice Boltzmann algorithm, we follow the time evolution
of the adsorbed amount of aggregated monomers �m′ (in
fact, this is the only relevant choice that can be made since
the adsorption kinetics for individual adsorbed monomers is
assumed to be instantaneous in the cooperative adsorption
model). Using the same data set discussed in the previous
paragraph, an initial concentration c0 larger than the critical
surface concentration cs is considered (typically, c0 = 250).
The cooperative adsorption model is a simple—versatile and
adjustable—model since various adsorption kinetics can be
described by tuning the values used for p′

A and p′
D (and

hence k′) [32]. In the framework of this cooperative adsorption
model, we validate in what follows the kinetics described
by the Lattice Boltzmann approach by selecting the two
following situations: (1) a constant adsorption rate p′

A ∼ ν1

[Fig. 5(a)] and a constant desorption rate p′
D ∼ ν0 [Fig. 5(b)].

The dashed lines in Fig. 5 present the analytical kinetics as
predicted using the cooperative adsorption model while the
symbols correspond to the data obtained using the Lattice
Boltzmann calculations. Such a comparison indicates that the
results from the analytical kinetic equation are correctly re-
produced by the Lattice Boltzmann model.
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FIG. 5. Comparison between the adsorption kinetics predicted
using the Lattice Boltzmann simulations and the analytical expres-
sion for the cooperative adsorption model for TX100 on silica for
an initial concentration c0 = 250. The dashed lines denote the ad-
sorption kinetics as determined by solving numerically Eq. (18).
In more detail, these data show �m′ as a function of time t . The
open symbols correspond to the numerical results obtained using
the Lattice Boltzmann model. For each data set, the colors denote
the results from the cooperative model with different aggregation
constants: β = 0.2 (blue), β = 0.5 (red), and β = 1.0 (green). Panel
(a) corresponds to data with p′

A ∼ ν1 and p′
D ∼ ν1/k′, while panel

(b) corresponds to data with p′
A ∼ ν0k′ and p′

D ∼ ν0.

IV. ADSORPTION KINETICS UNDER FLOW CONDITIONS

As already stated, the Lattice Boltzmann approach pre-
sented in this article enables studying the transport of
adsorbing molecules under dynamical conditions. In more
detail, in the presence of a flowing liquid characterized by
its Stokes flow u, these Lattice Boltzmann simulations allow
investigating the adsorption kinetics under flowing conditions.
The interplay between molecule adsorption and their advec-
tive or diffusive transport can be described analytically using
the classical advection-diffusion-adsorption equation

∂c(r, t )

∂t
+ u · ∇c(r, t ) − ∇ · [Dm∇c(r, t )] + ∂ca(r, t )

∂t
= 0,

(23)
where c(r, t ) and ca(r, t ) are the free and adsorbed tracer
concentrations, respectively. u is the Stokes flow velocity
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while Dm is the molecular self-diffusion coefficient of the free
tracers. In what follows, the latter equation will be used under
simple, specific adsorption conditions—namely, the Henry
regime—to validate the ability of our Lattice Boltzmann
approach for adsorption to describe adsorption under flow
conditions. Like in the rest of this article, a simple slit pore
geometry is used with a length Lx = 10 000�x and a width
L = 41�x. The Lattice Boltzmann simulations are performed
by monitoring the evolution of the free and adsorbed tracer
concentrations after injecting a pulse in the setup considered
in Fig. 1. In more detail, within the flowing fluid, an initial
tracer concentration c0 is injected for a given time �t0 = �t
in all sites located at a lateral position x0 [i.e., c(r0, t ) = c0;
∀r0 = (x0, y)]. After such injection, the tracer dispersion in
the pore geometry is monitored while imposing surface ad-
sorbing conditions corresponding to the Henry regime. Such
a simple adsorption model was chosen as it will provide ref-
erence data when studying more complex adsorption kinetics.

A. Dispersion of adsorbing tracers

Adding adsorbing surface conditions to the problem of
tracer dispersion in a flowing fluid drastically affects the well-
known Taylor dispersion regime [49,50]. In particular, the
resulting—effective—dispersion coefficient is influenced by
the adsorption kinetics. Several authors have reported obser-
vations on the dispersive regime in the transport of adsorbing
tracer molecules [7,8,22,25,27]. Some of these works provide
important insights into the impact of adsorption on the Taylor
regime in slit pore geometries [7]. However, these studies did
not consider the transient phase where adsorption kinetics is
coupled with (advective) transport effects before reaching the
dispersive limit. In a first step, the validity of our Lattice
Boltzmann approach for adsorption was verified for an ana-
lytically known situation. More precisely, in what follows, we
consider the dispersion of tracer molecules in a slit pore where
adsorption proceeds through a simple Henry model. Formally,
this problem was addressed using a statistical physics ap-
proach by Levesque et al. [38]. Using a stochastic treatment,
these authors were able to derive an analytical expression
for the effective dispersion coefficient for such an ideal yet
complex problem. In the long-time limit, for a Henry adsorp-
tion isotherm with adsorption and desorption constants kA, kD

(corresponding to a Henry constant kH = kA/kD), the effective
dispersion coefficient Dads is given by

Dads

Dm
= 1 + Pe2

(L + 2kH )3

×
(

102LkH
2 + 18L2kH + L3

210
+ 2DmkH

kD

)
, (24)

where Dm is the molecular diffusion coefficient, L the char-
acteristic channel width, u the mean flow velocity, and Pe =
uL/Dm the Péclet number.

Figure 6 compares the results from the Lattice Boltzmann
approach with the theoretical predictions corresponding to
Eq. (24). The data are compared for different Péclet numbers
Pe and Henry constants kH . While the solid lines correspond
to the predictions using the analytical expression, the symbols
denote our simulation results. As can be seen in Fig. 6, the
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FIG. 6. Normalized dispersion coefficient for adsorbing
molecules carried in a slit pore geometry by a liquid flow (obeying a
simple Poiseuille flow). The data are presented as a function of the
Péclet number which characterizes the diffusion or advection rate.
Adsorption is described using a simple Henry law with different
Henry constants kH . The symbols correspond to the results from the
Lattice Boltzmann calculations using the adsorption scheme. The
data show Dads/Dm = D(t → ∞)/Dm where D(t ) corresponds to
the derivative of the displacement variance with respect to time. The
lines correspond to the analytical expression for Dads/Dm as derived
by Levesque et al. [see Eq. (24)]. Different kH are considered but, in
all cases, a fixed desorption rate pD = 0.01 is used. The red, black,
green, and blue symbols denote data obtained for kH = 0.1, 1, 5, and
10, respectively.

Lattice Boltzmann simulations yield numerical predictions
that are in very good agreement with the analytical solution
for the effective dispersion coefficient Dads/Dm. While the
agreement is excellent for all Pe numbers when kH is small,
a small departure between the two data sets is noticed for
high Pe numbers when kH is large (the Lattice Boltzmann
calculations slightly underestimate the effective dispersion
coefficient Dads). This small discrepancy can be assigned to
different effects. First, Levesque et al. considered the asymp-
totic dispersive regime (i.e., no transient regime). Second,
we note that the Lattice Boltzmann approach used here is
sensitive to the choice of the lattice spacing so that the impact
of the latter must be investigated systematically. To investigate
such possible numerical effects, the influence of the mesh
resolution on the accuracy of the predictions was checked. The
same simulation was conducted with different node numbers
to describe the pore width L—typically, different node num-
bers from 9 to 151 were considered. As shown in Fig. 4 in the
Supplemental Material [42], the difference between the dis-
persion coefficient obtained by means of Lattice Boltzmann
calculations and the analytical expression given in Eq. (24)
decreases with increasing the node number. In all cases, such
differences remain within a few percent at most. Typically, the
difference is less that 1% provided the node number >20.

B. Transport in adsorption and desorption conditions

As mentioned in the previous section, available stud-
ies accounting for surface adsorption in the presence of a
flowing fluid consider the dispersive limit—especially the
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FIG. 7. Time evolution of the time derivative of the displacement
variance D(t ) for adsorbing molecules in a slit pore geometry. D(t ) is
normalized to the molecular diffusion coefficient Dm of the free tracer
molecules. The dashed line denotes the case with nonadsorbing
molecules, while the solid line corresponds to the data for molecules
that adsorb according to a simple Henry adsorption isotherm with
kH = 5 (pA = 0.05 and pD = 0.01)). In both cases, tracers are carried
by a flowing liquid described through its Stokes flow. The system is
characterized by its Péclet number Pe = 50 and an initial concentra-
tion c0 = 20. The different transport regimes—molecular diffusion,
advection-dominated transport, and dispersion—are observed in the
short-, intermediate-, and long-time ranges, respectively.

influence of such adsorption conditions on the resulting Tay-
lor dispersion coefficient. Here we intend to use the Lattice
Boltzmann scheme presented in this paper to investigate the
interplay between adsorption kinetics and advective or dis-
persive transport. As shown in Fig. 7, the transient regime
where adsorption kinetics and advective or diffusive transport
are coupled can be investigated by probing the variance of
the tracer displacement as a function of time t after injec-
tion at a given time t = 0 and location x = x0. While the
adsorption kinetics is found to drastically affect the dispersion
coefficients at every time step, the typical evolution shown
in Fig. 7 remains similar to the nonadsorbing situation (for
comparison, this figure shows both the data for adsorbing
and nonadsorbing tracers). The different transition regimes
between molecular diffusion, advection-dominated flow, and
dispersion are still observed. In the short-time range, a first
plateau is observed as the molecules get dispersed through
molecular diffusion. In the intermediate-time range, a tran-
sient regime is observed as the dispersion coefficient rapidly

increases with time. This transient regime corresponds to
the so-called advection-dominated flow where the flowing
liquid involves a heterogeneous—i.e., position-dependent—
velocity distribution which increases the dispersion of the
tracer molecules. Finally, in the long-time range, a second
plateau is observed as the system reaches the Taylor dispersive
regime for the adsorbing tracer molecules. The asymptotic
value obtained at infinite time yields the effective dispersion
coefficient Dads/Dm.

V. CONCLUSION

A Lattice Boltzmann approach was proposed to describe
the impact of any adsorption kinetics or type on transport
in porous media. In the spirit of previous works [6,8,9], by
adding an adsorption step between the collision and propa-
gation steps in the Lattice Boltzmann algorithm, adsorption
of tracer (solute) molecules carried by a flowing fluid (sol-
vent) is accounted for at each lattice site adjacent to the solid
surface. In the present work, through the use of a general
adsorption operator, any adsorption thermodynamics model
and underlying kinetic equation can be implemented (from
simple adsorption regimes to complex adsorption phenom-
ena involving lateral interactions between adsorbed molecules
and even surface self-assembly). At every lattice site, two
molecule populations are considered: free and adsorbed trac-
ers. At each iteration in the numerical method, the adsorption
kinetics is taken into account by applying its underlying
kinetic equation to both the free and adsorbed tracer con-
centrations. This approach has the advantage that it allows
the use of different adsorption kinetics and models: as shown
in this paper, this includes the Henry model with a simple
first-order adsorption kinetics, the Langmuir model and the
impact of surface saturation, and more complex adsorption
models such as cooperative adsorption arising from adsorbate
lateral interactions and surface aggregation.

This algorithm has been validated using a simple pore
geometry in which solute adsorption proceeds under ei-
ther static (stationary) or dynamic (transient) conditions.
Under static conditions, our numerical method correctly pre-
dicts the known theoretical solution—when available—for
the different adsorption models. In particular, such a simple
numerical method allows predicting correctly both the ad-
sorption isotherm �(c) and its underlying adsorption kinetics
�(t ). Under dynamic conditions, the accuracy of our method
has been established by recovering dispersion coefficients
predicted from a known analytical solution for the simple
Henry adsorption regime. As illustrated in this paper, this
general approach allows studying the effects of adsorption
thermodynamics and kinetics on transport in porous media.
In practice, this method provides a simple computational fluid
tool to simulate tracer injection with different resulting trans-
port mechanisms (diffusion, advection, and dispersion).
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