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In rarefied gas flows, discontinuity phenomena such as velocity slip and temperature jump commonly appear
in the gas layer adjacent to a solid boundary. Due to the physical complexity of the interactions at the gas-solid
interface, particularly in the case of systems with local nonequilibrium state, boundary models with limited
number of parameters cannot completely describe the reflection of gas molecules at the boundary. In this
work, the Gaussian mixture (GM) model, which is an unsupervised machine learning technique, is employed
to construct a statistical gas-solid surface scattering model based on the collisional data obtained from molecular
dynamics (MD) simulations. The GM model is applied to study Couette flow for different inert gases (Ar and
He) confined between two parallel infinite gold walls at different temperatures. A direct comparison between
the results obtained from the GM model and the Cercignani-Lampis-Lord (CLL) scattering kernel against the
MD collisional data in terms of the distribution of the predicted postcollisional velocities, and accommodation
coefficients has shown that the results from the GM model are an excellent match with the MD results
outperforming the CLL scattering kernel. As an example, for He gas, while the predicted energy accommodation
coefficient by the CLL model is more than two times higher than the MD predictions, the value computed by the
GM model is in excellent agreement with the MD results. This superior performance of the GM model confirms
its high potential to derive a generalized boundary condition in systems encountered with highly nonequilibrium
and complex gas flow conditions.
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I. INTRODUCTION

Heat and momentum transfer of fluid flows in contact with
surfaces in noncontinuum or rarefied conditions has been
an active research topic in numerous modern engineering
applications such as vacuum technology, micro or nanoelec-
tromechanical systems (M/NEMS), astronautics, and particle
sizing techniques used in the aerosol industry [1–4]. In these
systems jump conditions for temperature and velocity, which
manifest themselves mainly at the gas-solid interfaces, are
of crucial importance in computing the drag force and heat
transfer experienced at the solid surfaces. To simulate the fluid
flow in such systems under the moderately rarefied condition,
that means a Knudsen number (Kn) less than 0.1, the Navier
Stokes (NS) equations may be used but slip boundary con-
ditions should be considered. However, for a higher degree
of rarefaction (Kn > 0.1) the NS equations break down and
must be substituted by more sophisticated equations such
as Boltzmann equations. Computational-particle-based sim-
ulation techniques such as direct simulation Monte Carlo
(DSMC) [5], lattice Boltzmann method (LBM) [6], and
method of moments (MoM) [7] are commonly employed
to find approximate solutions to the different forms of the
Boltzmann equation. Nevertheless, in all these simulation
techniques, rigorous prescription of boundary conditions at
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solid surfaces is the crucial parameter to guarantee the re-
liability of the simulation results. Although the gas-surface
interaction (GSI) has been long studied [8–10], and a wide
range of numerical models have been developed to describe
it, a generalized formalism applicable in varied applications
is still missing. The most well-known available GSI models
are phenomenological models expressed by scattering kernels,
which are probability density functions (PDF) correlating the
velocity distributions of the gas molecules before and after
colliding with the solid surface.

The Maxwell model [8] is the oldest empirical GSI
model. Maxwell postulated that a fraction of the incident gas
molecules was reflected in a diffuse manner, while the remain-
ing part underwent a specular reflection. Despite its simplicity
and acceptable accuracy, the Maxwell model was incapable
of reproducing the lobular patterns observed in the molecular
beam experiment [11]. Later on, to fulfill this shortcom-
ing, Cercignani and Lampis [9] developed a more elaborate
scattering kernel, which was extended further by Lord [10],
and showed better performance compared to the Maxwell
model [12].The Maxwell and Cercignani-Lampis-Lord (CLL)
models are controlled by one or several constant parameters
known as accommodation coefficients (ACs), which quantify
the energy and momentum exchange at the gas-solid interface
and must be known a priori. In fact, evaluating ACs is the
major bottleneck in the performance of the aforementioned
empirical scattering models. This is due to the superposition
of many factors affecting GSI at the microscopic level, which
causes a notable discrepancy among the reported values for
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ACs in experimental and numerical studies [13–16]. Several
investigations [12,17–19] assessed the performance of the ex-
isting empirical GSI models. Considering hard assumptions
like, for instance, the usage of constant ACs for all impinging
gas molecules, assuming fixed functional relationships be-
tween the momentum and energy ACs, as well as neglecting
the interplay between different components of gas molecule
velocities, these models do not fully capture the physics be-
hind the gas-wall scattering process. Moreover, these models
are not capable of capturing the flow properties in a highly
nonequilibrium state, frequently present in M/NEMS. This
involves, for instance, impinging or reflecting molecular gas
fluxes for complex flow conditions and for complex interfacial
structures and conditions [17,20]. To construct more reliable
scattering kernels some researchers extended the classical GSI
models. For instance, Struchtrup [21] incorporated a velocity
dependent AC with classical Maxwell scattering kernel. To
describe gas scattering adjacent to an anisotropic surface,
Dadzie and Meolans [22], as well as To et al. [23] proposed
the usage of different ACs in each spatial direction. However,
these boundary models, due to higher number of tunable pa-
rameters, are very complex to implement, and therefore have
not been employed much in practice. To study Couette flow
using DSMC simulations Yamamoto et al. [24], adapted the
Maxwell model by using different directional ACs to generate
each velocity component. Nevertheless, it was shown that
the velocity correlations obtained from the Yamamoto model
can still be very different from the explicit wall simulations
[25].

A promising approach to achieve a detailed understanding
about GSI at the atomistic level is molecular dynamics (MD)
simulations, which has been successfully interplayed with
DSMC to study rarefied gas flow [26–28]. However, it is well
known that MD simulations are computationally expensive.
A new class of scattering kernels, known as nonparametric
scattering kernels, were proposed in the literature [29–31].
The main idea behind developing such models is to overcome
some intrinsic limits of the existing empirical GSI models,
which are mainly caused by employing a limited number
of fitting parameters (i.e., accommodation coefficients). Gen-
erally speaking, in these models collision data obtained by
MD simulations are directly used to construct the scattering
kernel and no additional parameters such as ACs are needed
to be computed in between. Assessment of the postcollisional
velocities predicted by nonparametric GSI models against
the results obtained from the classical parametric GSI mod-
els, MD simulations results, as well as experimental studies
confirm the superior performance of the nonparametric GSI
models.

Recently a new type of GSI model using the Gaussian
mixture (GM) model, which is a robust unsupervised ma-
chine learning technique, was proposed by Liao et al. [32].
In the aforementioned study, for training the GM model the
collisional data obtained from the molecular beam MD setup
were utilized, in which only gas-wall interactions were taken
into account, and gas-gas interactions were ignored. The main
advantage of using the GM model over the classical scattering
kernels is that since it does not require the use of any ACs
as input parameters, it maintains all the important physics
included in the collisional data. Investigating both smooth and

FIG. 1. Schematic representation of the system under considera-
tion for the MD simulations; d: distance between the two walls; Tb:
Temperature of the bottom wall; Tt : Temperature of the top wall; uw:
Imposed velocity on the walls.

rough atomic surfaces, they reported a good performance of
the GM model in predicting physical and statistical properties
of the gas-wall interfaces. However, it was shown that in
many microgas flow systems the adsorption of gas molecules
on solid surfaces impacts the gas scattering from the sur-
faces [33]. In the presence of the gas adsorbed layer, both
the gas-gas and gas-wall interactions are not negligible. To
our knowledge, no GM-based model exists that includes gas
flows, internal gas-gas interactions, and highly nonequilib-
rium effects.

The main aim of the present paper is to investigate the
capability of the GM model in the study of the rarefied
gas-solid surface interactions in the case of systems encoun-
tered with highly nonequilibrium and flow conditions. Herein,
considering that both gas-gas and gas-wall interactions can
influence the gas flow solution in the vicinity of a solid wall,
a nanochannel system consisting of two infinite parallel plates
with Ar and He gases confined between them is chosen as a
case study. A Couette flow was used to study the influence of
the wall velocity on the residence time of the gas molecules
in the interface region and the molecular scattering effects.
Two types of systems, with walls at the same temperature
and with walls at different temperatures, are studied using
MD simulations. In each case, the performance of the GM
model is evaluated in comparison with the CLL model, as well
as the original MD-obtained collision data. The evaluation is
carried out in terms of correlations between gas molecules’s
velocities before and after colliding with the surface, the
PDF of the postcollisional gas velocities, and predicted
ACs.

II. METHODOLOGIES

A. MD simulation

The three-dimensional schematic diagram of the MD sim-
ulation setup is shown in Fig. 1. The system model consists
of two parallel walls including of 8750 Au atoms each with
either 800 Ar or 400 He atoms confined between them. In each
wall Au atoms are arranged in a FCC lattice structure with a
cross section area of 10 nm by 10 nm. The normal distance
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TABLE I. Lennard-Jones potential parameters.

Atom pair ε (meV) σ (Å)

Ar-Au 11.36 3.819
He-Au 0.787 4.342
Ar-Ar 12.2 3.35
He-He 0.94 2.64

between the walls d is fixed at 12 nm for Ar and 102 nm
for He gas. The number of gas atoms confined between the
walls and the distance between the walls were chosen in a
way that the Knudsen number remains in the early transition
regime (0.1 < Kn < 1), and the pressure in the gas domain
does not overpass the critical pressure (Pcr) value in the sys-
tem (for Ar: Pcr = 4.89 MPa, and for He: Pcr = 0.23 MPa
[34]). Therefore, for the Ar-Au system the Knudsen num-
ber and the reduced density (η) are Kn = 0.2 and η = 0.02,
respectively. In addition, for the He-Au system Kn = 0.71
and η = 0.00045, respectively. A Berendsen thermostat with
a damping constant of 100 fs is employed to maintain walls
temperature at the desired values. Regarding the gas atoms,
initially their temperature is set at the 300 K. Afterwards, gas
atoms are in a microcanonical ensemble (NVE) and their tem-
perature can only evolve through collisions with other atoms
in the simulation box.

In this system, periodic boundary conditions are applied
in the directions parallel to the wall (x, z) such that only a
section of an infinite wall has to be modeled. The interaction
between Au atoms are modeled by the embedded atom model
(EAM) potential [35]. The gas-gas and gas-solid interactions
are modeled by the Lennard-Jones (LJ) potential and the
potential parameters are listed in Table I. It is noteworthy to
mention that in the atomistic study of the GSI, the pair poten-
tial parameters employed to describe the interaction strength
at the gas-solid interface are of prominent importance [36,37].
It has been shown that the interaction potentials based on
mixing rules cannot accurately describe GSI, and the quantum
calculations based on pair potentials are the most reliable ones
to study the GSI at the molecular scale [36,38,39]. Therefore,
in this work the gas-wall interaction potential parameters are
calculated based on existing quantum ab initio computations
[40]. To model the Couette flow condition, walls have been
moving with the relative velocity difference of 2 uw (see
Fig. 1). The speed ratio Sw is defined as the ratio between the
wall velocity uw and the most probable speed of the gas at the
temperature Tb: Sw = uw√

2kBTb/mg
, where kB is the Boltzmann

constant, Tb is the temperature of the bottom wall, and mg is
the mass of the gas atom.

In all the simulations, after performing the initial surface
energy minimization, the MD setup has been equilibrated
at the desired temperature for 3 ns using the time step of
�t = 1 fs and 0.5 fs for Ar-Au and He-Au systems, respec-
tively. Once the system is fully equilibrated the production
run is started. To guarantee reliable statistics it is proceeded
for the next 25 ns and 100 ns for Ar-Au and He-Au systems,
respectively. More details regarding the gathering collisional
data based on the discussed MD simulation setup can be found

in our previous work [36]. All the MD simulations were per-
formed using the LAMMPS [41] molecular dynamics package.

B. CLL scattering kernel

When considering the flow of a dilute gas adjacent to a
solid surface, prescribing the proper boundary condition is the
key factor for obtaining a reliable solution of the Boltzmann
equation. In other words, it is of crucial importance to know
how gas molecules impinging with certain velocity with a
surface will be reflected from it. In kinetic theory analysis,
the gas-surface interaction models are employed as bound-
ary conditions for the Boltzmann equation. The GSI model,
also called the scattering kernel, is defined by the condi-
tional probability density function f (v|v′), which represents
the probability density that an impinging gas molecule with
velocity v′ is rebounced with velocity v from the surface.
The CLL model is the most accurate phenomenological gas-
surface collision model because of its relatively well-defined
mathematical framework leading to the satisfactory prediction
of the scattering process. In the CLL model the gas molecule
velocity components in the tangential (vt ) and normal (vn)
directions are assumed to be independent from each other, and
they can be determined through Eqs. (1) and (2), respectively,
as follows:

f CLL(vt |v′
t ) = 1√

παt (2 − αt )
exp − [vt − (1 − αt )v′

t ]
2

αt (2 − αt )
, (1)

f CLL(vn|v′
n) = 2vn

αNE
exp

[
−v2

n + (1 − αNE )v′2
n

αNE

]
I0

×
[

2(
√

1 − αNE )vnv
′
n

αNE

]
, (2)

where αt and αNE are the accommodation coefficients cor-
responding to the tangential momentum and normal kinetic
energy, respectively. I0 denotes the modified Bessel function
of the first order and zeroth order. Here the velocities are
normalized by

√
2RTw, where R is the specific gas constant

( kB
mg

) and Tw is the wall temperature. In this model, a fixed
empirical correlation is imposed between αt and the tangential
energy accommodation coefficient αTE, that is, αTE = αt (2 −
αt ). To generate new velocities after collision according to the
CLL scattering kernel the algorithm provided in the paper by
Peddakotla et al. [42] is employed, in which including a sepa-
rate AC for each spatial direction assists the comparison with
MD simulation results.

Accommodation coefficients used normally to characterize
the energy and momentum exchange in the gas-solid interface
are the main input parameters required in the CLL model. In
this work, to compute ACs the method proposed by Spijker
et al. [25], which also allows evaluating ACs for an isothermal
system, is employed. In this approach, the slope of the best
least-squares linear fit of the MD obtained collisional data is
used for computing various ACs

αq = 1 −
∑

i

(
Qi

I − 〈QI〉
)(

Qi
R − 〈QR〉)∑

i

(
Qi

I − 〈QI〉
)2 , (3)

where subscript q can refer to various gas molecule kine-
matic properties such as its momentum or kinetic energy in
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a certain direction. Qi
I and Qi

R represent the precollisional and
postcollisional value of the same property for the gas particle,
respectively. The notation 〈.〉 indicates the ensemble average
of the molecular property Q.

C. Gaussian mixture model

The Gaussian mixture model is an unsupervised learning
method, which found its applications in speech recognition
[43], image, and pattern recognition [44,45] among many
other areas. Generally, the GM model is categorized as a
parametric model, but due to the presence of the numerous
fitting parameters in the model it retains the flexibility of a
nonparametric model. Therefore, it can be considered as a
promising tool to model high-dimensional data space. The
idea of representing data as a collection of D-dimensional
Gaussians (D being the number of features) is desirable in its
application to predict scattering velocity distributions, which
are also mostly Gaussians. A GM model of the NG component
Gaussians with mean vector �μi and covariance matrix �i is
given by Eq. (4)

p(�x) =
NG∑
i=1

wig(�x| �μi, �i ) (4)

where

g(�x| �μi, �i ) = 1

(2π )D/2|�i|1/2
exp

×
[
−1

2
(�x − �μi )

′�−1
i (�x − �μi )

]
.

The parameters ({wi, �μi, �i} ∀ i in {1 · · · NG}) in the
model are optimized using the expectation-maximization
(EM) algorithm [46]. All calculations in this work used the
GM model package available in SCIKIT-LEARN [47] with all
default settings except for the number of Gaussians (NG).

In fact, in the case of training a GM model NG is the only
parameter, which needs to be assigned by the user. It plays
the role of a fitting parameter in the model and it has a
direct impact on the performance of the model. Therefore,
to prevent the occurrence of overfitting or underfitting in the
model defining an optimal value of NG is crucial. A detailed
discussion on the effect of NG is provided in Sec. III A. Here
the entire collisional data (i.e., pre and postcollision veloc-
ities) obtained from MD simulations are considered as the
training data for the GM model. This means the interplay
between different velocity components is already included in
the model. After training the model, using the optimum model
parameters (wi, �μi, �i), the conditional form of the scattering
kernel required by coarse grained simulation techniques can
be obtained as a mixture of Gaussian functions.

III. RESULTS AND DISCUSSION

A. Different approaches for feeding the training data
into Gaussian mixture model

Considering the collision data obtained from MD sim-
ulations, the tangential velocity components (v′

x, v
′
z, vx, vz)

follow Gaussian distributions. However, the normal veloc-
ity components (v′

y, vy) follow a Rayleigh distribution. In
Ref. [32] the authors suggested a preprocessing scheme (see
Scheme-I in Fig. 2). They mainly employed such a scheme
to transfer the normal velocity components from Rayleigh
distribution to a Gaussian distribution to obtain the same
distribution as the tangential velocity components. This leads
to a consistency in the overall distribution (Gaussian) with
the basis sets (also Gaussian) in the GM model. For this
purpose, initially for each velocity pair (v′, v) an implicit pair
(−v′,−v) was added to the data set. Afterwards, implement-
ing the transfer function proposed in Ref. [32] and given in

FIG. 2. Different schemes used to feed the collision data obtained by MD simulations into the GM model; v′MD
x , v′MD

y , v′MD
z , vMD

x , vMD
y , and

vMD
z are velocity components obtained from MD simulation, respectively; v′∗,MD

x,y,z and v∗,MD
x,y,z are transformed incoming and outgoing velocity

vectors obtained from MD simulations; vGM
x , vGM

y , and vGM
z are velocity components predicted by GM model; v∗,GM

y is the normal velocity
component predicted by the GM model and mapped back into the Rayleigh distribution.
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FIG. 3. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components both in nm/ps for He-Au system. The dashed
horizontal and diagonal lines indicate fully diffusive and specular conditions, respectively. Red lines indicate the least-square linear fit of the
data. In the last column the corresponding probability density function for reflecting particles are shown. Scheme-I uses preprocessed MD
results. Scheme-II uses MD results without any preprocessing.

Eq. (5) (step 2 in Scheme-I) results in the Gaussian distribu-
tions for the normal velocity components (v′∗,MD

y , v∗,MD
y )

T (ζ ) =
√

2β er f −1

[
1 − 2 exp

(
− ζ 2

2β

)]
, β = kBTg

mg
, (5)

T −1(ζ ) =
√

−2β ln

[
1

2
− 1

2
er f

(
ζ√
2β

)]
, (6)

where Tg is the gas temperature and can be computed from the
average gas kinetic energy.

FIG. 4. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components both in nm/ps for Ar-Au system. The dashed
horizontal and diagonal lines indicate fully diffusive and specular conditions, respectively. Red lines indicate the least-square linear fit of the
data. In the last column the corresponding probability density function for reflecting particles has been shown. Scheme-I uses preprocessed
MD results. Scheme-II uses MD results without any preprocessing.
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FIG. 5. Impact of the number of Gaussian functions (NG) in the
predicted velocity distribution in the normal direction by GM model
in the case of Ar-Au system. Scheme-I100 uses preprocessed MD
results based on NG = 100. Scheme-II100�NG�600 uses MD results
without any preprocessing.

In Ref. [32], it was mentioned that applying the introduced
preprocessing step on the input data leads to a better perfor-
mance of the GM model. However, it was not clarified which
were the key factors considered to play a role in analyzing the
GM model performance. Having a purpose slightly different
than the one in Ref. [32], that is, in applying the GM model to
study the correlation between impinging and outgoing veloc-
ity components in each direction rather than for overall kinetic
energy, it was important to analyze the impact of applying the
transfer function in different steps on the molecular scatter-
ing results for different directions. Therefore, to investigate
the impact of the proposed scheme on the performance of
the GM model in our system, two different approaches for
implementing the collision data obtained by MD simulations
were employed. In the first case (Scheme-I), preconditioning
was carried out before logging the collision data into the GM
model. In the second case (Scheme-II), as it is depicted in
Fig. 2, MD simulations’s collisional data were directly fed
into the GM model without using any preprocessing. It is note-

0 200 400 600 800 1000
N

G

0.86

0.88

0.9

0.92

0.94

0.96

E
A

C

Ar+Au

MD
Scheme-I
Scheme-II

0 200 400 600 800 1000
N

G

0

0.05

0.1

0.15

0.2

E
A

C

He+Au

MD
Scheme-I
Scheme-II

FIG. 6. Variation of the energy accommodation coefficient ob-
tained from the MD simulation and the GM model using different
numbers of Gaussian functions NG.

worthy to mention that, in the first approach, all the obtained
velocity components by the GM model (vGM

x , vGM
y , vGM

z ) are
Gaussian distributions. Therefore, using the reverse transfer
function proposed in Ref. [32] and shown in Eq. (6) the
normal velocity component is mapped back into the Rayleigh
distribution, v∗,GM

y , (step 5 in Scheme-I) to compare with the
initial MD results. In Scheme-II the predicted normal velocity
component by the GM model resembles a Rayleigh distribu-
tion. Therefore the obtained distributions can be used directly
for the comparison purpose. Herein, the system with walls at
the same temperature (Tb = Tt = 300 K), and without impos-
ing any external velocity on the walls is used as a benchmark.
The resulting velocity correlation distribution and PDF of the
outgoing velocity for each molecular velocity component in
the case of the He-Au and Ar-Au systems are shown in Figs. 3
and 4, respectively.

As it is depicted in Fig. 3, for the He-Au system both
Scheme-I and Scheme-II approaches are in a good agree-
ment with MD simulation results. In the case of Ar-Au (see
Fig. 4) the only notable difference between MD, Scheme-I ,
and Schemea − II results is in the PDF of the normal velocity
component (last column, second row).

For the Ar-Au system, the number of Gaussian functions
NG employed in the GM model was increased to determine
whether it can improve the predicted velocities by Scheme-II
in the normal direction. In Fig. 5, the PDFs for the normal
velocity component derived by Scheme-I based on NG =
100 (referred to as Scheme-I100), Scheme-II (referred to as
Scheme-IING , 100 � NG � 600), as well as MD results are
represented. It is shown that by increasing NG the results
obtained by Scheme-II converge towards the results obtained
by MD simulations and the Scheme-I model, and at NG = 600
it is in excellent agreement with the other two methods.

In addition to the velocity correlations, the energy accom-
modation coefficient (EAC) was also computed to evaluate
the performance of the GM model based on the introduced
schemes for feeding the MD data into the model for training
purposes. In each scheme NG was varied from NG = 1 to
NG = 1000. In Fig. 6, it is seen that the variation in the EAC
with increasing NG is rather smoother in the case of Scheme-I .
In addition, for NG = 600 EAC computed by both GM models
are in a perfect match with MD results.

From this analysis, it is deduced that generally Scheme-I
has a better performance than Scheme-II . Therefore, to
achieve high precision in the predicted velocity correlations
and computed ACs, in the remaining part of this work
Scheme-I based on NG = 600 is employed for training the GM
model. The training of the model for each case takes within 10
to 12 minutes on a regular laptop computer.

B. Performance evaluation of GM model

In the next step, the performance of the GM model in com-
parison with the CLL model, which is one of the most used
stochastic GSI models, and MD simulations results is studied.
The comparison was carried out using the velocity correlation
between impinging and outgoing velocities, and the PDF of
the outgoing velocities in each spatial direction. Besides that,
based on the predicted velocities via each of the GSI models,
various accommodation coefficients including the tangential
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FIG. 7. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for Ar-Au system (Tb = 300 K,
Tt = 300 K, Sw = 0). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions, respectively. Red lines indicate
the least-square linear fit of the data. In the last column the corresponding probability density function for the reflecting particles is shown.

momentum accommodation coefficients in the both z and z
directions (αx, αz), the normal energy accommodation coeffi-
cient (αNE ), and the energy accommodation coefficient (αE )
are computed and verified against the MD simulations results.

For both Au-Ar and Au-He systems, two kinds of physical
problems are investigated. In the first case study, the tem-
perature of both walls are set to 300 K, and in the second

case, the temperature of the bottom wall surface Tb is set to
300 K, and that of the top wall surface Tt is set to 500 K.
Besides that, in both cases the impact of flow condition on
the performance of the GSI models hwas also investigated.
As it is represented in Fig. 1, to achieve this goal an external
velocity is imposed to the bottom and top walls in the −x
and x directions, respectively. The following speed ratios are

FIG. 8. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for Ar-Au system at the bottom wall
(Tb = 300 K, Tt = 300 K, Sw = 0.5). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions, respectively.
Red lines indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the reflecting
particles is shown.
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FIG. 9. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for Ar-Au system at the bottom
wall (Tb = 300 K, Tt = 500 K, Sw = 0). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions, respectively.
Red lines indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the reflecting
particles is shown.

considered in the simulations: Sw = 0.25 and Sw = 0.5. For
each system the most significant results are discussed in the
main text and the remaining ones for Ar-Au system can be
found in Appendix B (Figs. 16–19), and for He-Au can be
found in Appendix C (Figs. 20–25).

Normally, to derive a machine-learning-based model for a
system, two different sets of data are required. The first set,
called the training set, is used to derive the model parameters,
and the second set, called the test set, is utilized to validate
the model. In this study, before gathering the collisional data
for computing accommodation coefficients (ACs) or training

FIG. 10. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for Ar-Au system at the top wall
(Tb = 300 K, Th = 500 K, Sw = 0). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions, respectively. Red
lines indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the reflecting particles
is shown.
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FIG. 11. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for Ar-Au system at the
bottom wall (Tb = 300 K, Tt = 500 K, Sw = 0.5). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions,
respectively. Red lines indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the
reflecting particles is shown.

the GM model, it was ensured that the system has reached
equilibrium conditions. Therefore, for each MD setup, char-
acterized by a unique set of walls temperatures and velocities,
there will not be any noticeable difference in collisional data
obtained from different MD simulations. To prove this, for
a specific MD setup, two independent MD simulations were
conducted. One used as the training set (MDtrain), and the
other one used as the test set (MDtest). For each setup, using

a different seed number in the Gaussian velocity generator,
a different ensemble of initial velocities was created for the
gas atoms. The velocity correlations between impinging and
outgoing velocities, the PDF of the outgoing velocities, and
the computed ACs are represented in the Appendix A (Fig. 15
and Table VI). It was shown that the obtained results from the
MDtrain, MDtest, and the GM model are in perfect match with
each other.

FIG. 12. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for He-Au system (Tb = 300 K,
Tt = 300 K, Sw = 0). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions, respectively. Red lines indicate
the least-square linear fit of the data. In the last column the corresponding probability density function for the reflecting particles is shown.
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FIG. 13. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for He-Au system (Tb = 300 K,
Tt = 300 K, Sw = 0.5). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions, respectively. Red lines
indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the reflecting particles is
shown.

1. Ar-Au system

Figure 7 shows the velocity correlations and the outgoing
velocity PDFs in the case of a no-flow Ar-Au system, in which
both walls have the same temperature (Tb = Tt = 300 K). It
was observed when the gas and the both walls are in equi-
librium state with each other, the predicted results by the

CLL and GM models are in a good agreement with the ones
obtained by MD simulations.

In the next step, the flow velocity was added to the system
by imposing a velocity to the walls in the the x direction.
As it is depicted in Fig. 8, which belongs to the case of
Sw = 0.5, there is a good agreement between the predicted
PDFs in the y and z directions by both GSI models and the

FIG. 14. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for He-Au system at the top wall
(Tb = 300 K, Tt = 500 K, Sw = 0.5). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions, respectively.
Red lines indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the reflecting
particles is shown.
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MD simulations’s results. On the contrary, in the x direction,
which is the direction of the imposed velocity, the results
predicted by the CLL model deviate from the MD results
while the results from the GM model are still in excellent
agreement with the MD results. Herein, the mean value of
the reflected velocities obtained from MD simulation and the
GM model are 0.122 and 0.124 nm/ps, respectively. While the
predicted mean value using the CLL model is 0.002 nm/ps. It
is noteworthy to mention that for the system with Sw = 0.25
the same kind of trend has been observed (see Appendix B).
In this case, while the predicted mean velocities in the x
direction by MD simulation and the GM model are 0.0627
and 0.063 nm/ps, respectively, the value predicted by the CLL
model is 0.001 nm/ps.

Figures 9 and 10 illustrate the resulting velocity correla-
tions of impinging and reflected molecules after the collision
with the bottom (cold) and the top (warm) walls in the case,
in which there is temperature gradient between the walls
(Tb = 300 K, Tt = 500 K). It is seen that at the both walls the
predicted results by the GM model are in perfect match with
the MD simulations results. However, the results obtained by
the CLL model for the tangential velocity components (vx, vz)
at both walls slightly deviated from the MD results at the peak
of velocity PDFs.

The velocity distributions at the bottom wall for the system
with temperature gradient between the walls and flow condi-
tion with Sw = 0.5 are represented in Fig. 11. Similar to the
earlier cases, the predicted results from the GM model have a
very good agreement with MD simulations, while a mismatch
is observed between results obtained by MD simulations and
the CLL model in the tangential directions. This mismatch is
more evident in the direction of imposed velocity (i.e., the x
direction).

For the Ar-Au system, the computed ACs in the case of
systems with the walls at the same and different temperatures
are reported in Tables II and III, respectively. First of all, by
going through the results in the aforementioned tables it can
be understood that imposing the external velocity does not
have a significant impact on the obtained ACs on the walls.
Such behavior was also reported in Ref. [48], where a gas
kinetic model was employed to study the GSI in a Couette
flow system. Besides that, in the case of the system with the
walls at different temperatures (see Table III) all the ACs
computed on the top wall are lower than the ones computed
on the bottom wall. This behavior is due to the higher surface
temperature at the top wall and was also previously reported
[25]. Considering the directional accommodation coefficients
including αx, αz, αNE , it was observed that the results obtained
by both GSI models are in good agreement with the MD
simulation results. However, it is found that αE obtained by
the CLL model is slightly higher that the MD results, whereas
the results obtained by the GM model is always in perfect
match with the MD ones.

2. He-Au system

The same sort of assessment was also carried out in the
case of the He-Au system. The velocity distributions for the
system, in which both walls have the same temperature (Tb =

TABLE II. Tangential momentum (αx, αz), normal energy (αNE),
and energy (αE ) accommodation coefficients for two parallel walls
Ar-Au system with the walls at the same temperature at various speed
ratios (Sw), computed using different stochastic approaches: CLL and
GM models and MD simulations.

Sw Model αx αz αNE αE

MD 0.876 0.888 0.91 0.873
0 CLL 0.877 0.886 0.91 0.947

GM 0.879 0.888 0.909 0.884
MD 0.879 0.88 0.916 0.878

0.25 CLL 0.873 0.878 0.914 0.95
GM 0.879 0.877 0.921 0.888
MD 0.868 0.873 0.903 0.87

0.5 CLL 0.864 0.88 0.901 0.94
GM 0.872 0.871 0.911 0.891

Tt = 300 K), without and with imposing the external velocity
(Sw = 0.5) are shown in Figs. 12 and 13, respectively. Com-
paring the velocity correlations obtained by the molecular
simulations and the GSI models, the most significant observed
difference is that the results from the CLL model are narrower
than those computed by the MD simulations and GM model.
Furthermore, inducing wall velocity (see Fig. 13) does not
have any noticeable influence on the system behavior, and as
it is also illustrated in the aforementioned figures, the velocity
PDFs obtained by both GSI models are in accordance with

TABLE III. Tangential momentum (αx, αz), normal energy
(αNE), and energy (αE ) accommodation coefficients for two parallel
walls Ar-Au system with a temperature gradient between the walls
at various speed ratios (Sw), computed using different stochastic
approaches: CLL and GM models and MD simulations. B: bottom
wall; T: top wall.

Sw Model Wall αx αz αNE αE

MD B 0.886 0.884 0.91 0.873
T 0.775 0.777 0.856 0.792

0 CLL B 0.884 0.884 0.908 0.943
T 0.778 0.777 0.855 0.907

GM B 0.887 0.882 0.908 0.882
T 0.767 0.772 0.871 0.81

MD B 0.875 0.876 0.898 0.865
T 0.771 0.769 0.851 0.778

0.25 CLL B 0.877 0.881 0.899 0.937
T 0.772 0.766 0.848 0.901

GM B 0.877 0.88 0.903 0.883
T 0.772 0.773 0.851 0.79

MD B 0.876 0.875 0.897 0.869
T 0.76 0.761 0.844 0.773

0.5 CLL B 0.875 0.875 0.898 0.94
T 0.76 0.763 0.843 0.897

GM B 0.877 0.873 0.897 0.877
T 0.76 0.767 0.844 0.789
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TABLE IV. Tangential momentum (αx, αz), normal energy (αNE),
and energy (αE ) accommodation coefficients for two parallel walls
He-Au system with the walls at the same temperature at various
speed ratios (Sw), computed using different stochastic approaches:
CLL and GM models and MD simulations.

Sw Model αx αz αNE αE

MD 0.073 0.073 0.132 0.05
0 CLL 0.073 0.073 0.131 0.137

GM 0.074 0.073 0.13 0.052
MD 0.069 0.0.072 0.126 0.042

0.25 CLL 0.069 0.073 0.125 0.131
GM 0.0.07 0.0.07 0.131 0.046
MD 0.067 0.068 0.118 0.041

0.5 CLL 0.067 0.068 0.115 0.123
GM 0.068 0.068 0.115 0.043

the MD results. The resulting velocity distributions at the top
wall of a system, in which two walls are kept at different
temperatures (Tb = Tt = 500 K), and enforced by an external
wall velocity (Sw = 0.5) are depicted in Fig. 14. Similar to
the previous system with the same wall temperatures, it is
seen that also in this system, the only considerable difference
between the obtained results from the GSI models and MD
simulation is that, in terms of sparsity, the velocity correlation
based on the GM model and MD results resemble each other
more. It is deduced that in comparison with the Ar-Au system,

TABLE V. Tangential momentum (αx, αz), normal energy (αNE),
and energy (αE ) accommodation coefficients for two parallel walls
He-Au system with a temperature gradient between the walls at
various speed ratios (Sw), computed using different stochastic ap-
proaches: CLL and GM models and MD simulations. B: bottom wall;
T: top wall.

Sw Model Wall αx αz αNE αE

MD B 0.072 0.07 0.126 0.045
T 0.0.079 0.083 0.137 0.046

0 CLL B 0.07 0.07 0.126 0.131
T 0.079 0.082 0.133 0.143

GM B 0.071 0.072 0.131 0.054
T 0.079 0.085 0.143 0.046

MD B 0.068 0.07 0.122 0.041
T 0.078 0.08 0.135 0.045

0.25 CLL B 0.067 0.07 0.121 0.127
T 0.077 0.08 0.13 0.14

GM B 0.066 0.071 0.121 0.042
T 0.079 0.079 0.131 0.047

MD B 0.066 0.067 0.108 0.036
T 0.079 0.076 0.124 0.039

0.5 CLL B 0.066 0.067 0.109 0.118
T 0.079 0.075 0.124 0.135

GM B 0.067 0.066 0.109 0.045
T 0.079 0.075 0.126 0.041

in the current case introducing various kinds of perturba-
tions, such as the temperature difference between the walls
or imposing an external shear flow on the system does not
affect the results obtained by MD simulation and GSI models,
significantly. This behavior is mainly caused by the essence of
relatively weak interaction strength between He gas and the
Au surface, which leads to rather perfectly elastic reflection
of the He atoms from the Au surface. Tables IV and V present
various ACs obtained from the employed GSI models, as well
as MD simulations for the He-Au system without and with
a temperature gradient between the two walls, respectively.
First of all, considering only the MD-obtained results it is
observed that the majority of ACs for He-Au system are one
order of magnitude smaller than those obtained for Ar-Au
system for the same system condition. This issue, which was
also reported in Ref. [32], confirms further the presence of
the weaker interaction potential at the He-Au interface in the
comparison with the Ar-Au interface. Furthermore, it was
noticed while the calculated directional ACs based on the pre-
dicted velocities by both CLL and GM models are in a good
agreement with the MD results, the CLL model considerably
overpredicts the value of αE . However, the GM model shows
high degree of accuracy in all the computed ACs.

IV. CONCLUSION

In this study, the GM model, an unsupervised machine
learning technique, is employed to investigate the interfacial
interactions between two noble gases (Ar,He) with Au solid
surface. The main advantage of the scattering kernel con-
structed based on the GM model over the existing stochastic
empirical scattering kernels is that its capability is not re-
stricted by the finite number of adjustable parameters, which
are required to be known in advance. The GM model uses
a superposition of multivariate normal distributions to derive
the probability density of a high-dimensional data space. Here
the whole collisional data obtained from MD simulation is
used for training the model. This guarantees that the obtained
model preserves all the important physics in the MD colli-
sional data. The performance of the model in the case of a
thermally nonequilibrium, as well as a system with moving
walls, which are encountered in various applications involving
dilute gas, has been evaluated. The assessment was performed
in terms of both statistical and physical characteristics of the
system, such as the velocity correlation between incoming and
outgoing velocities and the PDF of the outgoing velocities, as
well as different accommodation coefficients obtained using
the predicted postcollisional velocities by the model. Com-
paring the results obtained from the GM and CLL models,
with the MD results showed the excellent performance of the
GM model. Therefore, in the case of monoatomic gases, this
model, as a generalized form of the collisional model, can be
coupled to the coarse-grained simulation techniques, such as
DSMC or LBM, and removes the need for the computationally
demanding MD simulations. To derive such a generalized
scattering kernel, a more extended data set including wider
range of the wall temperatures and velocities, as well as dif-
ferent values for gas density is required, and this is in our
plan for future studies. It is noteworthy to mention that the

015309-12



MODELING RAREFIED GAS-SOLID SURFACE … PHYSICAL REVIEW E 104, 015309 (2021)

high accuracy of the predicted postcollisional velocities by
the GM model makes it also a promising candidate for com-
puting various important physical parameters at the gas-wall
interface, such as ACs, shear stress, and thermal conductance
in the system with highly nonequilibrium gas flow.
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APPENDIX A

Comparison between velocity correlations, PDFs, and ACs
obtained from training (MDtrain), testing (MDtest) and the GM
model for Ar-Au system.

TABLE VI. Tangential momentum (αx, αz), normal energy
(αNE), and energy (αE ) accommodation coefficients for two parallel
walls Ar-Au system at the bottom wall (Tb = 300 K, Tt = 500 K,
Sw = 0.5), using MD training and test data sets, as well as the GM
model.

Model αx αz αNE αE

MDtrain 0.876 0.875 0.897 0.869
MDtest 0.874 0.876 0.895 0.866
GM 0.877 0.873 0.897 0.877

FIG. 15. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for Ar-Au system at the
bottom wall (Tb = 300 K, Tt = 500 K, Sw = 0.5). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions,
respectively. Red lines indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the
reflecting particles is shown.
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APPENDIX B

Velocity correlations and PDFs for some of the Ar-Au case studies, which are not discussed in the main text.

FIG. 16. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for Ar-Au system (Tb = 300 K,
Tt = 300 K, Sw = 0.25). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions, respectively. Red lines
indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the reflecting particles is
shown.

FIG. 17. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for Ar-Au system at the
bottom wall (Tb = 300 K, Tt = 500 K, Sw = 0.25). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions,
respectively. Red lines indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the
reflecting particles is shown.
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FIG. 18. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for Ar-Au system at the top wall
(Tb = 300 K, Tt = 500 K, Sw = 0.25). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions, respectively.
Red lines indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the reflecting
particles is shown.

FIG. 19. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for Ar-Au system at the top wall
(Tb = 300 K, Tt = 500 K, Sw = 0.5). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions, respectively.
Red lines indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the reflecting
particles is shown.
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APPENDIX C

Velocity correlations and PDFs for some of the He-Au case studies, which are not discussed in the main text.

FIG. 20. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for He-Au system (Tb = 300 K,
Tt = 300 K, Sw = 0.25). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions, respectively. Red lines
indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the reflecting particles is
shown.

FIG. 21. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for He-Au system at the bottom
wall (Tb = 300 K, Tt = 500 K, Sw = 0). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions, respectively.
Red lines indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the reflecting
particles is shown.
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FIG. 22. Velocity correlations of impinging (x-axis) and reflected (y-axis) velocity components in nm/ps for He-Au system at the top wall
(Tb = 300 K, Tt = 500 K, Sw = 0). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions, respectively. Red
lines indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the reflecting particles
has been shown.

FIG. 23. Velocity correlations of impinging (x-axis) and reflected (y-axis) velocity components in nm/ps for He-Au system at the
bottom wall (Tb = 300 K, Tt = 500 K, Sw = 0.25). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions,
respectively. Red lines indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the
reflecting particles has been shown.
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FIG. 24. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for He-Au system at the top wall
(Tb = 300 K, Tt = 500 K, Sw = 0.25). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions, respectively.
Red lines indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the reflecting
particles has been shown.

FIG. 25. Velocity correlations of impinging (x axis) and reflected (y axis) velocity components in nm/ps for He-Au system at the
bottom wall (Tb = 300 K, Tt = 500 K, Sw = 0.5). The dashed horizontal and diagonal lines indicate fully diffusive and specular conditions,
respectively. Red lines indicate the least-square linear fit of the data. In the last column the corresponding probability density function for the
reflecting particles has been shown.
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