
PHYSICAL REVIEW E 104, 015312 (2021)

Multiple-relaxation-time lattice Boltzmann model-based four-level finite-difference scheme
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In this paper, we first present a multiple-relaxation-time lattice Boltzmann (MRT-LB) model for one-
dimensional diffusion equation where the D1Q3 (three discrete velocities in one-dimensional space) lattice
structure is considered. Then through the theoretical analysis, we derive an explicit four-level finite-difference
scheme from this MRT-LB model. The results show that the four-level finite-difference scheme is unconditionally
stable, and through adjusting the weight coefficient ω0 and the relaxation parameters s1 and s2 corresponding to
the first and second moments, it can also have a sixth-order accuracy in space. Finally, we also test the four-level
finite-difference scheme through some numerical simulations and find that the numerical results are consistent
with our theoretical analysis.
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I. INTRODUCTION

In the past decades, the lattice Boltzmann (LB) method,
as one of the mesoscopic numerical approaches, not only
has gained a great success in the study of complex flows
governed by the Navier-Stokes equations [1–13] but also
can be considered as a numerical solver to some other
types of the partial differential equations, for example, the
diffusion equations [14–18], convection-diffusion equations
[19–30], Poisson equation [31–33], Kuramoto-Sivashinsky
equations [34–36], and some complex equations [37–40].
Based on the collision term in the LB method, the LB
models can be classified into three basic kinds, i.e., the
lattice BGK or single-relaxation-time LB (SRT-LB) model
[41], two-relaxation-time LB (TRT-LB) model [20], and the
multiple-relaxation-time LB (MRT-LB) model [42]. Actually,
the SRT-LB and TRT-LB models are two special cases of the
MRT-LB model [43], and moreover, the MRT-LB model could
be more stable and/or more accurate than SRT-LB and TRT-
LB models through adjusting some free relaxation parameters
[44–47]. For these reasons, the MRT-LB model is considered
in this work.

To build the relation between the LB method and the
macroscopic partial differential equations, some asymptotic
analysis approaches are usually adopted [43], including the
Chapman-Enskog expansion [48], Maxwell iteration [49,50],
direct Taylor expansion [51–53], recurrence equation [54,55],
and asymptotic expansion with diffusive scaling [56]. With the
help of these asymptotic analysis methods, one can determine
the expression of macroscopic transport efficient, which is
related to the relaxation parameter appeared in the LB model.

*hustczh@hust.edu.cn

Although the asymptotic analysis methods can be used to
illustrate that the LB method is suitable for the macroscopic
partial differential equations, and also the accuracy of the
LB method [53,57,58], the relation between the mesoscopic
LB method and the macroscopic partial-differential-equation
based numerical schemes (hereafter named macroscopic nu-
merical schemes) is still unclear, and furthermore, can we
obtain the macroscopic numerical scheme of the LB method?
Actually, once the macroscopic numerical scheme of the LB
method is obtained, we can not only gain a better under-
standing on the LB method through the knowledge already
available on the macroscopic numerical scheme, but also per-
form more further research on constructing the mesoscopic
LB models for macroscopic partial differential equations.

In the past years, some efforts have been made on this
aspect. Junk [59] and Inamuro [60] found that when the re-
laxation parameter is equal to unity, the SRT-LB model would
reduce to a special macroscopic two-level finite-difference
scheme, and at the diffusive scaling (�t ∝ �x2, �t and �x
are time step and lattice spacing), the macroscopic numerical
scheme for the incompressible Naiver-Stokes equations has
a second-order convergence rate in space [59]. Ancona [61]
demonstrated that for one-dimensional convection-diffusion
equations, the LB method with D1Q2 lattice structure can be
written as the classical DuFort-Frankel scheme [62], which is
an explicit three-level second-order finite-difference scheme.
He et al. [63] performed a theoretical analysis on the SRT-
LB model for several simple flows, and found that when
the flows are assumed to be unidirectional and steady-state,
the SRT-LB mode is nothing but a macroscopic second-order
finite-difference scheme of simplified incompressible Navier-
Stokes equations. Then they also obtained the analytical
solutions of these simple flows under some commonly used
schemes for nonslip boundary conditions, and demonstrated
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that usually there is a numerical slip velocity at the solid
wall which cannot be eliminated effectively in the SRT-LB
model. Following the same way, Guo and his collaborators
[64,65] conducted some analyses on the MRT-LB model for
microscale flows, and obtained the similar results as those
reported in Ref. [63], while the numerical slip caused by
the bounce-back scheme can be eliminated through adjusting
the free relaxation parameter corresponding the third-order
moment of the distribution function. d’Humière and Ginzburg
[54] carried out a theoretical analysis on the TRT-LB model
with recurrence equations, and found that when the rela-
tion �eo = 1/4 (�eo is the so-called magic parameter) is
satisfied, the TRT-LB model would become a macroscopic
three-level finite-difference scheme with a second-order accu-
racy in space. Subsequently, Ginzburg [55] further performed
a comprehensive analysis on the TRT-LB model, and found
that under the conditions of �eo = 1/6 and �BGK = 1/12,
an “optimal diffusion” TRT-LB model with a fourth-order
accuracy in space can be obtained. However, the “optimal
diffusion” TRT-LB model based macroscopic finite-difference
scheme for the diffusion equation is still unclear. Li et al.
[66] conducted an analysis on the SRT-LB model with D1Q2
lattice structure for one-dimensional Burgers equation, and
demonstrated that this LB model is equivalent to an explicit
three-level second-order finite-difference scheme. Recently,
Cui et al. [46] also carried out a theoretical analysis on the
MRT-LB model for the convection-diffusion equation, and
found that for the unidirectional and steady-state problems,
the MRT-LB model is just a macroscopic second-order finite-
difference scheme of convection-diffusion equation. From
the works mentioned above, one can see that under some
special conditions, the LB method is equivalent to a spe-
cial macroscopic second-order finite-difference scheme for a
specified partial differential equation, which is also consis-
tent with the results of some asymptotic analyses on the LB
method [43]. However, through choosing the weight coeffi-
cients and relaxation parameter properly, Suga [17] found that
the SRT-LB model with D1Q3 lattice structure could be a
macroscopic four-level fourth-order finite-difference scheme
for one-dimensional diffusion equation. We noted that this
work is only limited to the SRT-LB model, it is still unclear
whether the more general MRT-LB model can be written as
a macroscopic high-order finite-difference scheme, and ad-
ditionally, can we obtain a more accurate finite-difference
scheme from the MRT-LB model where more degrees of
freedom in adjusting the relaxation parameters are included?
To answer these questions, in this work we first develop a
MRT-LB model for one-dimensional diffusion equation where
a free weight coefficient ω0 is introduced, and then based on
this MRT-LB model, we obtain an equivalent macroscopic
four-level finite-difference scheme. Through some theoret-
ical analyses, we show that the four-level finite-difference
scheme is unconditionally stable, and can achieve a sixth-
order convergence rate in space through adjusting some free
parameters.

The rest of the paper is organized as follows. In Sec. II, we
presented a MRT-LB model for the one-dimensional diffusion
equations where the D1Q3 lattice structure is adopted, and
then derived an explicit four-level finite-difference scheme
from the MRT LB model. Additionally, it is also shown that

the macroscopic numerical schemes of the SRT-LB model,
TRT-LB model, regularized-LB model and modified-lattice-
kinetic model are just some special cases of that of the
MRT-LB model. In Sec. III, we investigated the accuracy of
the four-level finite-difference scheme, followed by a stability
analysis in Sec. IV. In Sec. V, we performed some simula-
tions, and found that under some conditions, the four-level
finite-difference scheme has a sixth-order convergence rate in
space, which is also consistent with our theoretical analysis.
Finally, some conclusions are given in Sec. VI.

II. MULTIPLE-RELAXATION-TIME LATTICE
BOLTZMANN MODEL BASED FOUR-LEVEL

FINITE-DIFFERENCE SCHEME FOR ONE-DIMENSIONAL
DIFFUSION EQUATION

In this section, we first developed a MRT-LB model for
one-dimensional diffusion equation with a constant diffusion
coefficient, and then presented the details on how to obtain an
explicit four-level finite-difference scheme from the MRT-LB
model.

A. The MRT-LB model for one-dimensional diffusion equation

From the mathematical point of view, the one-dimensional
diffusion process of mass and heat can be described by the
classical diffusion equation,

∂φ

∂t
= κ

∂2φ

∂x2
+ R, (1)

where φ is a scalar variable dependent on the space x and time
t . κ is the diffusion coefficient, R is the source term, and in this
work, they are assumed to be two constants. In the framework
of LB method, the diffusion Eq. (1) can be solved efficiently
and accurately [14,15,17,20,25,28], here we only consider the
more general MRT-LB model for its accuracy and stability in
the study of complex problems [45,47,67].

The evolution of MRT-LB model for the diffusion Eq. (1)
can be written as [28,46]

fi(x + ci�t, t + �t )

= fi(x, t ) − (M−1SM)ik[ fk (x, t ) − f eq
k (x, t )]

+ �t

[
M−1

(
I − S

2

)
M

]
ik

Rk, (i = −1, 0, 1), (2)

where fi(x, t ) and f eq
i (x, t ) are the distribution function and

equilibrium distribution at position x and time t . In the D1Q3
lattice structure, the discrete velocity ci, the transformation
matrix M, and the diagonal relaxation matrix S can be given
by

ci =
⎧⎨⎩−c, i = −1,

0, i = 0,

c, i = 1,

(3a)

M =
⎛⎝ 1 1 1

−c 0 c
c2 −2c2 c2

⎞⎠, (3b)
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S =
⎛⎝s0 0 0

0 s1 0
0 0 s2

⎞⎠, (3c)

where c = �x/�t is the lattice speed with �x and �t be-
ing lattice spacing and time step, respectively. The diagonal
element si of the relaxation matrix S is the relaxation param-
eter corresponding to ith moment of the distribution function
fi(x, t ), and to make the physical transport coefficient (e.g.,
diffusion coefficient) positive, it should be located in the range
(0, 2). Ri is the discrete source term, and is defined by

Ri = ωiR, (4)

where ωi is the weight coefficient.
In the LB method, to derive correct macroscopic diffusion

Eq. (1), the equilibrium distribution should be defined as

f eq
i (x, t ) = ωiφ(x, t ), (5)

which satisfies the following conditions [28],∑
i

f eq
i (x, t ) = φ(x, t ), (6a)

∑
i

ci f eq
i (x, t ) = 0, (6b)

∑
i

cici f eq
i (x, t ) = 2ω1φ(x, t )c2, (6c)

where the relation ω−1 = ω1 derived from Eq. (6b) is used to
obtain Eq. (6c). If the weight coefficient ω0 is considered as
a free parameter, then from Eq. (6a) and the condition ω−1 =
ω1, one can obtain

ω1 = ω−1 = 1 − ω0

2
, (7)

where 0 < ω0 < 1 which can be used to ensure that all weight
coefficients are larger than zero. In addition, the macroscopic
variable φ(x, t ) can be calculated by

φ(x, t ) =
∑

i

fi(x, t ) + �t

2
R. (8)

Through the Chapman-Enskog analysis [28], one can cor-
rectly recover the diffusion Eq. (1) from the present MRT-LB
model with the following relation between the diffusion coef-
ficient and relaxation parameter s1,

κ = 2ω1

(
1

s1
− 1

2

)
�x2

�t
. (9)

B. The MRT-LB model based explicit four-level
finite-difference scheme

In this part, we will show some details on how to derive
the macroscopic numerical scheme from the present MRT-
LB model. To simplify the following analysis, the notations
f n
i, j = fi( j�x, n�t ) and φn

j = φ( j�x, n�t ) are introduced.
Through substituting the discrete source term Ri [Eq. (4)] and
equilibrium distribution function [Eq. (5)] into the evolution
Eq. (2), we have

f n+1
−1, j = f n

−1, j+1 − s1

2

(
f n
−1, j+1 − f n

1, j+1

) + s2

2
f n
0, j+1 − ω0s2

2
φn

j+1 +
(

ω−1 + ω0s2

4

)
�tR, (10a)

f n+1
0, j = f n

0, j − s2 f n
0, j + ω0s2φ

n
j + ω0

(
1 − s2

2

)
�tR, (10b)

f n+1
1, j = f n

1, j−1 + s1

2

(
f n
−1, j−1 − f n

1, j−1

) + s2

2
f n
0, j−1 − ω0s2

2
φn

j−1 +
(

ω1 + ω0s2

4

)
�tR, (10c)

where Eq. (8) has been used. To obtain the macroscopic numerical scheme of the MRT-LB model, the distribution functions
appeared in Eq. (10) must be replaced by the macroscopic variable φ at different grid points and time levels. For this purpose,
we first conduct a sum of Eq. (10), and derive the following equation:

φn+1
j = f n

−1, j+1 + f n
0, j + f n

1, j−1 − s1

2

[(
f n
−1, j+1 − f n

1, j+1

) − (
f n
−1, j−1 − f n

1, j−1

)]
+ s2

2

(
f n
0, j−1 − 2 f n

0, j + f n
0, j+1

) − ω0s2

2

(
φn

j+1 − 2φn
j + φn

j−1

) + 3

2
�tR. (11)

Then from Eq. (10b) we can obtain

− f n
0, j + s2 f n

0, j − ω0s2φ
n
j = − f n+1

0, j + ω0

(
1 − s2

4

)
�tR. (12)

Based on Eqs. (8), (10a), (10c), and (12), we have

f n
1, j+1 + f n

−1, j−1 = − f n
0, j + φn−1

j + 1
2�tR. (13)

In addition, from Eq. (8) one can derive

f n
−1, j+1 + f n

0, j + f n
1, j−1 = − f n

−1, j−1 − f n
1, j+1 − f n

0, j−1 − f n
0, j+1 + f n

0, j + φn
j+1 + φn

j−1 − �tR

= −(
f n
0, j−1 − 2 f n

0, j + f n
0, j+1

) + φn
j+1 + φn

j−1 − φn−1
j − 3

2
�tR, (14)
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where Eq. (13) has been adopted. Similarly, from Eqs. (8) and (13) we can also obtain(
f n
−1, j+1 − f n

1, j+1

) − (
f n
−1, j−1 − f n

1, j−1

)
= −2

(
f n
1, j+1 + f n

−1, j−1

) − f n
0, j+1 − f n

0, j−1 + φn
j+1 + φn

j−1 − �tR

= −(
f n
0, j−1 − 2 f n

0, j + f n
0, j+1

) + φn
j+1 + φn

j−1 − 2φn−1
j − 2�tR. (15)

Substituting Eqs. (14) and (15) into Eq. (11) yields

φn+1
j =

(
s1

2
+ s2

2
− 1

)(
f n
0, j−1 − 2 f n

0, j + f n
0, j+1

)
+

(
1 − s1

2
− ω0s2

2

)
φn

j+1

+ ω0s2φ
n
j +

(
1 − s1

2
− ω0s2

2

)
φn

j−1 + (s1 − 1)φn−1
j + �ts1R. (16)

Now we need to give an evaluation of the first term on the right-hand side of Eq. (16). Actually, from Eqs. (8) and (10) we have

f n
0, j−1 − 2 f n

0, j + f n
0, j+1 = f n

0, j−1 + f n
0, j+1 − 2

(
φn

j − f n
−1, j − f n

1, j

) + �tR

= 2
(

f n
−1, j + f n

1, j

) + f n
0, j−1 + f n

0, j+1 − 2φn
j + �tR

= f n−1
0, j+1 + 2 f n−1

−1, j+1 + f n−1
0, j−1 + 2 f n−1

1, j−1

− s1
[(

f n−1
−1, j+1 − f n−1

1, j+1

) − (
f n−1
−1, j−1 − f n−1

1, j−1

)] − 2φn
j + 3�tR. (17)

With the help of Eqs. (8) and (13), one can derive the following equation,

f n−1
0, j+1 + 2 f n−1

−1, j+1 + f n−1
0, j−1 + 2 f n−1

1, j−1

= − f n−1
0, j+1 − f n−1

0, j−1 − 2
(

f n−1
−1, j + f n−1

1, j

) + 2φn−1
j+1 + 2φn−1

j−1 − 2�tR

= −(
f n−1
0, j−1 − 2 f n−1

0, j + f n−1
0, j+1

) + 2φn−1
j+1 + 2φn−1

j−1 − 2φn−2
j − 3�tR. (18)

Substituting Eqs. (15) and (18) into Eq. (17) gives rise to

f n
0, j−1 − 2 f n

0, j + f n
0, j+1 = (s1 − 1)

(
f n−1
0, j−1 − 2 f n−1

0, j + f n−1
0, j+1

)
− 2φn

j + (2 − s1)φn−1
j−1 + (2 − s1)φn−2

j − (2s1 − 2)φn−2
j + 2s1�tR. (19)

If we substitute Eq. (19) into Eq. (16), then one can obtain

φn+1
j = (s1 − 1)

(
s1

2
+ s2

2
− 1

)(
f n−1
0 j−1

− 2 f n−1
0 j

+ f n−1
0 j+1

)
+

(
1 − s1

2
− ω0s2

2

)
φn

j−1 +
[
ω0s2 − 2

(
s1

2
+ s2

2
− 1

)]
φn

j

+
(

1 − s1

2
− ω0s2

2

)
φn

j+1 + (2 − s1)

(
s1

2
+ s2

2
− 1

)
φn−1

j−1 + (s1 − 1)φn−1
j

+ (2 − s1)

(
s1

2
+ s2

2
− 1

)
φn−1

j+1 + (2s1 − 2)

(
s1

2
+ s2

2
− 1

)
φn−2

j

+ s1(s1 + s2 − 1)�tR. (20)

With the aid of Eq. (16), we can rewrite Eq. (20) as

φn+1
j =

(
1 − s1

2
− ω0s2

2

)
φn

j−1 + [(ω0 − 1)s2 + 1]φn
j +

(
1 − s1

2
− ω0s2

2

)
φn

j+1

+
(

ω0s1s2

2
− s1s2

2
− ω0s2

2
+ s1

2
+ s2 − 1

)
φn−1

j−1 + (−ω0s1s2 + ω0s2 + s1 − 1)φn−1
j

+
(

ω0s1s2

2
− s1s2

2
− ω0s2

2
+ s1

2
+ s2 − 1

)
φn−1

j+1 + (s1 − 1)(s2 − 1)φn−2
j + s1s2�tR, (21)

which can also be written as

φn+1
j = α1φ

n
j−1 + α2φ

n
j + α1φ

n
j+1 + β1φ

n−1
j−1 + β2φ

n−1
j + β1φ

n−1
j+1 + γφn−2

j + δ�tR, (22)
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where the parameters αi (i = 1, 2), βi, γ , and δ are given by

α1 = 1 − s1

2
− ω0s2

2
, α2 = (ω0 − 1)s2 + 1,

β1 = ω0s1s2

2
− s1s2

2
− ω0s2

2
+ s1

2
+ s2 − 1, β2 = −ω0s1s2 + ω0s2 + s1 − 1,

γ = (s1 − 1)(s2 − 1), δ = s1s2. (23)

Here we point out that Eq. (22) is the mesoscopic MRT-LB model based macroscopic explicit four-level finite-difference scheme
for one-dimensional diffusion equation.

Remark I: If s0 = s1 = s2 = ω (ω is the relaxation parameter in the SRT-LB model) and R = 0, then we can obtain the
following SRT-LB model based four-level finite-difference scheme from Eq. (22),

φn+1
j = α1φ

n
j−1 + α2φ

n
j + α1φ

n
j+1 + β1φ

n−1
j−1 + β2φ

n−1
j + β1φ

n−1
j+1 + γφn−2

j , (24)

with the following parameters:

α1 = � + ω1ω, α2 = � + (1 − 2ω1)ω,

β1 = −[� + (1 − ω1)ω]�, β2 = −(� + 2ω1ω)�, γ = �2, (25)

where � = 1 − ω. It is clear that the SRT-LB model based
macroscopic numerical scheme Eq. (24), as a special case of
the present MRT-LB model based four-level scheme, is the
same as that reported in the previous work [17].

Remark II: If s0 = s2 = s+ and s1 = s− with s+ and s−
denoting the relaxation parameters corresponding to the sym-
metric and antisymmetric modes [20], then we can obtain the
TRT-LB model based four-level finite-difference scheme from
Eq. (22). However, when s0 = s2 = 1 and s1 = ω, one can
derive the regularized-LB model [68,69] based macroscopic
numerical scheme from Eq. (22). In addition, if s0 = s2 = ω

and s1 = ω/(1 − ωη) with η being an adjusting parameter,
we can also obtain the modified-lattice-kinetic model [70–72]
based macroscopic numerical scheme from Eq. (22).

III. THE ACCURACY ANALYSIS OF THE MRT-LB MODEL
BASED MACROSCOPIC NUMERICAL SCHEME

We now performed an accuracy analysis on the macro-
scopic four-level finite-difference scheme Eq. (22). To do this,
we first conducted the Taylor expansion to Eq. (22) at the
position x = j�x and time t = n�t , and after some algebraic
manipulations, one can obtain

(1 + 2β1 + β2 + 2γ )

[
∂φ

∂t

]n

j

= (α1 + β1)
�x2

�t

[
∂2φ

∂x2

]n

j

+ δR

+ 1

12
(α1 + β1)

�x4

�t

[
∂4φ

∂x4

]n

j

+ 1

360
(α1 + β1)

�x6

�t

[
∂6φ

∂x6

]n

j

− β1�x2

[
∂3φ

∂x2∂t

]n

j

− β1

12
�x4

[
∂5φ

∂x4∂t

]n

j

+ β1

2
�x2�t

[
∂4φ

∂x2∂t2

]n

j

+ 1

2

(
2β1 + β2 + 4γ − 1

)
�t

[
∂2φ

∂t2

]n

j

− 1

6

(
2β1 + β2 + 8γ + 1

)
�t2

[
∂3φ

∂t3

]n

j

+ · · · . (26)

Substituting Eq. (23) into above equation yields[
∂φ

∂t

]n

j

= κ

[
∂2φ

∂x2

]n

j

+ R + 1

12
κ�x2

[
∂4φ

∂x4

]n

j

+ 1

360
κ�x4

[
∂6φ

∂x6

]n

j

−
(

ω0

2
− 1

2
− ω0

2s1
+ 1

2s2
+ 1

s1
− 1

s1s2

)
�x2

[
∂3φ

∂x2∂t

]n

j

−
(

ω0

24
− 1

24
− ω0

24s1
+ 1

24s2
+ 1

12s1
− 1

12s1s2

)
�x4

[
∂5φ

∂x4∂t

]n

j

+
(

ω0

4
− 1

4
− ω0

4s1
+ 1

4s2
+ 1

2s1
− 1

2s1s2

)
�x2�t

[
∂4φ

∂x2∂t2

]n

j

+
(

3

2
− 1

s1
− 1

s2

)
�t

[
∂2φ

∂t2

]n

j

+
(

1

s2
+ 1

s1
− 7

6
− 1

s1s2

)
�t2

[
∂3φ

∂t3

]n

j

+ · · · , (27)

where Eq. (9) has been used to derive above equation.
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According to the diffusion Eq. (1), we have the following relations:[
∂2φ

∂t2

]n

j

= κ2

[
∂4φ

∂x4

]n

j

,

[
∂3φ

∂t3

]n

j

= κ3

[
∂6φ

∂x6

]n

j

,

[
∂5φ

∂x4∂t

]n

j

= κ

[
∂6φ

∂x6

]n

j

,

[
∂3φ

∂x2∂t

]n

j

= κ

[
∂4φ

∂x4

]n

j

,

[
∂4φ

∂x2∂t2

]n

j

= κ2

[
∂6φ

∂x6

]n

j

, (28)

Substituting Eq. (28) into Eq. (27), we have[
∂φ

∂t

]n

j

= κ

[
∂2φ

∂x2

]n

j

+ R

+ 1

s1s2

[
s1s2

12
−

(
ω0s1s2

2
− s1s2

2
− ω0s2

2
+ s1

2
+ s2 − 1

)
+

(
3s1s2

2
− s2 − s1

)
ε

]
κ�x2

[
∂4φ

∂x4

]n

j

+ 1

s1s2

[
s1s2

360
−

(
ω0s1s2

24
− s1s2

24
− ω0s2

24
+ s1

24
+ s2

12
− 1

12

)
+

(
ω0s1s2

4
− s1s2

4
− ω0s2

4
+ s1

4
+ s2

2
− 1

2

)
ε

+
(

− 7s1s2

6
+ s2 + s1 − 1

)
ε2

]
κ�x4

[
∂6φ

∂x6

]n

j

+ O(�x6 + �t3), (29)

where ε is the discretization parameter, and is defined by

ε = κ�t

�x2
= 2ω1

(
1

s1
− 1

2

)
= (1 − ω0)

(
1

s1
− 1

2

)
. (30)

From above discussion, it is clear that for a given diffusion coefficient κ (or discretization parameter ε), one can obtain an explicit
four-level finite-difference scheme with the third-order accuracy in time and sixth-order accuracy in space once the following
conditions are satisfied, i.e., the second and fourth-order truncation errors in Eq. (29) are equal to zero,

s1s2

12
−

(
ω0s2

2
+ s1

2
− 1

)
+

(
s1s2

2
− s2 − s1

)
ε = 0, (31a)

s1s2

360
− 1

12

(
ω0s2

2
+ s1

2
− 1

)
− 1

2

(
s1s2

6
− ω0s2

2
− s1

2
+ 1

)
ε +

(
− 2s1s2

3
+ s2 + s1 − 1

)
ε2 = 0, (31b)

where Eq. (30) has been applied. We note that compared to the
SRT-LB model based four-level finite-difference scheme for
one-dimensional equation [17], the present MRT-LB model
based macroscopic numerical scheme can be more accurate
through adjusting the weight coefficient ω0 and relaxation
parameters s1 and s2 to satisfy Eq. (31). In the following, some
remarks on the MRT-LB model based macroscopic numerical
scheme are listed.

Remark I: It is found that the relaxation parameter s0

corresponding to the zeroth moment of distribution function
fi(x, t ) (or conservative variable φ) does not appear in the
macroscopic numerical scheme Eq. (22), and thus it has no
influence on the numerical results. This also explains why
the relaxation parameter s0 in the MRT-LB method can be
chosen arbitrarily. However, unlike the relaxation param-
eter s0, the relaxation parameter s2 corresponding to the
second-order moment of distribution function has an impor-
tant influence on the macroscopic numerical scheme Eq. (22)
[see Eq. (31)], and also the numerical results. Actually, these
results have also been reported in some previous works
on the MRT-LB model for (convection) diffusion equations
[28,46,67].

Remark II: When the conditions of Eqs. (30) and (31)
are satisfied, the MRT-LB model based macroscopic four-
level numerical scheme Eq. (22) has a sixth-order accuracy in
space. However, if only Eqs. (30) and (31a) hold, the macro-
scopic four-level numerical scheme would have a fourth-order
accuracy in space. Compared to the SRT-LB model based
macroscopic four-level fourth-order numerical scheme [17],
the present macroscopic numerical scheme has another dis-
tinct characteristic, i.e., there is a free relaxation parameter
s2, which can be used to remove the discrete effect of anti-
bounce-back scheme for the Dirichlet boundary conditions
[46,67].

Remark III: Compared to the classical two-level LB
method, the implementation of the macroscopic four-level
numerical scheme needs the initial values of variable φ at first
three time levels, and usually to complete the initialization,
we must adopt some other numerical schemes to obtain the
values of variable φ at the second and third time levels. In
addition, the inclusion of the extra time levels also brings a
larger memory requirement to store the variable φ.

Finally, to implement the MRT-LB model based macro-
scopic sixth-order numerical scheme Eq. (22), we must
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FIG. 1. The weight coefficient ω0 and the relaxation parameters
s1 and s2 as a function of the discretization parameter ε.

determine the weight coefficient ω0 and relaxation parameters
s1 and s2 from Eqs. (30) and (31) for a specified ε, while due to
the coupling and nonlinearity of these equations, it is difficult

to derive the explicit expressions of ω0, s1, and s2 in terms of
ε. For this reason, we numerically solved Eqs. (30) and (31),
and plotted ω0, s1 and s2 as a function of the parameter ε in
Fig. 1. Here it should be noted that only under the condition
of 0 < ε � εmax with εmax being about 0.262, we can obtain
the real roots of Eqs. (30) and (31). As seen from Fig. 1, for
a given ε, the weight coefficient ω0 and relaxation parameters
s1 and s2 are located in the ranges of 0.8 � ω0 < 1, 0 < s1 �
s1,max and s2,min � s2 < 2.0 with s1,max and s2,min being very
close to 0.920 and 1.124.

IV. THE STABILITY ANALYSIS OF THE MRT-LB MODEL
BASED MACROSCOPIC NUMERICAL SCHEME

In this section, we will prove that the MRT-LB model based
four-level finite-difference scheme Eq. (22) is unconditionally
stable. To this end, we first neglected the source term R and
replaced the φn

j in Eq. (10) by the distribution function f n
i, j

through the relation Eq. (8), and then take the discrete Fourier
transform of f n

i, j in Eq. (10) to obtain the following matrix
equation [73],

Ûn+1
j = G(θ, ω0, s1, s2)Ûn

j , (32)

where Ûn
j is the discrete Fourier transform of f n

i, j (i =
−1, 0, 1). G is the amplification matrix of the scheme, and
is given by

G =
⎛⎝(

1 − s1
2 − ω0s2

2

)
eiθ

( s2
2 − ω0s2

2

)
eiθ

( s1
2 − ω0s2

2

)
eiθ

ω0s2 ω0s2 − s2 + 1 ω0s2( s1
2 − ω0s2

2

)
e−iθ

( s2
2 − ω0s2

2

)
e−iθ

(
1 − s1

2 − ω0s2
2

)
e−iθ

⎞⎠, (33)

where −π � θ � π . However, if we take the discrete Fourier
transform of Eq. (22), then one can obtain the amplification
matrix H of the macroscopic numerical scheme,

H =
⎛⎝2α1 cos θ + α2 2β1 cos θ + β2 γ

1 0 0
0 1 0

⎞⎠. (34)

Although the amplification matrix H is different from G, due
to the equivalence between the MRT-LB model [Eq. (2) or
(10)] and the macroscopic numerical scheme Eq. (22), the
characteristic polynomials of them are identical, and can be
expressed as

p(λ) = λ3 + p2λ
2 + p1λ + p0, (35)

where the coefficients p0, p1 and p2 are given by

p0 = (s1 − 1)(1 − s2),

p1 = (s1 − 1)(s2ω0 − 1) + [(s1 − 2)(s2 − 1)

+ s2ω0(1 − s1)] cos θ,

p2 = s2 − s2ω0 − 1 + (s2ω0 + s1 − 2) cos θ. (36)

In the following, we would show that the roots of the char-
acteristic polynomial p(λ) denoted by λk (k = 1, 2, and 3)
satisfy the condition |λk| � 1.

With the linear fractional transformation

λ = 1 + z

1 − z
, z ∈ C, (37)

the unit circle |λ| = 1 and the field |λ| < 1 are mapped to the
imaginary axis [Re(z) = 0] and left-half plane [Re(z) < 0],
and vise verse. Here C and Re denote the complex-number
field and the real part of a complex number. Substituting
Eq. (37) into Eq. (35), we have

(1 − z)3 p

(
1 + z

1 − z

)
= (1 + z)3 + p2(1 − z)(1 + z)2 + p1(1 − z)2(1 + z) + p0(1 − z)3

= (1 − p0 + p1 − p2)z3 + (3 + 3p0 − p1 − p2)z2

+ (3 − 3p0 − p1 + p2)z + (1 + p0 + p1 + p2). (38)
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To ensure that the roots of characteristic polynomial p(λ) are located in the field |λ| < 1, the following conditions must be
satisfied, i.e., the Routh-Hurwitz stability criterion [74–76],

1 − p0 + p1 − p2 > 0, (39a)

3 + 3p0 − p1 − p2 > 0, (39b)

3 − 3p0 − p1 + p2 > 0, (39c)

1 + p0 + p1 + p2 > 0, (39d)

1 − p1 + p0 p2 − p2
0 > 0. (39e)

After the sums of Eqs. (39a) and (39c), and Eqs. (39b) and (39d), we can equivalently rewrite Eq. (39) as

1 − p0 + p1 − p2 > 0, (40a)

1 − p0 > 0, (40b)

1 + p0 > 0, (40c)

1 + p0 + p1 + p2 > 0, (40d)

1 − p1 + p0 p2 − p2
0 > 0. (40e)

Actually, under the condition of cos θ �= 1, we can first obtain

1 − p0 + p1 − p2 = (2 − s1)(2 − s2)(1 + cos θ ) + s1s2ω0(1 − cos θ ) > 0, (41a)

1 + p0 = 1 + (s1 − 1)(1 − s2) > 0, (41b)

1 − p0 = 1 − (s1 − 1)(1 − s2) > 0, (41c)

1 + p0 + p1 + p2 = s2(1 − cos θ )(2 − s1)(1 − ω0) > 0, (41d)

where 0 < ω0 < 1 and 0 < s1, s2 < 2 have been used.
To prove Eq. (40e), we first introduce the parameters A and B,

A = s1(1 − s2)(2 − s1) + ω0s2(1 − s1)(2 − s2),

B = s1s2(s1 + s2 − s1s2) = s1s2[1 − (1 − s1)(1 − s2)] > 0, (42)

and can express the part on the left-hand side of Eq. (40e) as

1 − p2
0 − p1 + p0 p2 = [s1(1 − s2)(2 − s1) + ω0s2(1 − s1)(2 − s2)](1 − cos θ )

+ s1s2(s1 + s2 − s1s2) = A(1 − cos θ ) + B. (43)

(i) If 0 < s1 � 1 and 0 < s2 � 1, then we can obtain A � 0 and the following equation:

1 − p2
0 − p1 + p0 p2 = A(1 − cos θ ) + B > 0. (44)

(ii) If 0 < s1 � 1 and 1 < s2 < 2, then we have

A = s1(1 − s2)(2 − s1) + ω0s2(1 − s1)(2 − s2) � s1(1 − s2)(2 − s1), (45)

which can be used to derive

1 − p2
0 − p1 + p0 p2 � 2s1(1 − s2)(2 − s1) + B = s1(2 − s2)[1 + (1 − s1)(1 − s2)] > 0. (46)

(iii) If 1 < s1 < 2 and 0 < s2 � 1, then one can obtain

A = s1(1 − s2)(2 − s1) + ω0s2(1 − s1)(2 − s2) > s2(1 − s1)(2 − s2), (47)

then we have

1 − p2
0 − p1 + p0 p2 > 2s2(1 − s1)(2 − s2) + B = s2(2 − s1)[1 + (1 − s1)(1 − s2)] > 0. (48)

(iv) If 1 < s1 < 2 and 1 < s2 < 2, then one can derive

A = s1(1 − s2)(2 − s1) + ω0s2(1 − s1)(2 − s2) > s1(1 − s2)(2 − s1) + s2(1 − s1)(2 − s2). (49)

With the help of above equation and let C = s1(1 − s2)(2 − s1) + s2(1 − s1)(2 − s2), we can obtian

1 − p2
0 − p1 + p0 p2 > 2A + B > 2C + B = (2 − s1)(2 − s2)[1 + (s1 − 1)(1 − s2)] > 0. (50)

Based on above results (i)–(iv), one can find that Eq. (40e) indeed holds under the conditions of 0 < ω0 < 1 and
0 < s1, s2 < 2. Thus, the roots of characteristic polynomial p(λ) are located in the field |λ| < 1 under the condition of
cos θ �= 1.
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FIG. 2. The numerical and analytical solutions under different
values of discretization parameter ε.

Now let us focus on the case of cos θ = 1. We note that
the roots of the characteristic polynomial p(λ) are continu-
ous functions of cos θ , and hence the roots of characteristic
polynomial satisfy the condition |λk| � 1 (k = 1, 2, and 3). In
addition, we would also like to point out that for the special
case of cos θ = 1, one can adopt the reductive approach [77]
to obtain |λk| � 1 (k = 1, 2, and 3).

From above discussion, we can find that the roots of char-
acteristic polynomial satisfy the condition |λk| � 1 (k = 1, 2
and 3), thus the present MRT-LB model based macroscopic
numerical scheme Eq. (22) is unconditionally stable.

V. NUMERICAL RESULTS AND DISCUSSION

To test the capacity of the MRT-LB model based macro-
scopic four-level numerical scheme Eq. (22), we first con-
sidered the diffusion Eq. (1) with the following initial and

-3.8 -3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2
-30

-25

-20

-15

-10

-5

FIG. 3. The convergence rate of the MRT-LB model based
macroscopic four-level finite-difference scheme under the conditions
of Eqs. (30) and (31).

FIG. 4. The convergence rate of the MRT-LB model based
macroscopic four-level finite-difference scheme under the conditions
of Eqs. (30) and (31a).

boundary conditions [78],

φ(x, 0) = sin(πx), 0 � x � 1,

φ(0, t ) = φ(1, t ) = 0, t > 0, (51)

and obtained the analytical solution of this problem,

φ(x, t ) = sin(πx)e−κπ2t . (52)

In the implementation of the macroscopic four-level numeri-
cal scheme Eq. (22), the analytical solution Eq. (52) is used
to initialize the variable φ at first three time levels. We first
performed some simulations under different values of dis-
cretization parameter ε (ε = 0.1, 0.15, 0.175, 0.2 and 0.24
corresponding to different diffusion coefficients for the speci-
fied lattice spacing �x = 0.025 and time step �t = 0.01875),

-3.8 -3.6 -3.4 -3.2 -3 -2.8 -2.6 -2.4 -2.2
-12

-11

-10

-9

-8

-7

-6

FIG. 5. The convergence rate of the MRT-LB model based
macroscopic four-level finite-difference scheme under the condition
of Eq. (30).
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TABLE I. The values of some parameters in the MRT-LB based macroscopic four-level numerical scheme under the conditions of Eqs. (30)
and (31).

ε ω0 s1 s2

0.1 0.8310204592587027 0.9159290534201945 1.1450386147380731
0.15 0.8101626131270389 0.775103705680168 1.1476236168426883
0.175 0.8370678725639358 0.6352970255557769 1.1776696173022918
0.2 0.870066309422671 0.49037716562528605 1.2047312964902426
0.24 0.9274277013170459 0.2626707812024917 1.2388413217086902

and plotted the results in Fig. 2 where the weight coefficient
ω0 and the relaxation parameters s1 and s2 are determined
from Eqs. (30) and (31). As shown in this figure, the numerical
results are in good agreement with the analytical solutions at
time t = 12. In addition, to quantitatively measure the devi-
ation between the numerical results and analytical solutions,
the following root-mean-square error (RMSE) is adopted [17],

RMSE =
√∑N

j=1[φ( j�x, n�t ) − φ∗( j�x, n�t )]2

N
, (53)

where N is the number of grid points, φ and φ∗ are the
numerical and analytical solutions. Based on the definition
of RMSE, one can evaluate the convergence rate (CR) of
numerical scheme with the following formula,

CR = log
(
RMSE�x/RMSE�x/2

)
/ log 2. (54)

We now focus on the RMSE and convergence rate of
the macroscopic four-level numerical scheme Eq. (22). For
this purpose, we conducted some simulations under different
values of space step �x and discretization parameter ε [see
Table I for details, the weight coefficient ω0 and relaxation
parameters s1 and s2 are given by Eqs. (30) and (31)], and
measured the RMSE between the analytical and numerical
solutions at time t = 12. As seen from Table II and Fig. 3,
the MRT-LB model based macroscopic four-level numerical
scheme indeed has a sixth-order convergence rate in space
once the conditions of Eqs. (30) and (31) are satisfied, and the
numerical results with a smaller discretization parameter ε are
more accurate. However, as demonstrated in the previous ac-
curacy analysis, if the conditions of Eqs. (30) and (31) are not
met, then the MRT-LB model based macroscopic numerical
scheme could not achieve the sixth-order accuracy in space.
To confirm this statement, we also carried out some simula-
tions under the conditions of Eqs. (30) and (31a) [Eq. (31b)
is not satisfied], and presented the errors at different space
steps in Table III and Fig. 4. From these table and figure,
one can observe that the MRT-LB model based macroscopic
four-level numerical scheme is just fourth-order accurate in

space. Moreover, if both Eqs. (31a) and (31b) are not satisfied
in our simulations, then the MRT-LB model based macro-
scopic four-level numerical scheme, as the commonly used
LB method [28], only has a second-order convergence rate, as
reported in Table IV and Fig. 5. We note that these results are
in agreement with our theoretical analysis.

In the following, we continue to investigate another diffu-
sion problem with the following initial condition [79],

φ(x, 0) = δ(x), (55)

where δ(x) is the δ function. Under this condition, one can ob-
tain the analytical solution of the particle probability density
φ,

φ(x, t ) = 1√
4πκt

e− x2

4κt , (56)

and its second-order moment,

1√
4πκt

∫ ∞

−∞
x2e− x2

4κt dx = 2κt . (57)

Similar to the discussion in the previous work [79], initially if
we only know the particle inside a lattice cell centered around
the origin with the width �x, then the density φ can be given
by

φ(x, t ) = 1

2�x

[
erf

(
x + �x/2

2
√

κt

)
− erf

(
x − �x/2

2
√

κt

)]
,

(58)
which leads to the following second-order moment,∫ ∞

−∞
x2φ(x, t )dx = 2κt + (�x)2

12
, (59)

and its dimensionless form,

M2 = 1

�x2

∞∑
i=−∞

∫ i�x+ �x
3

i�x− �x
3

x2φ(x, t )dx. (60)

TABLE II. The RMSE and CR of the MRT-LB based macroscopic four-level numerical scheme under the conditions of Eqs. (30) and (31).

ε RMSE�x=0.1 RMSE�x=0.05 RMSE�x=0.025 CR

0.1 8.59 × 10−10 1.42 × 10−11 2.57 × 10−13 ∼5.85
0.15 3.99 × 10−8 6.56 × 10−10 1.04 × 10−11 ∼5.95
0.175 1.19 × 10−7 1.95 × 10−9 3.11 × 10−11 ∼5.95
0.2 3.04 × 10−7 5.00 × 10−9 7.96 × 10−11 ∼5.95
0.24 1.31 × 10−6 2.15 × 10−8 3.43 × 10−10 ∼5.95
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TABLE III. The RMSE and CR of the MRT-LB based macroscopic four-level numerical scheme under the conditions of Eqs. (30) and (31a).

ε ω0 s1 s2 RMSE�x=0.1 RMSE�x=0.05 RMSE�x=0.025 CR

0.1 0.8 1 12/11 4.68 × 10−7 3.08 × 10−8 1.96 × 10−9 ∼3.95
0.15 0.7 1 42/41 2.21 × 10−6 1.46 × 10−7 9.30 × 10−9 ∼3.95
0.175 0.65 1 78/79 5.13 × 10−6 3.39 × 10−7 2.16 × 10−8 ∼3.95
0.2 0.6 1 18/19 9.84 × 10−6 6.49 × 10−7 4.14 × 10−8 ∼3.95
0.24 0.52 1 78/89 2.19 × 10−5 1.44 × 10−6 9.16 × 10−8 ∼3.95

In our simulations, the discrete second-order moment corre-
sponding to Eq. (60) is computed by

m2 =
∞∑

i=−∞
i2φ(i�x, t )�x. (61)

We carried our some numerical experiments with the com-
putational domain [−10, 10], and conducted a comparison
between the theoretical and numerical results of second-order
moment in Fig. 6, where t = 12, κ = 1.5 × 10−4, ε = 0.15,
ω0 = 0.813013333656164, s1 = 0.918883500649446, and
s2 = 1.128626937193323 (see Table I). To ensure that N =
t/�t is an integer, the time steps in our simulations are set
as �t = 0.6, 0.8, 1.0, 1.2, 1.5, 2.0, 2.4, 3.0, 4.0, 6.0, 12.0,
which would result in different values of lattice spacing
�x according to Eq. (30). As seen from this figure, the
calculated discrete second-order moment (m2) converges to
a2 + 0.08347, which is very close to the theoretical value
a2 + 1/12 with a2 = 2κt/(�x)2 [79].

In addition, if we substitute Eq. (61) into Eq. (59), then one
can obtain

a2 = m2 − 1
12 . (62)

However, according to Eq. (30), we can derive the relation
between a2 and ω0,

a2 = 2(1 − ω0)

(
1

s1
− 1

2

)
t

�t
. (63)
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FIG. 6. A comparison between the theoretical (solid line) and
numerical (symbols) results of second-order moment.

From Fig. 7 where �t = 0.2 and t = 12, one can find that the
numerical results are in good agreement with the theoretical
solution of a2 [Eq. (63)] in the range of 0.8 � ω0 < 1.

VI. CONCLUSIONS

In this work, we first developed a MRT-LB model for
one-dimensional diffusion equation where the D1Q3 lattice
structure is considered, and then obtained a mesoscopic MRT-
LB model based macroscopic four-level finite-difference
scheme. Through the theoretical analysis, one can find that
the macroscopic four-level numerical scheme is uncondition-
ally stable, and can achieve the sixth-order accuracy in space
once the weight coefficient ω0 and the relaxation parameters
s1 and s2 satisfy Eqs. (30) and (31). And also, if only the
conditions of Eqs. (30) and (31a) are met, then the macro-
scopic four-level numerical scheme would have a fourth-order
convergence rate in space. Moreover, if only Eq. (30) is
satisfied, then the macroscopic four-level numerical scheme
would be second-order accurate in space, which is the same
as the commonly used LB method. In addition, compared
to the previous work [17], the present macroscopic numer-
ical scheme could be more accurate through adjusting the
weight coefficient ω0 and the relaxation parameters s1 and s2

properly.
We also conducted some simulations to test the MRT-LB

model based macroscopic four-level finite-difference scheme,
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FIG. 7. A comparison between the numerical and theoretical re-
sults of a2.
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TABLE IV. The RMSE and CR of the MRT-LB based macroscopic four-level numerical scheme under the condition of Eq. (30) [Eqs. (31a)
and (31b) are not satisfied].

ε ω0 s1 s2 RMSE�x=0.1 RMSE�x=0.05 RMSE�x=0.025 CR

0.1 0.8 1 1 5.65 × 10−4 1.49 × 10−4 3.81 × 10−5 ∼1.95
0.15 0.7 1 1 1.77 × 10−4 4.62 × 10−5 1.17 × 10−5 ∼1.96
0.175 0.65 1 1 8.77 × 10−5 2.40 × 10−5 6.18 × 10−6 ∼1.91
0.2 0.6 1 1 3.76 × 10−4 1.00 × 10−4 2.57 × 10−5 ∼1.93
0.24 0.52 1 1 8.55 × 10−4 2.27 × 10−4 5.79 × 10−5 ∼1.94

and found that the numerical results agree well our theoretical
analysis.

Finally, we would like to point out that in the D1Q3 LB
method based macroscopic numerical schemes, the present
macroscopic numerical scheme Eq. (22) with the sixth-order
convergence rate is the most accurate for one-dimensional
diffusion equations. We also note that the present results are
only limited to one-dimensional case, the MRT-LB model
based macroscopic numerical schemes for two and three-

dimensional diffusion problems would be considered in a
future work.
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