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Alternative wetting boundary condition for the chemical-potential-based free-energy
lattice Boltzmann model
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The free-energy lattice Boltzmann (LB) method is a multiphase LB approach based on the thermodynamic
theory. Compared with traditional free-energy LB models, which employ a nonideal thermodynamic pressure
tensor, the chemical-potential-based free-energy LB model has attracted much attention in recent years as it
avoids computing the thermodynamic pressure tensor and its divergence. In this paper, we propose an improved
wetting boundary condition for the chemical-potential-based free-energy LB model. Different from the original
wetting boundary condition in the literature, the improved wetting boundary condition utilizes a surface chemical
potential that is compatible with the chemical potential of the fluid domain. Accordingly, the thermodynamic
consistency of the chemical-potential-based free-energy LB model can be retained by the improved wetting
boundary condition. Numerical simulations are performed for droplets resting on flat and cylindrical surfaces
with different contact angles. The numerical results show that the improved wetting boundary condition yields
more reasonable results and the maximum spurious velocities are found to be smaller by 2 ∼ 3 orders of
magnitude than those produced by the original wetting boundary condition.
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I. INTRODUCTION

Understanding multiphase flows is very important for a
wide range of industrial applications [1], such as oil recovery
and subsurface storage of carbon dioxide. However, the dy-
namics of interfaces involved in multiphase flows is difficult
to study since the interfaces between different phases are
usually deformable and their shapes are not known a priori.
To capture an interface or track the motion of an interface,
many numerical methods have been developed, such as the
front-tracking method [2], the volume of fluid (VOF) method
[3], and the level set method [4]. The front-tracking method
is usually unable to simulate the interface coalescence or
breakup [1], while in the VOF and level set methods the
interface reconstruction step or interface reinitialization is re-
quired [5]. Moreover, numerical instability may appear when
the VOF and level set methods are employed to simulate
surface-tension-dominated flows in complex geometries such
as porous media.

In the past three decades, the lattice Boltzmann (LB)
method has been developed into an efficient numerical method
for simulating fluid flow and heat transfer [6–11]. Owing to its
mesoscopic features, the LB method has shown some distinc-
tive advantages over conventional numerical methods and has
been widely used to simulate multiphase flows and interfacial
phenomena. The existing multiphase LB models can be gen-
erally classified into four categories, i.e., the pseudopotential
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LB model [12–20], the color-gradient LB model [21–23], the
free-energy LB model [24,25], and the phase-field LB model
[26–28]. Among these multiphase LB models, the free-energy
model proposed by Swift et al. [24,25] was devised based
on the thermodynamic theory, which starts with a free-energy
functional that contains the thermodynamics of the intended
system, and then other relevant physical quantities can be
derived from the free-energy functional [29].

In the original free-energy LB model [24,25], the ther-
modynamics of a multiphase system is incorporated into the
model by modifying the second-order moment of the equi-
librium density distribution function to include a nonideal
thermodynamic pressure tensor. Nevertheless, the original
free-energy LB model was found to break the Galilean in-
variance owing to some non-Navier-Stokes terms recovered
in the momentum equation [30]. In the literature there are
mainly two approaches that can be used to overcome the
drawback of the original free-energy LB model: one is to add
some correction terms to the equilibrium density distribution
function [25,31–33] so as to restore the Galilean invariance,
and the other is using a forcing term to incorporate the thermo-
dynamics of a multiphase system into the LB equation, which
was proposed by Wagner and Li [34]. In their free-energy
LB model, a forcing term is employed to incorporate the
divergence of a nonideal pressure tensor into the LB equation.
A similar LB model can be found in the study of Lee and
Fischer [35], in which the divergence of the nonideal pressure
tensor is expressed by its chemical-potential form. This class
of free-energy LB models has attracted much attention in
recent years [36,37].

When the multiphase modeling involves a solid wall, it
is necessary to implement a wetting boundary condition that
accounts for the contact angle between the fluid interface and
the solid wall. The first study of wetting phenomena using
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the free-energy LB model is attributed to Briant et al. [38].
They proposed a contact angle scheme to implement the wet-
tability of a solid surface in the free-energy LB simulations.
Their scheme has been extensively used in investigating wet-
ting phenomena by the free-energy LB model. For example,
Dupuis and Yeomans [39] employed the scheme of Briant
et al. [38] to study the spreading of droplets on chemically
heterogeneous surfaces. Nevertheless, it should be noted that
in the scheme of Briant et al. [38] the free-energy density was
chosen to be a special form (other than the van der Waals
free-energy density). The choice of Briant et al. brings an
advantage that the wall-fluid surface tensions can be calcu-
lated in a closed form, but it prevents the incorporation of
traditional nonideal equations of state into the free-energy LB
model, such as the van der Waals equation of state and the
Peng-Robinson equation of state [40].

The fluid-solid interaction scheme, which is a well-known
contact angle scheme for the pseudopotential multiphase LB
model, has also been introduced into the free-energy LB
model by Mazloomi M. et al. [41]. In their study, the Peng-
Robinson equation of state is utilized and the multiphase
thermodynamics is incorporated via a nonideal force given by
F = ∇(ρc2

s ) − ∇ · P, where ρ is the density, cs is the lattice
sound speed, and P is the nonideal pressure tensor. Recently,
Wen et al. [42] proposed a wetting boundary condition for the
chemical-potential-based free-energy LB model, in which the
nonideal force is expressed by F = ∇(ρc2

s ) − ρ∇μc, where
μc is the chemical potential. A surface chemical potential was
used at the solid surface and different contact angles were sim-
ulated by adjusting the value of the surface chemical potential.
Such a wetting boundary condition is easy to implement but
the study of Wen et al. [42] shows that it leads to very large
spurious velocities (on the order of 0.01 ∼ 0.05). Besides, it
should be noted that tuning the surface chemical potential over
a wide range to achieve different contact angles is seemingly
inconsistent with the thermodynamic theory.

The aim of the present work is therefore to develop
an improved wetting boundary condition for the chemical-
potential-based free-energy LB model. In comparison with
the original wetting boundary condition devised in Ref. [42],
the improved wetting boundary condition employs a surface
chemical potential that is compatible with the chemical po-
tential of the fluid domain and can significantly reduce the
spurious velocities. The rest of the present paper is orga-
nized as follows. The chemical-potential-based free-energy
LB model is briefly introduced in Sec. II. The improved wet-
ting boundary condition is presented in Sec. III. Numerical
simulations are carried out in Sec. IV. A brief summary is
finally given in Sec. V.

II. CHEMICAL-POTENTIAL-BASED FREE-ENERGY
LB MODEL

In this study, a two-dimensional (2D) nine-velocity (D2Q9)
LB model with a multiple-relaxation-time (MRT) collision
operator [43,44] is employed. Generally, the MRT-LB equa-
tion can be written as follows [45,46]:

fα (x + eαδt , t + δt ) = fα (x, t ) − �αβ

(
fβ − f eq

β

)∣∣
(x, t )

+ δt (Gα − 0.5�αβGβ )|(x, t ), (1)

where fα is the density distribution function, f eq
α is the equi-

librium density distribution function, x is the spatial position, t
is the time, δt is the time step, eα is the discrete velocity in the
αth direction, Gα is the forcing term in the discrete velocity
space, and �αβ = (M−1�̄M)αβ is the collision operator, in
which M is a transformation matrix and �̄ is a diagonal matrix
[45,46]. For the D2Q9 lattice, the diagonal matrix is given by

�̄ =diag
(
τ−1

c , τ−1
e , τ−1

ς , τ−1
c , τ−1

q , τ−1
c , τ−1

q , τ−1
v , τ−1

v

)
,

(2)

where τc = 1 is the nondimensional relaxation time related
the conserved moments; τς and τq are free parameters; while
τe and τv are the nondimensional relaxation times determining
the bulk and shear viscosities, respectively.

Through the transformation matrix M, the right-hand side
of Eq. (1) can be implemented in the moment space:

m∗ = m − �̄(m − meq ) + δt

(
I − �̄

2

)
S, (3)

where m = Mf , meq = Mfeq, and S = MG is the forcing
term in the moment space. Then the streaming step can be
implemented as follows:

fα (x + eαδt , t + δt ) = f ∗
α (x, t ), (4)

where f∗ = M−1m∗ and M−1 is the inverse matrix of the
transformation matrix. The macroscopic density and velocity
can be calculated by

ρ =
∑

α

fα, ρu =
∑

α

eα fα + δt

2
F, (5)

where F is the force exerted on the system. For the standard
chemical-potential-based free-energy LB model, the nonideal
force is given by [35,42]

F = ∇(
ρc2

s

) − ρ∇μc, (6)

where the chemical potential μc is defined as the variation of
the free energy functional F with respect to the density, i.e.,

μc = δF
δρ

= E ′
f (ρ) − κ∇2ρ, (7)

where κ is a positive constant and E f (ρ) represents the bulk
free-energy density, which leads to an equation of state that
allows for the coexistence of liquid and gas phases.

The standard chemical-potential-based free-energy LB
model was found to suffer from the problem of thermody-
namic inconsistency due to the force imbalance at the discrete
lattice level [47]. Several schemes have been proposed in the
literature to eliminate the thermodynamic inconsistency of the
chemical-potential-based free-energy LB model, such as the
forcing scheme devised by Wagner [48], the Lax-Wendroff
propagation scheme formulated by Lou and Guo [48], and
an improved scheme proposed by Li et al. [49] based on the
MRT collision operator. In the present study we adopt the
improved scheme developed by Li et al. [49] to eliminate the
thermodynamic inconsistency of the chemical-potential-based
free-energy LB model.

For the van der Waals equation of state [24,25,42],
the bulk free-energy density is given by E f (ρ) =
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FIG. 1. Sketch of solid nodes beneath a straight wall.

ρRT ln[ρ/(1−bρ )]−aρ2, which corresponds to the following
chemical potential:

μc = RT

[
ln

(
ρ

1 − bρ

)
+ 1

1 − bρ

]
− 2aρ − κ∇2ρ, (8)

where a is the attraction parameter, b is the repulsion pa-
rameter, and R is the gas constant. In numerical simulations,
the gradient terms are evaluated by the following isotropic
finite-difference scheme:

∇φ = 1

c2
s δt

∑
α

ωαφ(x + eαδt )eα, (9)

where the weights ωα are given by ω0 = 4/9, ω1−4 = 1/9,
and ω5−8 = 1/36.

III. IMPROVED WETTING BOUNDARY CONDITION

As previously mentioned, the first study of wetting phe-
nomena using the free-energy LB model was conducted by
Briant et al. [38]. In their work, the free-energy density was
designed to be a special form, which leads to a special equa-
tion of state. Therefore the contact angle scheme formulated
by Briant et al. [38] is not suitable for the free-energy LB
model using classic nonideal equations of state. Recently,
Wen et al. [42] proposed a chemical-potential boundary con-
dition to implement the wettability of a solid surface for
the chemical-potential-based free-energy LB model. In their
wetting boundary condition, a surface chemical potential is
introduced [42]:

μc(xs) = C, (10)

where xs denotes a solid node (see Fig. 1) and C is a constant.
Meanwhile, the density of the solid node ρ(xs) is determined
according to its neighboring fluid nodes. The value of the
surface chemical potential is adjusted to tune the contact
angle. For the cases shown in Ref. [42], the constant C in
Eq. (10) is changed from C = −0.23 for θ ≈ 30o to C = 0.18
for θ ≈ 180o.

However, the aforementioned wetting boundary condi-
tion was found to yield very large spurious velocities [42].
Moreover, the thermodynamic theory tells us that at the ther-
modynamically equilibrium state the chemical potential is
constant everywhere for a two-phase system with a fixed tem-
perature. In other words, tuning the surface chemical potential
over a wide range may be inconsistent with the thermody-
namic theory. Hence we propose to use the following surface
chemical potential:

μc(xs) =
∑

α ωαμc(xs + eαδt )sw∑
α ωαsw

, (11)

where xs + eαδt denotes the neighboring nodes of the solid
node and the switch function sw equals 1 when xs + eαδt is a
fluid node but is zero when it is a solid node. With the above
treatment, the surface chemical potential is compatible with
the chemical potential of the fluid domain.

In a similar way, we can obtain an average density for each
solid node, i.e.,

ρave(xs) =
∑

α ωαρ(xs + eαδt )sw∑
α ωαsw

. (12)

Using this average density, the boundary nodes can be clas-
sified into three regions: the liquid-phase region, the gas-phase
region, and the region of three-phase contact lines, where the
fluid interface meets the solid boundary. In our simulations,
we utilize 0.05ρl + 0.95ρg � ρave(xs) � 0.95ρl + 0.05ρg to
identify the region of three-phase contact lines, in which ρl

and ρg are the densities of the liquid and gas phases, respec-
tively. For each single-phase region, the density of a solid node
is directly set to be the average density given by Eq. (12), i.e.,
ρ(xs) = ρave(xs). For the region of three-phase contact lines,
the solid node density is determined as follows:

ρ(xs) =
{
ϕρave(xs), for θ � θs,

ρave(xs) − �ρ, for θ > θs,
(13)

where ϕ � 1 and �ρ > 0 are constants employed to adjust the
contact angle. The contact angle θs ≈ 90o corresponds to the
standard case ρ(xs) = ρave(xs). Such a treatment is inspired
by the study of Li et al. [50]. A limiter should be applied to
Eq. (13), i.e., the solid node density given by Eq. (13) is con-
strained within [0.05ρl + 0.95ρg, 0.95ρl + 0.05ρg]. Here it
should be emphasized that for all the solid nodes the surface
chemical potential is always calculated by Eq. (11).

In addition, we would like to make a comparison between
the present wetting boundary condition and the geometric
formulation scheme [51,52]. The advantage of the geometric
formulation scheme lies in that it can give a slope of the liquid-
gas interface that is basically consistent with a prescribed
value of the contact angle. However, the numerical implemen-
tation of this scheme for 2D and 3D curved surfaces is very
complicated, which involves a great number of interpolations,
e.g., its implementation for 2D curved surfaces can be found

FIG. 2. Contact angles simulated by the original wetting bound-
ary condition [42]. (a) μc = −0.065, θ ≈ 34o, (b) μc = −0.047,
θ ≈ 61o, (c) μc = −0.01, θ ≈ 90o, and (d) μc = 0.112, θ ≈ 152o.

015303-3



Y. YU, Q. LI, AND R. Z. HUANG PHYSICAL REVIEW E 104, 015303 (2021)

FIG. 3. Contact angles simulated by the improved wetting
boundary condition. (a) ϕ = 1.6, θ ≈ 34o, (b) ϕ = 1.3, θ ≈ 61o, (c)
ϕ= 1.02, θ ≈ 90o, and (d) �ρ = 1.8, θ ≈ 152o.

in Ref. [52] (see Figs. 4 and 5 in the reference and the related
descriptions therein).

IV. NUMERICAL SIMULATIONS

In the previous section, an improved wetting boundary
condition has been devised for the chemical-potential-based
free-energy LB model. In this section numerical simulations
are carried out to validate the proposed wetting boundary
condition.

A. Droplet resting on a flat surface

The test of a droplet resting on a flat surface is first
considered to verify the capability of the improved wetting
boundary condition for simulating different contact angles
on a flat surface. The computational domain is taken as
Lx × Ly = 180 l.u. × 90 l.u., in which l.u. represents lattice
units. The flat surface is located at the bottom of the computa-
tional domain. Initially, a semicircular droplet is placed at the
center of the flat surface. The initial radius of the droplet is
30 l.u. In simulations, the parameters in Eq. (8) are chosen as
follows: a = 9/392, b = 2/21, R = 1, and κ = 0.02. The crit-
ical density and temperature are given by ρc = 1/(3b) = 3.5
and Tc = 8a/(27Rb) = 1/14, respectively. Our simulations
are conducted at T = 0.7Tc, which corresponds to the coex-
isting densities ρl ≈ 7.52 and ρg ≈ 0.46 for circular droplets.
The kinematic viscosity is chosen as ν = 0.15. The periodic
boundary condition is applied in the horizontal direction,
whereas the halfway bounce-back scheme is employed at the

bottom and top boundaries. The wetting boundary condition
is imposed at the flat surface.

The simulation results obtained by the original wetting
boundary condition [42] and the improved wetting bound-
ary condition at t = 6 × 104δt are shown in Figs. 2 and 3,
respectively. Both types of the wetting boundary conditions
are shown to be capable of modeling contact angles over a
wide range. Nevertheless, the two wetting boundary condi-
tions are found to be different in the following aspects. First,
they exhibit different performances in terms of the thermody-
namic consistency. To illustrate this point, the maximum and
minimum densities yielded by the two wetting boundary con-
ditions are compared in Table I for different contact angles.
From the table we can see that the maximum and minimum
densities given by the improved wetting boundary condition
are in excellent agreement with the equilibrium liquid and gas
densities (ρl ≈ 7.52 and ρg ≈ 0.46), respectively. However,
using the original wetting boundary condition [42], the maxi-
mum density considerably deviates from ρl when θ < 90o and
the minimum density deviates from ρg when θ > 90o, which
means that the thermodynamic consistency of the free-energy
LB model has been broken by the original wetting boundary
condition [42].

Furthermore, the spurious velocities yielded by the im-
proved wetting boundary condition are found to be sig-
nificantly smaller than those given by the original wetting
boundary condition [42]. The velocity fields obtained by the
two wetting boundary conditions are compared in Fig. 4. Ow-
ing to the symmetry, only half of the computational domain is
shown. From the figure it can be seen that, when the original
wetting boundary condition [42] is used, the spurious veloci-
ties are very large near the three-phase contact lines (reduce to
contact points in two dimensions). On the contrary, Fig. 4(b)
shows that the spurious velocities yielded by the improved
wetting boundary condition are very small. Quantitatively, the
maximum spurious velocities given by the two wetting bound-
ary conditions are compared in Fig. 5 for different cases. The
figure shows that the maximum spurious velocities increase
as the contact angle deviates from θ ≈ 90o. Specifically, it
can be found that the maximum spurious velocities caused by
the improved wetting boundary condition are basically on the
order of 10−5, which are smaller by three orders of magnitude
than those given by the original wetting boundary condition
[42]. Besides, the average deviation of the velocity field is
also evaluated. For the cases of θ ≈ 34o, 61o, and 152o, the
average deviations of the velocity fields yielded by the original

TABLE I. Comparison of the maximum and minimum densities produced by the original wetting boundary condition [42] and the improved
wetting boundary condition for different contact angles.

Original wetting B.C. [42] Improved wetting B.C.

θ (degrees) ρmax ρmin ρmax ρmin

34 8.038 (6.9%) 0.451 (2.0%) 7.499 (0.3%) 0.451 (2.0%)
61 7.902 (5.1%) 0.456 (0.9%) 7.508 (0.2%) 0.456 (0.9%)
90 7.568 (0.6%) 0.461 (0.2%) 7.519 (0.0%) 0.461 (0.2%)
121 7.586 (0.9%) 0.430 (6.5%) 7.527 (0.09%) 0.465 (1.1%)
152 7.599 (1.1%) 0.409 (11.1%) 7.531 (0.14%) 0.467 (1.5%)
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FIG. 4. The velocity fields obtained by (a) the original wetting boundary condition [42] and (b) the improved wetting boundary condition
in the cases of (from left to right) θ ≈ 34o, 61o, and 152o, respectively. Owing to the symmetry, only half of the computational domain is
shown.

wetting boundary condition are 1.5 × 10−4, 5.7 × 10−5, and
9.3 × 10−5, respectively, while the average deviations pro-
duced by the improved wetting boundary condition are 9.8 ×
10−7, 2.5 × 10−7, and 2.4 × 10−6, respectively.

B. Simulation of dynamic contact angles

In this subsection, the capability of the proposed wetting
boundary condition for simulating dynamic contact angles is
numerically validated by testing the Cox-Voinov law [53–60].
We consider the movement of a liquid film between two infi-
nite flat parallel plates. The computational domain is taken as

30 60 90 120 150
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 Wetting boundary condition of Ref. [42]
 Improved wetting boundary condition

FIG. 5. Comparison of the maximum spurious velocities pro-
duced by the original wetting boundary condition [42] and the
improved wetting boundary condition for different cases.

Lx × Ly = 300 l.u. × 50 l.u. A liquid film is initially located
at the center of the computational domain (see Fig. 6(a)) and
its width is 60 l.u. The static contact angle of the two flat
parallel plates is chosen as θeq ≈ 58.5o and the kinematic
viscosity is taken as ν = 0.15. To mimic the pressure-driven
planar Poiseuille flow, a horizontal body force ρa is applied to
the computational domain with a = (ax, 0) and the periodic
boundary condition is employed in the horizontal direction. A
steady state will be achieved in which the liquid film migrates
along the channel at a constant speed [59], with the contact
lines moving along each wall with a measured velocity UCL.
The steady movement of the liquid film is expected to follow
the Cox-Voinov law [53–57]:(

θ3
d − θ3

eq

) ∝ Ca, (14)

where θd is the dynamic advancing contact angle and Ca =
μUCL/σ is the Capillary number, in which σ is the surface

 

(a)  

 

(b)  

FIG. 6. Simulation of the movement of a liquid film between two
infinite flat parallel plates. (a) The initial state and (b) a snapshot of
the case Ca ≈ 0.043 at t = 4 × 104δt .
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FIG. 7. Numerical validation of the Cox-Voinov law. The linear
relationship between (θ3

d −θ 3
eq ) and the Capillary number. In this

figure the contact angles θd and θeq are expressed in terms of radians
rather than degrees.

tension and μ = ρlν is the dynamic viscosity. Here it should
be noted that Eq. (14) is valid for small Ca numbers [61–64].
Previous experimental studies have shown that the law given
by Eq. (14) does not hold for Ca > 0.1 [65]. Besides, as men-
tioned by Göhl et al. [62] and Kovalev et al. [64], Eq. (14) can
be applied on advancing contact lines, in which the contact
angle increases with increasing contact line velocity. In the
cases of receding contact angles, Eq. (14) no longer provides
an adequate approximation [64] and readers are referred to
some related studies listed in Ref. [62]. In our simulations,
different cases are considered by varying ax from 0.375 ×
10−5 to 1.25 × 10−5. Correspondingly, the Capillary number
varies from Ca ≈ 0.016 to Ca ≈ 0.056. A snapshot of the
case Ca ≈ 0.043 at t = 4 × 104δt is shown in Fig. 6(b). Our
numerical results of (θ3

d −θ3
eq ) are displayed in Fig. 7, which

clearly verifies the linear relationship between (θ3
d −θ3

eq ) and
the Capillary number.

C. Droplet resting on a cylindrical surface

Now we turn our attention to verifying the capability of the
improved wetting boundary condition for modeling a droplet
resting on a cylindrical surface with different contact angles.
The computational domain is chosen as Lx × Ly = 180 l.u. ×
200 l.u. A solid circular cylinder of radius Rs = 40 l.u. is
located at (90, 100) and a droplet of the same radius is
placed above the circular cylinder with its center at (90, 65).

FIG. 8. Simulation of a droplet resting on a cylindrical surface.
Comparison of the density contours obtained by (a) the original wet-
ting boundary condition [42] and (b) the improved wetting boundary
condition. From left to right: θ ≈ 42o, 90o, and 142o, respectively.

The periodic boundary condition is applied in the x and y
directions, while the halfway bounce-back scheme and the
wetting boundary condition are employed at the cylindrical
surface. The parameters in Eq. (8) and the kinematic viscosity
are the same as those used in the previous subsections. The
temperature is still chosen as T = 0.7Tc, which corresponds
to ρl ≈ 7.52 and ρg ≈ 0.46.

The density contours obtained by the original wetting
boundary condition [42] and the improved wetting boundary
condition at t = 4 × 104δt are displayed in Figs. 8(a) and 8(b),
respectively, for different contact angles. The capability of the
improved wetting boundary condition for simulating contact
angles on a curved boundary is well verified. Particularly, by
comparing the results of the two wetting boundary conditions
in the case of θ ≈ 42o, some obvious differences can be
observed, which mainly arise from the fact that the thermo-
dynamic consistency of the free-energy LB model is retained
by the improved wetting boundary condition but is lost when
employing the original wetting boundary condition [42]. The
maximum and minimum densities yielded by the two wetting
boundary conditions are compared in Table II. Similar to the
test of contact angles on flat surfaces, the present test also
shows that the maximum and minimum densities given by
the improved wetting boundary condition agree very well

TABLE II. Comparison of the maximum and minimum densities produced by the original wetting boundary condition [42] and the
improved wetting boundary condition for different contact angles on a cylindrical surface.

Original wetting B.C. [42] Improved wetting B.C.

θ (degrees) ρmax ρmin ρmax ρmin

42 8.287 (10.2%) 0.455 (0.9%) 7.512 (0.1%) 0.458 (0.43%)
90 7.518 (0.03%) 0.460 (0.0%) 7.517 (0.04%) 0.460 (0.00%)
142 7.572 (0.69%) 0.395 (14.1%) 7.520 (0.00%) 0.462 (0.43%)
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FIG. 9. The velocity fields obtained by (a) the original wetting
boundary condition [42] and (b) the improved wetting boundary
condition in the cases of (from left to right) θ ≈ 42o and 142o,
respectively. For these two cases, the maximum spurious velocities
caused by the original wetting boundary condition are 1.44 × 10−2

and 1.23 × 10−2, respectively, while the maximum spurious ve-
locities yielded by the improved wetting boundary condition are
1.03 × 10−5 and 1.49 × 10−4, respectively.

with the equilibrium liquid and gas densities (ρl ≈ 7.52 and
ρg ≈ 0.46), respectively, while the maximum density yielded
by the original wetting boundary condition [42] deviates from
ρl when θ < 90o and the minimum density deviates from ρg

when θ > 90o.
The spurious velocities yielded by the two wetting bound-

ary conditions are compared in Fig. 9 for cases of θ ≈ 42o

and 142o. From the figure it can be clearly seen that the
spurious velocities produced by the original wetting bound-
ary condition [42] are much larger than those caused by the
improved wetting boundary condition. Actually, for the orig-
inal wetting boundary condition [42], the surface chemical

potential will gradually deviate from the chemical potential
of the fluid domain when θ > 90o or θ < 90o, leading to
a chemical potential gradient at the boundary node, which
may be a source of the spurious velocities. For the cases
of θ ≈ 42o and 142o, the average deviations of the velocity
fields given by the original wetting boundary condition are
2.4 × 10−4 and 7.0 × 10−5, respectively, whereas the average
deviations yielded by the improved wetting boundary condi-
tion are 2.2 × 10−6 and 1.8 × 10−5, respectively. Moreover,
unlike Fig. 4(a), in which the large spurious velocities mainly
appear around the three-phase contact lines, Fig. 9(a) shows
that the original wetting boundary condition [42] leads to
relatively large spurious velocities near the whole cylindrical
surface. Such a phenomenon may be related to the curved
boundary. However, it can be seen that the improved wetting
boundary condition performs well for both straight and curved
surfaces.

V. CONCLUSIONS

In this paper, we have proposed an improved wetting
boundary condition to implement the wettability of a solid sur-
face for the chemical-potential-based free-energy LB model.
In comparison with the original wetting boundary condition
[42], the improved wetting boundary condition has the follow-
ing features. First, it employs a surface chemical potential that
is compatible with the chemical potential of the fluid domain,
while the surface chemical potential of the original wetting
boundary condition is adjusted over a wide range to tune the
contact angle, which may lead to a chemical potential gradient
at each boundary node. Second, the numerical results show
that the thermodynamic consistency of the free-energy LB
model is basically retained by the improved wetting boundary
condition but is lost when using the original wetting bound-
ary condition. As a result, the maximum density yielded by
the original wetting boundary condition considerably deviates
from ρl when θ < 90o and the minimum density deviates
from ρg when θ > 90o. Furthermore, the maximum spurious
velocities produced by the improved wetting boundary con-
dition are found to be smaller by 2 ∼ 3 orders of magnitude
than those yielded by the original wetting boundary condi-
tion. Finally, it is worth mentioning that the proposed wetting
boundary condition can be directly extended to the 3D space.
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Tropea, Phys. Fluids 17, 062103 (2005).
[62] J. Göhl, A. Mark, S. Sasic, and F. Edelvik, Int. J. Multiphase

Flow 109, 164 (2018).
[63] S. Zitz, A. Scagliarini, S. Maddu, A. A. Darhuber, and J.

Harting, Phys. Rev. E 100, 033313 (2019).
[64] A. V. Kovalev, A. A. Yagodnitsyna, and A. V. Bilsky, J. Phys.

Conf. Ser. 1677, 012064 (2020).
[65] X. Wang, X. Peng, Y. Duan, and B. Wang, Chin. J. Chem. Eng.

15, 730 (2007).

015303-8

https://doi.org/10.1016/j.pecs.2015.10.001
https://doi.org/10.1063/5.0015491
https://doi.org/10.1103/PhysRevE.47.1815
https://doi.org/10.1103/PhysRevE.49.2941
https://doi.org/10.1103/PhysRevE.77.066702
https://doi.org/10.1016/j.ijmultiphaseflow.2014.04.005
https://doi.org/10.1103/PhysRevE.87.053301
https://doi.org/10.1016/j.ijheatfluidflow.2015.08.001
https://doi.org/10.1016/j.compfluid.2019.04.014
https://doi.org/10.1103/PhysRevE.73.047701
https://doi.org/10.1103/PhysRevE.86.016709
https://doi.org/10.1103/PhysRevA.43.4320
https://doi.org/10.1063/1.858769
https://doi.org/10.1103/PhysRevE.85.046309
https://doi.org/10.1103/PhysRevLett.75.830
https://doi.org/10.1103/PhysRevE.54.5041
https://doi.org/10.1006/jcph.1999.6257
https://doi.org/10.1016/j.jcp.2004.12.001
https://doi.org/10.1103/PhysRevE.85.026704
https://doi.org/10.1142/S0129183108012571
https://doi.org/10.1016/S0010-4655(00)00090-4
https://doi.org/10.1103/PhysRevE.65.056702
https://doi.org/10.1103/PhysRevE.77.046702
https://doi.org/10.1016/j.physa.2005.09.030
https://doi.org/10.1103/PhysRevE.74.046709
https://doi.org/10.1103/PhysRevLett.114.174502
https://doi.org/10.1103/PhysRevE.102.013303
https://doi.org/10.1103/PhysRevE.69.031602
https://doi.org/10.1016/j.future.2003.12.012
https://doi.org/10.1063/1.2187070
https://doi.org/10.1103/PhysRevE.92.023308
https://doi.org/10.1103/PhysRevE.95.063305
https://doi.org/10.1103/PhysRevE.61.6546
https://doi.org/10.1103/PhysRevE.83.056710
https://doi.org/10.1103/PhysRevE.71.036701
https://doi.org/10.1016/j.jcp.2006.10.023
https://doi.org/10.1103/PhysRevE.83.036707
https://doi.org/10.1103/PhysRevE.91.013302
https://doi.org/10.1103/PhysRevE.103.013304
https://doi.org/10.1103/PhysRevE.100.053313
https://doi.org/10.1103/PhysRevE.75.046708
https://doi.org/10.1016/j.jcp.2015.03.059
https://doi.org/10.1007/BF01012963
https://doi.org/10.1017/S0022112086000332
https://doi.org/10.1017/jfm.2013.202
https://doi.org/10.1016/j.cpc.2013.07.021
https://doi.org/10.1039/D0SM02082F
https://doi.org/10.1209/0295-5075/83/34005
https://doi.org/10.1017/jfm.2015.697
https://doi.org/10.1103/PhysRevLett.98.254503
https://doi.org/10.1063/1.1928828
https://doi.org/10.1016/j.ijmultiphaseflow.2018.08.001
https://doi.org/10.1103/PhysRevE.100.033313
https://doi.org/10.1088/1742-6596/1677/1/012064
https://doi.org/10.1016/S1004-9541(07)60154-2

