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Inferring hidden symmetries of exotic magnets from detecting explicit order parameters
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An unconventional magnet may be mapped onto a simple ferromagnet by the existence of a high-symmetry
point. Knowledge of conventional ferromagnetic systems may then be carried over to provide insight into more
complex orders. Here we demonstrate how an unsupervised and interpretable machine-learning approach can
be used to search for potential high-symmetry points in unconventional magnets without any prior knowledge
of the system. The method is applied to the classical Heisenberg-Kitaev model on a honeycomb lattice, where
our machine learns the transformations that manifest its hidden O(3) symmetry, without using data of these
high-symmetry points. Moreover, we clarify that, in contrast to the stripy and zigzag orders, a set of D2 and D2h

ordering matrices provides a more complete description of the magnetization in the Heisenberg-Kitaev model. In
addition, our machine also learns the local constraints at the phase boundaries, which manifest a subdimensional
symmetry. This paper highlights the importance of explicit order parameters to many-body spin systems and the
property of interpretability for the physical application of machine-learning techniques.
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I. INTRODUCTION

Applications of machine learning in different fields of
physics have become ubiquitous and witnessed a dramatic
rise in the past few years [1,2], ranging from statistical
physics [3,4], condensed matter physics [5–7], chemistry and
material science [8–10], to high energy physics [11–13] and
quantum computation [14–16]. Although studies in the earlier
stages have primarily focused on benchmarking algorithms,
many recent developments are moving towards practical tools
for solving more complicated and challenging problems.
Instances of these advances include, for example, discov-
ering new classes of wave functions in strongly correlated
systems [17], improving the accuracy on atoms and small
molecules [18,19], designing efficient algorithms [20–22],
and analyzing experiments [23–26].

Here we explore the potential of using machine-learning
techniques to search for hidden symmetries in many-body
spin systems. Symmetry is at the heart of our understand-
ing of physics. Apparent symmetries such as time, spatial,
and rotational invariance lead to the conservation of energy,
momentum, and angular momentum, respectively. However,
quite often, the effective symmetry of a system is not appar-
ent, which we henceforth refer to as hidden symmetry. For
instance, in some extended Kitaev systems, which are subject
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to active research due to their proximity to Kitaev spin liquids
(KSLs) [27] and other exotic phases [28–32], there exist high-
symmetry points. At these points, a complex ordering pattern
may be transformed to a simple one [33–35]. Knowledge of
conventional orders can then be carried over, and pseudo-
Goldstone modes may be realized even when the Hamiltonian
seemingly manifests a low discrete symmetry. Others remark-
able examples are the Bethe-ansatz solvable SU (3) point in
the spin-1 bilinear-biquadratic chain [36–39] and the emer-
gent O(4) symmetry in the spin-1/2 J-Q model [40].

Although hidden symmetries are of broad relevance and
rich in physics, identifying them is a nontrivial task and is
very much problem dependent, often requiring remarkable
insights and experience from researchers. Therefore, it would
be interesting and useful if machine-learning techniques can
facilitate their identification.

In this paper, we use a machine-learning method, the
tensorial-kernel support vector machine (TK-SVM) [41–43],
to find potential hidden symmetries in a spin model. This
method is interpretable and unsupervised. The term “inter-
pretable” means the machine classifiers can be systematically
decoded to physical order parameters [41,42]. This is crucial
in physical applications, as an ultimate goal of learning phase
diagrams is to understand the nature of each phase and find
suitable characterizations. The term “unsupervised” means
prelabeled data and prior knowledge of a phase diagram of
interest are not required in training, since the supervision of
standard support vector machines (SVMs) will be taken over
by graph partitioning [42,43].

We show that our method provides an efficient and versatile
approach to detect high-symmetry points hidden in unconven-
tional magnets. We demonstrate the method by applying it to
the classical Heisenberg-Kitaev (HK) model on a honeycomb
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FIG. 1. Depiction of the honeycomb lattice and the D2h and D2

magnetic cell, which contain eight spins and two sectors marked by A
(blue) and B (red). This choice of magnetic cell fits zigzag and stripy
patterns along different directions and also applies to states at the
hidden O(3) points which cannot be captured by a four-site zigzag
or stripy cell. x, y, and z label the three distinct bonds in the Kitaev
interaction.

lattice, where our machine correctly identifies its hidden O(3)
symmetries and the associated transformations. Moreover, we
clarify that the pictorial description of the zigzag and stripy
orders only partially reflects the ordering in the HK model.
The complete orders are characterized by a set of D2 and D2h

ordering matrices.
The paper is organized as follows. In Sec. II we define the

HK Hamiltonian and review the TK-SVM method. Section III
discusses the machine-learned phase diagram. Section IV is
devoted to explicit order parameters and the corresponding
magnetization curves. The connection between hidden sym-
metries and ordering matrices is given in Sec. V. Section VI
provides a discussion of local constraints and a subdimen-
sional symmetry at phase boundaries. We conclude in Sec. VII
with an outlook.

II. MODEL AND METHOD

We consider the HK model on a honeycomb lattice to
demonstrate the concept. It should be noted however that the
following discussion is intended to provide a general guidance
for using TK-SVM to search for unconventional orders and
hidden symmetries, and is transferable to other spin systems.

A. Heisenberg-Kitaev Hamiltonian

The honeycomb HK model is defined as

H =
∑
〈i j〉γ

J �Si · �S j + KSγ

i Sγ

j , (1)

where J and K denote the Heisenberg and Kitaev interaction,
respectively, and can be parametrized by an angle variable
ϕ ∈ [0, 2π ) with K = sin ϕ, J = cos ϕ; γ ∈ {x, y, z} labels the
three types of nearest-neighbor bonds 〈i j〉γ , as depicted in
Fig. 1.

The spin- 1
2 version of the HK model accommodates

four magnetic orders and two extended regions of quantum

KSLs [29,34]. In the large-S limit, the four magnetic orders
persistent, while the counterpart classical KSLs only exist
at two single points K = ±1 and J = 0 at zero temperature.
Nevertheless, the transformations identifying the hidden sym-
metry points, which are inside two magnetic phases, are the
same.

B. TK-SVM

The TK-SVM is an interpretable and unsupervised
approach to detect general symmetry-breaking spin or-
ders [41,42] and emergent local constraints [43,44]. It is
formulated in terms of the decision function

d (x) =
∑
μν

Cμνφμ(x)φν (x) − ρ. (2)

Here, x = {Sa
i |a = x, y, z; i = 1, 2, . . . , N} denotes configura-

tions of N spins and serves as training data. φμ(x) maps x to
a tensorial feature space, the φ space, which can represent
general spin orders [45,46], regardless of exotic magnets,
multipolar tensorial orders [41,42], and emergent local con-
straints [43,44]. Cμν can be viewed as an encoder of order
parameters, from which explicit expressions of the detected
orders are identified. ρ is a bias parameter probing whether
two sample sets originate from the same phase. See Ap-
pendix A for details.

Although the decision function Eq. (2) carries out a bi-
nary classification between two sets of data, TK-SVM can
also classify multiple data sets. Such a multiclassification is
essentially realized by individual binary problems but makes
it possible to compute a phase diagram via unsupervised graph
partitioning.

Consider a spin Hamiltonian characterized by a number of
physical parameters, such as temperature and different kinds
of interactions. We can cover its parameters space, V , by a grid
of the same dimensionality. The choice of the grid is arbitrary,
either uniform or distorted to have denser nodes in the most
interesting subregions of V . We collect spin configurations x
at vertices of the grid and perform the SVM multiclassifica-
tion on the sampled data. For a grid of M vertices, this will
produce M(M − 1)/2 decision functions as Eq. (2), composed
of binary classifications between each pair of vertices. We
then introduce a weighted edge between two vertices, and the
weight, w(ρ) ∈ [0, 1), is based on the bias parameter in the
corresponding d (x). In this way, we create a graph with M
vertices and M(M − 1)/2 edges; its partitioning will give the
phase diagram.

In formal terms, the graph can be described by a M × M
Laplacian matrix L̂. The off-diagonal entries of L̂ accom-
modate edge weights connecting vertices, and the diagonal
entries are degrees of those vertices. The partitioning can be
solved by Fiedler’s theory of spectral clustering [47,48]:

L̂fi = λifi. (3)

As L̂ is positive semidefined, the smallest possible eigenvalue
is λ1 = 0, corresponding to a trivial eigenvector (1 1 . . . 1)T.
The second smallest eigenvalue λ2 measures the algebraic
connectivity of the graph [47,48]. The corresponding eigen-
vector f2 is referred to as the Fiedler vector, which reflects
how the vertices are clustered and plays the role of a phase
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FIG. 2. The Fiedler vector acts as the phase diagram of the Heisenberg-Kitaev model. (a) Gradients in Fiedler vector entries reflect the
clustering of the graph. The plateaus indicate stable phases, and the jumps signal phase transitions. The phases are interpreted in Sec. IV and
are labeled following the common convention: AFM, antiferromagnet; ZZ, zigzag; FM, ferromagnet; ST, stripy. In addition, the ST and ZZ
region are also marked according to the D2 and D2h magnetization measured in Fig. 3. The inner panel shows a circular representation of the
phase diagram. (b) Another partitioning with removing data near the high-symmetry points ϕ = arctan(−2) ∼ 0.65π and 1.65π (indicated
by the dashed lines; the graph is not shown), to demonstrate that data of these special points are not needed for revealing the hidden O(3)
symmetry. The partitioning is reflected by contrasts between Fiedler vector entries, rather than the absolute values. Panels (a) and (b) lead to
the same topology of the phase diagram.

diagram in the context of TK-SVM [42,43]. We refer to Ap-
pendix B for details.

III. MACHINE-LEARNED PHASE DIAGRAM

A typical application of TK-SVM consists of two steps: (i)
detecting the topology of the phase diagram and (ii) extracting
and verifying order parameters. We focus here on the classical
phase diagram of the HK model Eq. (1), and save the discus-
sion of order parameters for the next section.

For this purpose, we introduce a fictitious grid that spans
uniformly in the space of ϕ, with a spacing of δϕ = π

48 . At
each ϕ, we collect 500 spin configurations at a low tem-
perature T = 10−3

√
J2 + K2. The samples are prepared by

classical parallel tempering Monte Carlo simulations on a lat-
tice of 10 368 spins (72 × 72 honeycomb unit cells). Next, we
perform TK-SVM with different ranks over these data. How-
ever, it turns out that a rank-1 TK-SVM (see Appendix A),
which detects magnetic orders, is sufficient to learn the phase
diagram. The result is a graph of 96 vertices and 4560 edges.

The Fiedler vector obtained from partitioning the graph is
depicted in Fig. 2(a) (see also Appendix B). Each of its entries
represents a vertex of the grid, hence a ϕ point. The Fiedler
vector entries for the vertices (ϕs) classified in the same sub-
graph component are identical or very close in value, while
those falling into different subgraphs display considerable
contrast.

Evidently, the Fiedler vector shows four subgraph compo-
nents, indicating four stable phases. This in fact reproduces
the classical HK phase diagram [49,50]. The four plateaus, re-
spectively, correspond to the antiferromagnetic (AFM), zigzag
(ZZ), ferromagnetic (FM), and stripy (ST) phase, following
the labeling in Fig. 2(a). However, as we shall discuss in
Sec. IV, orders in the regions ϕ ∈ ( π

2 , 3π
4 ) and ( 3π

2 , 7π
4 ) may

be more universally measured by D2 and D2h magnetization.
Sudden jumps in the Fiedler vector entries manifest

phase transitions, which are seen to occur at J = 0, K = ±1
(ϕ = π

2 , 3π
2 ), and J = −K (ϕ = 3π

4 , 7π
4 ). The boundaries at

K = ±1 correspond to the Kitaev limits. Different from the
cases of quantum spin 1

2 and spin 1, where KSLs are proposed
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FIG. 3. Measurements of order parameters. The FM, AFM, D2, and D2h magnetization are measured as a function of ϕ at low temperature
T = 10−3

√
J2 + K2. In each phase, the respective magnetization saturates to unity (M = 〈| 1

Ncell

∑
cell

−→
M |〉 = 1), while others vanish, where

−→
M is the ordering moment in one magnetic cell,

∑
cell sums over magnetic cells, and 〈. . . 〉 denotes the ensemble average. The small residual

moments at ϕ = 0.75π and 1.75π are finite-size effects. At these points, the classical ground states form decoupled FM and AFM Ising chains
with a subextensive degeneracy (Sec. VI).

to extend to finite regions of J [29,34,51–54], in the large-S
limit, KSLs are unstable against the Heisenberg interaction
and reduce to critical points. Nevertheless, this will not affect
our discussion of the hidden symmetries in the HK model.

We note that the learning of Fig. 2 is unsupervised. No
prior knowledge of the phase diagram and order parameters
was used, and all the four phases are discriminated simultane-
ously by a single partitioning. Moreover, after we determine
the global topology of the phase diagram, the resolution of
which is set by the given training dataset, phase boundaries
can be further refined by directly examining the learned order
parameters.

TABLE I. D2 and D2h ordering matrices. Their magnetic cells
are shown in Fig. 1 and consist of two sectors, labeled by A and B,
and in total eight sublattices. The D2 and D2h orders involve four
and eight distinct spin orientations, respectively, and are described
by the respective three-dimensional dihedral groups. Their ordering
matrices also define the sublattice transformations that identify the
hidden O(3) points in the Heisenberg-Kitaev model.

Phases Ordering matrices

D2 T̂ A,B
1 =

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, T̂ A,B

2 =
⎛
⎝−1 0 0

0 −1 0
0 0 1

⎞
⎠,

T̂ A,B
3 =

⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠, T̂ A,B

4 =
⎛
⎝1 0 0

0 −1 0
0 0 −1

⎞
⎠

D2h T̂ A,B
1 = ±

⎛
⎝1 0 0

0 1 0
0 0 1

⎞
⎠, T̂ A,B

2 = ±
⎛
⎝1 0 0

0 1 0
0 0 −1

⎞
⎠,

T̂ A,B
3 = ±

⎛
⎝−1 0 0

0 1 0
0 0 −1

⎞
⎠, T̂ A,B

4 = ±
⎛
⎝−1 0 0

0 1 0
0 0 1

⎞
⎠

IV. EXPLICIT ORDER PARAMETERS

We move on to interpret the nature of the phases shown
in the phase diagram of Fig. 2. By virtue of the strong inter-
pretability, analytical order parameters can be extracted from
the corresponding Cμν matrix (see Appendix A). As the FM
and AFM orders are trivial, we will focus on the other two
phases.

The D2 and D2h magnetization can be expressed as

−→
M = 1

8

∑
A,B

4∑
k=1

T̂ A,B
k

�Sk . (4)

Here the ordering matrices T̂ A,B
k describe the relative orienta-

tion of spins in a magnetic cell and are tabulated in Table I.
The subscript k has a slightly different numeration in the two
sublattice sectors A and B as illustrated in Fig. 1 (also Fig. 5).

The D2 order is formulated by four different matrices with
T̂ A

k = T̂ B
k , forming the three-dimensional dihedral group D2.

These matrices have been proposed in the study of orbital
degeneracy of Mott insulators [55,56] and are used to identify
the hidden symmetries of the HK model [29,33], which will be
discussed in Sec. V. The D2h order can be viewed as an AFM
version of the D2 order, where T̂ A

k = −T̂ B
k in the respective

sublattice. It is thereby aptly named after the dihedral group
D2h

∼= D2 × Z2.
These order parameters, as well as the FM and Neel orders,

are measured at T = 10−3
√

J2 + K2 which is the temperature
during training the TK-SVM. As shown in Fig. 3, the respec-
tive magnetization saturates to unity, spans the entire phase,
and vanishes in the other phases.

The measurements of D2h and D2 magnetization validate
that they are the correct order parameters for the regions
ϕ ∈ ( π

2 , 3π
4 ) and ( 3π

2 , 7π
4 ). These regions are traditionally de-

scribed by zigzag and stripy orders [49,50,57], which have the
same static structure factor as the D2h and D2 order as shown
in Fig. 4. We now discuss the relation and differences between
these orders.
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FIG. 4. Static spin-structure factor, S( �K ), for the ST and D2

(left) and ZZ and D2h order (right). The orange and gray hexagon
denote the second and first honeycomb Brillouin zone, respec-
tively, and high-symmetry points are indicated. S( �K ) = 〈 1

N

∑
i j

�Si ·
�Sj ei �K ·(�ri−�r j )〉, where �ri is the position of a spin at site i, and a nearest-
neighbor bond of the honeycomb lattice is set to unit length.

Figure 5 shows configurations of a D2h and a D2 state,
which can be generated by fixing one spin, e.g., �SA1 = �S0,
and determining the orientation of other spins according to the
respective ordering matrices in Table I. In general, the refer-
ence spin �S0 may point along any direction. However, there are
special instances where the D2h and D2 structures can reduce
to the zigzag and stripy orders, respectively. For example, the
case �S0 = (0 0 ±1)T reduces to the Z-type zigzag and stripy
state as shown in Fig. 6. Similarly, choosing �S0 = (±1 0 0)T

and (0 ±1 0)T will lead to an X - and Y -type zigzag and
stripy state, respectively. Namely, the manifolds of the zigzag
(stripy) and D2h (D2) order have overlaps.

In the ZZ or D2h and ST or D2 regions, away from the
hidden symmetry [O(3)] points at ϕ ≈ 0.65π and 1.65π , the
above special states are realized as the ground states of the
HK model owing to the discrete symmetry of the Kitaev
term, as visualized in Fig. 7. For these states, the distinction
between D2h (D2) and zigzag (stripy) orders is superfluous.
Nevertheless, once spins are unlocked from the axes, which
happens at the O(3) points, the states can no longer be de-
scribed by staggered arrangements of ±�S as in a zigzag or
stripy structure.

Consider a Z-type zigzag (stripy) moment for instance. As
measured in Fig. 8, its expectation value at the O(3) point is
M = 1

2 when T → 0. This can be understood by parametriz-
ing the reference spin as �S0 = (sin θ sin φ sin θ cos φ cos θ )T,
where θ and φ are Euler angles. Since spins in those states are
actually arranged according to the D2h (D2) pattern, the zigzag
(stripy) moment of an individual sample is �m = (0 0 cos θ )T,
and the corresponding ensemble average, by integrating over
all allowed states, is M = 1

4π

∫ | �m| sin θdθdφ = 1
2 . Hence,

the D2h and D2 orders provide a more universal and complete
description for the magnetization as compared to the zigzag
and stripy order. [There is no phase transition or crossover
separating the O(3) points from the neighboring points at
T → 0. For instance, it can be shown that the ground-state
energy of the ZZ or D2h phase is E = 1

3 (−K + J ) per bond.
This energy is degenerate with that of the Neel and FM
order, EN = − 1

3 (K + J ) and EFM = 1
3 (K + J ), at J = 0 and

J = −K , respectively, which are the two phase boundaries
at ϕ = π

2 , 3π
4 . Within the ZZ or D2h regime, the ground-state

FIG. 5. Configurations of an arbitrary D2 and D2h state. The spin
�SA1 = (Sx Sy Sz )T is used as the reference spin, while orientations
of other spins are determined according to the respective ordering
matrices. Compared to stripy and zigzag orders, which are staggered
arrangements of ±�S, the sign flip in a D2 and D2h pattern can occur
at individual components. In special cases �SA1 = (0 0 ±1)T, these
patterns are equivalent to the Z-type zigzag and stripy patterns in
Fig. 6, with a reduced four-site magnetic cell {A1, A2, A3, B3}. When
choosing �SA1 = (±1 0 0)T and (0 ±1 0)T, X - and Y -type zigzag and
stripy states will be realized, where the magnetic cells are given by
{A1, A2, A3, B1} and {A2, A3, B1, B2}, respectively. In general cases,
the D2h (D2) and zigzag (stripy) orders are different, and the magnetic
cell cannot be reduced to four sites.

energy is linear to J/K . Nonetheless, TK-SVM is also capable
of distinguishing states with continuous and discrete degener-
acy; see Appendix C.]

V. HIDDEN O(3) SYMMETRY

The D2 and D2h ordering matrices in Table I comprise
a finite set of orthogonal matrices, which preserve the spin
length and are invertible. This means that, by inverting those
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FIG. 6. Representative configurations of a stripy (ST) and zigzag
(ZZ) order. White (�S) and black (−�S) cycles denote opposite
spins. The corresponding magnetization can be defined as MST =
〈| 1

Ncell

∑
cell (�S1 + �S2 − �S3 − �S4)|〉 and MZZ = 〈| 1

Ncell

∑
cell (�S1 − �S2 +

�S3 − �S4)|〉, respectively, where the numbers label the four sublattices.
In general, �S may point to arbitrary directions. However, in the
ground states of the Heisenberg-Kitaev model, the realization of
these above configurations will be accompanied by �S = (0 0 ±1)T.
We hence refer to them as Z type. Such states are present in the
intersection of zigzag (stripy) and D2h (D2) manifolds.

transformations, the D2 and D2h order can be converted to
simple ferromagnets.

Specifically, one can define spin orientations in a
sublattice-dependent coordinate, S̃k = T̂ A,B

k
�Sk . The magneti-

zation Eq. (4) then becomes
−→
M = M̃ = ∑

k S̃k , describing a
ferromagnetic alignment of S̃ spins.

The above transformation acts on spin patterns. Naturally,
one examines the form of the Hamiltonian in the same co-
ordinate system. Without loss of generality, we focus on the
interaction of a local bond 〈kl〉γ , which can be rewritten as

Hkl = �S T
k Ĵγ �Sl , (5)

where Ĵγ corresponds to the three types of bonds in the Hamil-
tonian Eq. (1) with γ ∈ {x, y, z}:⎛
⎝K + J

J
J

⎞
⎠,

⎛
⎝J

K + J
J

⎞
⎠,

⎛
⎝J

J
K + J

⎞
⎠.

(6)

Under the sublattice-dependent coordinate transforma-
tions, Eq. (6) becomes

H̃kl = S̃T
k T̂ A,B

k Ĵγ

(
T̂ A,B

k

)T
S̃l . (7)

FIG. 7. Distribution of spin orientations for states in the ZZ or
D2h and ST or D2 phases away (left) and at (right) the hidden O(3)
points, at a low temperature T = 0.001.

FIG. 8. Magnetization as a function of temperature at the O(3)
points, with ϕ ≈ 0.65π for the zigzag (ZZ) and D2h orders and
ϕ ≈ 1.65π for the stripy (ST) and D2 orders. The D2h (ZZ) and D2

(ST) curves show the same behavior, as the Heisenberg-Kitaev model
is symmetric under a sublattice transformation J → −J, K → −K ,
and meanwhile Si → −Si for either of the honeycomb sublattices.

The three different bonds transform as

Ĵx → (
T̂ A,B

2

)T
ĴxT̂ A,B

3 ,
(
T̂ A,B

4

)T
ĴxT̂ A,B

1 ,

Ĵy → (
T̂ A(B)

3(1)

)T
ĴyT̂ B(A)

1(3) ,
(
T̂ A(B)

4(2)

)T
ĴyT̂ B(A)

2(4) ,

Ĵz → (
T̂ A,B

1

)T
ĴzT̂

A,B
2 ,

(
T̂ A,B

3

)T
ĴzT̂

A,B
4 ,

respectively, leading to

±
⎛
⎝K + J

−J
−J

⎞
⎠, ±

⎛
⎝−J

K + J
−J

⎞
⎠,

±
⎛
⎝−J

−J
K + J

⎞
⎠, (8)

where “+” (“−”) corresponds to the D2 (D2h) order.
Clearly, at K = −2J , the couplings in the sublattice co-

ordinate reduce to isotropic matrices, ±J1, where 1 denotes
the identity matrix. H̃kl is simply the local interaction for a
ferromagnetic Heisenberg model of spin S̃, with J > 0 (<0)
in the D2 (D2h) phase. This precisely reproduces the hidden
O(3) symmetries of the HK model, which were previously
identified in Ref. [33] by a dual transformation.

The above way of identifying hidden symmetries is espe-
cially straightforward. It does not use specific properties and
hence does not rely on prior insights of a Hamiltonian. The
high-symmetry points are self-evident once the order parame-
ters are detected. Importantly, as shown in Fig. 2(b), data from
the high-symmetry points are not needed in the training.
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FIG. 9. The Cμν matrix learned by a rank-2 TK-SVM with a
four-spin triad cluster (inner panel) at the boundary point ϕ = 3π

4 .
The axes iterate over spin indices (i, j) and spin components (α, β )
in a lexicographical order, from bottom (left) to top (right). The
spin indices divide the Cμν matrix into 9 × 9 sub-blocks. Nonvan-
ishing entries in a block represent the form of correlations between
quadratic components Sα

i Sβ

j and Sα′
i′ Sβ ′

j′ . Blocks with i = j and i′ = j ′

lead to constants owing to the trivial normalization |�S| = 1. Other
blocks correspond to the local constraints G1 and G2. The pattern
learned for ϕ = 7π

4 (not shown) has a similar structure with sign flips
in certain entries.

VI. LOCAL CONSTRAINTS AT PHASE BOUNDARIES

In general, at a phase boundary, the competition between
the orders of the two phases can lead to more subtle prop-
erties such as an enhanced symmetry or an (emergent) local
constraint. In this section we discuss the local constraints
learned at the phase boundaries in the phase diagram of Fig. 2.
The cases ϕ = π

2 and 3π
2 correspond to pure Kitaev models

and are not discussed here further because we already know
from Ref. [44] that TK-SVM is able to learn the ground-state
constraints for classical Kitaev spin liquids. We focus here
therefore on the boundaries at ϕ = 3π

4 and 7π
4 .

In general, a rank-n TK-SVM detects rank-n tensorial or-
ders and correlations [41,42]. To detect the local constraints, a
rank-2 TK-SVM detecting quadratic correlations needs to be
used. Figure 9 shows the rank-2 Cμν matrix for ϕ = 3π

4 . We
refer to our previous works Refs. [42,43] for the systematic
decoding of such matrix. The pattern for ϕ = 7π

4 has a similar
structure but displays different signs for certain entries.

Two constraints, G1 and G2, are inferred:

G1 = 〈
Sx

0

(
Sx

2 + Sx
3

) + Sy
0

(
Sy

1 + Sy
3

) + Sz
0

(
Sz

1 + Sz
2

)〉
td = ±2,

(9)

G2 = 〈
Sx

2Sx
3 + Sx

1Sx
3 + Sx

1Sx
2

〉
td = 1, (10)

FIG. 10. Local constraints at ϕ = 3π

4 , 7π

4 as a function of temper-
ature. G1 and G2 satisfy Eqs. (9) and (10) in the ground state. (The
G2 curves at the two ϕ values overlap.)

with all other nearest-neighbor and next-nearest-neighbor cor-
relations vanishing. Here, 〈.〉td denotes a lattice average over
triad clusters involving three bonds and four spins (see the
inner panel of Fig. 9), and “+” and “−” correspond to ϕ =
3π
4 and 7π

4 , respectively. These constraints are verified by their
explicit measurement in a Monte Carlo simulation as shown
in Fig. 10.

The local constraints G1 and G2 are invariant under the
following transformations:

Sx
0, Sx

2, Sx
3 → −Sx

0, −Sx
2, −Sx

3, (11)

Sy
0, Sy

3, Sy
1 → −Sy

0, −Sy
3, −Sy

1, (12)

Sz
0, Sz

1, Sz
2 → −Sz

0, −Sz
1, −Sz

2. (13)

However, since a spin is shared by two triads, these do not
define a local, but rather a subdimensional symmetry. For
instance, Eq. (13) corresponds to a transformation flipping the
Sz component of spins in a chain formed by x and y bonds, as
depicted in Fig. 11.

The solutions of Eqs. (9) and (10) give the classical ground
states. The absence of cross terms, such as Sα

i Sβ �=α
j , indicates

that each spin has only a single nonvanishing component in
the ground state. To satisfy the two constraints, the system
thereby forms ferromagnetic (ϕ = 3

4π ) and antiferromagnetic
(ϕ = 7

4π ) Ising chains. Owing to the subdimensional symme-
try, it does not cost energy to flip one Ising chain, leading to
a subextensive line degeneracy with 3 × 2L classical ground
states. In other words, a ZZ or D2h (ST or D2) order is degen-
erate with a FM (Neel) order at these boundary points.

In the spin- 1
2 HK model, this subextensive degeneracy

will be lifted by quantum fluctuations via a quantum order-
by-disorder mechanism [29,34]. Nevertheless, from the point
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FIG. 11. Representative classical ground-state configuration at
ϕ = 3π

4 , 7π

4 . The system forms ferromagnetic (a) or antiferromag-
netic (b) Ising chains. The subdimensional symmetry leads to a
classical subextensive degeneracy by flipping one entire chain of
spins.

of view of machine learning, the above application implies
a possibility of using machine-learning approaches to gen-
erate nontrivial spin models. The constraint G1 is essential
for the HK Hamiltonian at the classical phase boundaries
where J = −K . However, during training, the Hamiltonian
is not given to the machine but rather learned from the spin
configurations. Hence one can consider potential applications
to learn nontrivial spin Hamiltonians from samples of simple
orders.

VII. SUMMARY AND OUTLOOK

In summary, we demonstrated that TK-SVM provides a
data-driven approach to the problem of identifying hidden
symmetries in phases with unconventional magnetic orders.
In comparison with other constructions, which are typically
contingent on the skill and experience of the researcher, this
approach does not require particular knowledge of the Hamil-
tonian and is feasible even when prior insight in the system is
limited.

We considered the honeycomb Heisenberg-Kitaev model
as an example and successfully identified its hidden O(3)
points and the associated transformations. We also clarified
that the D2h and D2 orders provide a more universal de-
scription of the magnetization compared to zigzag and stripy
order. Our results emphasize the significance of being able to
express the order parameter explicitly in many-body spin sys-
tems, which can be done by an interpretable machine-learning
method like TK-SVM.

Moreover, we showed that our machine is also capable of
revealing subdimensional symmetries. On the one hand, this

FIG. 12. The Cμν matrices learned by a rank-1 TK-SVM in the
ST or D2 and ZZ or D2h phases. Each entry represents a correlation
between two spin components defined by the weighted sum of the
support vectors. Results of an eight-spin cluster (2 × 2 honeycomb
unit cells), which is the minimal unit of the D2 and D2h order, are
shown for demonstration. From bottom to top, the vertical axis is
labeled in the same convention as in the lattice Fig. 1. The same
labeling applies to the horizontal axis from left to right. The inter-
pretation of these patterns leads to the respective ordering matrices
in Table I.

complements our previous study of Ref. [44] which showed
that TK-SVM identified the local Z2 symmetry of classical
Kitaev spin liquids by probing their ground-state constraints.
On the other hand, as such symmetries are typically related to
degenerate competing orders, their identification by machine
learning methods implies a potential generative use of these
machines. One could consider applications to learn nontrivial
spin Hamiltonians from moderate datasets of simple orders
and use the learned Hamiltonians to further generate more
interesting phases.

Hidden symmetries are also found in symmetry-protected
topological states [58–60] such as the hidden Z2 × Z2 sym-
metry in the celebrated Haldane phase [61–64]. The Haldane
phase, as well as an array of other symmetry-protected topo-
logical states, can be mapped onto Landau-type orders by a
nonlocal unitary transformation associated with the respective
hidden symmetry [63–70]. How to detect such hidden symme-
tries with machine-learning techniques is an interesting topic
left for future work. While it might be easier to construct an
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ad hoc machine for such a particular SPT phase, devising a
versatile machine that is applicable to a (reasonably) wide
class of topological phases remains however a challenging
task.

The TK-SVM library has been made openly available with
documentation and examples [71]. The data used in this work
are available upon request.
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APPENDIX A: SETTING UP OF TK-SVM

Here we provide more details of TK-SVM and refer the
reader to Refs. [41,42] for the introduction of the method and
Ref. [43] for a review, including comprehensive discussions
on how to interpret Cμν matrices.

The map φ in the decision function Eq. (2) maps a spin
sample x to a configuration of degree n monomials:

φ : x → φ(x) = {φμ} = {〈
Sα1

a1
...Sαn

an

〉
cl

}
, (A1)

where n also corresponds to the rank of a TK-SVM. This
mapping partitions the system into clusters containing r
spins labeled with αn = {1, 2, . . . , r}, while μ = {αn, an} =
{α1, a1, . . . , αn, an} denotes a collective index. Then a cluster
average 〈.〉cl is introduced for dimension reduction. This con-
struction of feature vectors makes use of the fact that local
orders and local constraints can be generally expressed by
a finite number of spins. In potential extensions to quantum
systems, such construction may still be done to detect local
order parameters. The cluster average is not suitable for non-

local orders. Nevertheless, in cases in which a system can
be characterized by short-ranged entanglement, one may con-
sider using local correlators sampled from a k-particle reduced
density matrix to construct the feature space.

The optimal choice for the size and shape of the clusters in
Eq. (A1) is in general unknown a priori, and different phases
in a phase diagram may have distinct translational symme-
tries. Therefore, in practice, we adopt clusters comprising a
large number of lattice unit cells in order to accommodate
diverse orders. In the results presented in the current paper,
clusters with a size up to 288 spins (12 × 12 honeycomb unit
cells) were used.

The Cμν matrix is defined by a weighted sum over support
vectors:

Cμν =
∑

k

λkφμ

(
x(k)

)
φν

(
x(k)

)
, (A2)

where λk is a Lagrange multiplier with λk �= 0 corresponding
to support vectors, and nonvanishing entries of Cμν repre-
sent correlations between particular monomial components.
Standard SVM optimizations, which maximize the separating
margin [76], are employed to solve λk . We refer to Ref. [42]
for concrete formulations of the optimization problem and the
construction of the kernel.

The Cμν matrices learned in the ST or D2 and ZZ or D2h

phases are shown in Fig. 12 for example. The alternating
colors indicate sign flips on individual spin components. The
corresponding order parameters are given in Table I, and the
systematic procedure of decoding Cμν matrices can be found
in Refs. [42,43].

APPENDIX B: DETAILS OF GRAPH PARTITIONING

For a binary classification between two sample sets “A” and
“B,” the parameter ρ in decision function Eq. (2) behaves as

|ρAB|
{� 1 A, B in the same phase,
� 1 A, B in different phases, (B1)

which is referred to as the reduced ρ criterion [42,43].

FIG. 13. Fiedler vectors obtained with different choices of ρc. In all cases, where ρc is large enough to set a characteristic scale “� 1”
for the reduced ρ criterion Eq. (B1), the clustering is evident and robust. The profound jumps at ϕ = π

2 , 3π

4 , 3π

2 , 7π

4 correspond to phase
boundaries, as they do not belong to any plateaus (stable phases). A case of small ρc = 0.1 is also included for comparison. ρc = 100 is used
in the main text.
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FIG. 14. Representative blocks of the Cμν matrices of the ZZ or
D2h phase learned by a rank-2 TK-SVM with the eight-spin D2h

magnetic cell, away from (a) and at (b) the O(3) point. Blocks are
labeled by the spin indices (i, j). Nonvanishing entries in a block
correspond to correlations between quadratic components Sα

i Sβ

j and

Sα′
i′ Sβ ′

j′ . Negative elements in the (0,0) block reflect the spin normal-

ization |�S| = 1. Nontrivial entries in (a) are the diagonal ones in each
9 × 9 sub-block.

The weight of an edge is determined by ρ in the decision
function learned for the two end points, with a Lorentzian
weighting function:

w(ρ) = 1 − ρ2
c

(|ρ| − 1)2 + ρ2
c

∈ [0, 1), (B2)

where ρc is a superparameter introduced to set a characteristic
scale for “� 1” in the above reduced ρ criterion. However, as
we will show in Fig. 13, the choice of ρc is not crucial.

The graph can be described by a Laplacian matrix:

L̂ = D̂ − Â =

⎡
⎢⎢⎣

d1 −w12 ... −w1M

−w21 d2 ... −w2M
...

...

−wM1 −wM2 ... dM

⎤
⎥⎥⎦. (B3)

Here, the off-diagonal entries, ωi j = ω ji = ω(ρi j ), host all the
edge weights and are collected by the adjacency matrix Â.
The diagonal entries, di = ∑

j �=i ω(ρi j ), represent degrees of
the vertices and form the degree matrix D̂. L̂ is symmetric by
construction as only the magnitude of ρ is used. (The sign of ρ

can reveal which data set is more disordered, but this property
is not needed for the graph partitioning; see Refs. [42,43] for
details.) According to Fiedler’s theory [47,48], partitioning of
a graph can be formulated as an eigenproblem of L̂, as shown
in Eq. (3). The second smallest eigenvector, known as the
Fiedler vector, reflects the clustering of the graph.

In Fig. 13, we compare the resultant Fiedler vectors us-
ing different values of ρc. The M vertices are classified into
distinct subgraph components (indicated by the plateaus). In
the case of ρc = 0.1, which does not suffice to define a scale
“� 1,” the partitioning is less obvious as all Fiedler vector
entries display very similar values. However, in all other cases,
where ρc crosses several orders, the clustering is clear and
robust.

APPENDIX C: DISCRIMINATING STATES IN THE SAME
PHASE WITH DIFFERENT DEGENERACIES

In Sec. IV we discussed that there is no singularity sep-
arating the high-symmetry points with a continuous O(3)
degeneracy from their neighboring points with a discrete
threefold degeneracy. Nevertheless, while they are thermo-
dynamically in the same phase, those points can still be
distinguished with the framework of TK-SVM. This may be
done by a rank-2 TK-SVM, as a magnetic order will also
give finite quadratic correlations (which can be viewed as
a “redundant” representation of the order parameter for the
case at hand.) Results for the ZZ or D2h phase are depicted
in Fig. 14 for instance. The rank-2 Cμν pattern away from
the high-symmetry point displays nontrivial quadratic corre-
lations between only the diagonal elements in each sub-block.
The absent correlations between cross terms like Sα

i Sβ �=α
j re-

flect locking of the spin orientation with a lattice axis, whereas
such correlations are present in the pattern learned at the O(3)
point.
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