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Inertial range statistics of the entropic lattice Boltzmann method in three-dimensional turbulence
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We present a quantitative analysis of the inertial range statistics produced by entropic lattice Boltzmann
method (ELBM) in the context of three-dimensional homogeneous and isotropic turbulence. ELBM is a
promising mesoscopic model particularly interesting for the study of fully developed turbulent flows because
of its intrinsic scalability and its unconditional stability. In the hydrodynamic limit, the ELBM is equivalent to
the Navier-Stokes equations with an extra eddy viscosity term. From this macroscopic formulation, we have
derived a new hydrodynamical model that can be implemented as a large-eddy simulation closure. This model
is not positive definite, hence, able to reproduce backscatter events of energy transferred from the subgrid to
the resolved scales. A statistical comparison of both mesoscopic and macroscopic entropic models based on
the ELBM approach is presented and validated against fully resolved direct numerical simulations. Besides, we
provide a second comparison of the ELBM with respect to the well-known Smagorinsky closure. We found that
ELBM is able to extend the energy spectrum scaling range preserving at the same time the simulation stability.
Concerning the statistics of higher order, inertial range observables, ELBM accuracy is shown to be comparable
with other approaches such as Smagorinsky model.

DOI: 10.1103/PhysRevE.104.015302

I. INTRODUCTION

Turbulence is common in nature and its unpredictable be-
havior has fundamental consequences on the understanding
and control of various systems, from smaller engineering
devices [1–3], up to the larger scales geophysical and astro-
physical flows [4–6]. Turbulent flows are described by the
Navier-Stokes equations (NSE),

∂t u + u · ∇u = −∇p + ν∇2u + f ,
(1)

∇ · u = 0,

which give the evolution of the incompressible velocity field
u(x, t ), with kinematic viscosity ν, subject to a pressure field
p and to an external forcing f . However, even though the
equations of motion are known since almost two hundred
years a direct analytical approach remains elusive [7]. To
overcome mathematical difficulties, scientists, helped by the
exponential growth of the computational power, have tried to
search for approximate solutions using numerical algorithms
[3,8,9]. Unfortunately, also in this direction not every effort
were successful. Indeed, the NSE have a very rich nonlinear
dynamics, where a large range of scales from the domain size
up to the small scales fluctuations, are coupled together. This
results in a very-high-dimensional problem, with the dimen-
sionality proportional to the range of active scales [7], and
with highly intermittent statistics dominated by the presence
of extreme and rare fluctuations [10–12]. As a consequence,
no matter how powerful new-supercomputers are, numerical
algorithms cannot handle all the degrees of freedom involved
in the dynamics [2]. The way out is to introduce a scale sepa-
ration and compute only the dynamics of degrees of freedom
belonging to a subset of scales while neglecting the other

ones [13–16]. However due to the nonlinearity of NSE there
is never a real scale separation in the equations of motion
[7,17], and the small-scale effects on the scales of interest
need to be compensated by the introduction of a model. In
other words, the benefit of multiscale modeling is to achieve a
scale separation, and the main challenge is to find a “closure,”
which guaranties the numerical stability being at the same
time the most accurate as possible in reproducing the coupling
of the missing scales on the resolved ones. This is the principle
behind the celebrated large-eddy simulations (LES), which
actually solve the flow only on a subset of “large” scales by
filtering each term of the NSE and replacing with a closure the
nonlinear coupling term between the resolved and the subgrid
scales (SGS) [3,18]. One of the most important differences
between the real coupling term coming from the filtered NSE
and the common LES closures used in the literature is for the
latter to be purely dissipative to ensure the simulation stability,
see Ref. [13]. As a consequence, it is impossible for the
closures to reproduce the backscatter events of energy going
from the SGS to the large scales, with important consequences
on the statistics of the resolved velocity field. Another possible
numerical approach, who has gained particular popularity,
consists in solving the flow’s macroscopic hydrodynamical
properties as an approximation of its mesoscopic behavior
[19]. The lattice Boltzmann method (LBM) falls into that
category [20,21]. In LBM, the flow is simulated by evolving
the Boltzmann equation for the single phase density function,
f (x, t ). The idea is to evolve the streaming and collision of
particles distribution functions, where the possible velocities
are restricted on a subset of discrete lattice directions [22,23].
It is crucial to choose the collision operator so that macroscop-
ically (in the limit of small Knudsen number), the dynamics

2470-0045/2021/104(1)/015302(10) 015302-1 ©2021 American Physical Society

https://orcid.org/0000-0002-7162-5038
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.104.015302&domain=pdf&date_stamp=2021-07-06
https://doi.org/10.1103/PhysRevE.104.015302


MICHELE BUZZICOTTI AND GUILLAUME TAUZIN PHYSICAL REVIEW E 104, 015302 (2021)

described by the NSE is recovered [24,25]. The most com-
mon collision operator is the Bhatnagar-Gross-Krook model
(BGK), see Ref. [26], corresponding to the relaxation toward
an equilibrium distribution, f eq

i (x, t ), taken to be a discrete
Maxwellian, with a fixed relaxation time, τ0,

fi(x + ci�t , t + �t ) − fi(x, t )

= − 1

τ0

[
fi(x, t ) − f eq

i (x, t )
] + Fi. (2)

Here, Fi, is a term introduced to model a macroscopic
external forcing [21], and i = 0, .., q − 1 indexes the dif-
ferent velocity directions on the lattice. Equation (2) is
obtained discretizing the Boltzmann equation and select-
ing the lattice spacing, �x, such as divided by the time
step, �t , they are equal to the lattice velocity ci = �x/�t .
From those mesoscopic quantities, it is then possible to re-
cover the macroscopic velocity and density fields by following
the perturbative Chapman-Enskog expansion [23]. It can be
shown that evolving Eq. (2) is equivalent, up to approxima-
tions, to evolving the weakly compressible NSE for a flow
with a density ρ(x, t ) = ∑q−1

i=0 fi(x, t ), a velocity u(x, t ) =∑q−1
i=0 fi(x, t )ci/ρ(x, t ), and a viscosity directly related to the

relaxation time [23],

ν0 = c2
s �t

(
τ0 − 1

2

)
, (3)

where cs is the speed of sound, and τ0 is the adimensional
relaxation time. A numerical validation of the hydrodynamic
recovery of BGK-LBM in the context of 2D homogeneous
isotropic turbulence (HIT) was performed in Ref. [27] show-
ing good agreement with DNS either in decaying that in
forced regimes. Although this method is adapted to describ-
ing various physics of multiphase and flows with complex
boundaries in a highly scalable fashion, the BGK-LBM model
suffers of numerical instabilities when, τ0 → 1

2 , i.e., ν0 → 0,
which has made the study of turbulent flows highly pro-
hibitive for this method [27]. To push LBM toward more
turbulent regimes a number of collision operators have been
proposed, see Refs. [28–31]. Here we focus on the entropic
LBM (ELBM) [32,33], which tackles the stability issue by
equipping LBM with an H-theorem. To achieve this result
the ELBM differs from BGK-LBM by two major aspects.
First, the equilibrium distribution f eq(x, t ) is not anymore
a discretization of the Maxwell-Boltzmann distribution, but
it is calculated as the extremum of a discretized H-function
defined as

H[ f ] =
q−1∑
i=0

fi log

(
fi

wi

)
, f = { fi}q−1

i=0 , (4)

where wi are the weights associated to each lattice direction,
under the constraints of mass and momentum conservation,
see Ref. [34]. The second difference in ELBM, is that the
relaxation time is not a constant anymore but is modified at
every time step to enforce the nonmonotonicity of H after the
collision. This results in an apparent unconditional stability as
ν0 → 0 [35]. It follows that ELBM evolution equations are

fi(x + ci�t , t + �t ) − fi(x, t )

= −α(x, t )β
[

fi(x, t ) − f eq
i (x, t )

]
, (5)

where β = 1/(2τ0) is constant, while the new relaxation time,
τeff(x, t ) = 1/(α(x, t )β ), fluctuates in time and space through
the definition of an entropic parameter α(x, t ). More recently
the ELBM method has been extended to a family of multire-
laxation time (MRT) lattice Boltzmann models [36–38]. Note
that α can be computed as the solution of the entropic equa-
tion H[ f ] = H[ f − α f neq], which represents the maximum
H-function variation due to a collision, with f neq = f − f eq.
Following this approach the computation of α(x, t ) can be
performed via an expensive Newton-Raphson algorithm for
every grid and at every time step of ELBM. To alleviate this
problem, after the original ELBM formulation [32], a new ver-
sion has been proposed where the computation of the entropic
parameter is based on an analytical formulation derived as a
first-order expansion of the original model [39,40]. However,
to our knowledge, a study of high-order structure functions
in the context of forced 3D HIT, has never been attempted
before using the ELBM original model. In this regard, and also
aiming to measure high-order, extremely sensitive statistical
observables, we implemented the ELBM original formulation,
relying on the least number of approximations, even though
computationally more expensive. More details about ELBM
will be given in Sec. II. Let us notice that BGK-LBM is re-
covered from Eq. (5) with α = 2 and the specific Maxwellian
expression of f eq

i . It is important to stress that the bridge rela-
tion described in Eq. (3) connecting viscosity and relaxation
time still holds for fluctuating quantities, hence we can write

νeff(α) = c2
s �t

(
1

αβ
− 1

2

)

= c2
s �t

(
1

2β
− 1

2

)
+ c2

s �t
2 − α

2αβ

= ν0 + δνα, (6)

where ν0 represents the constant kinematic viscosity and
δνα is the fluctuating term. Following this idea, it has been
shown that ELBM is implicitly enforcing a SGS model of an
eddy-viscosity type [35,41]. In particular, as initially done in
Ref. [41], and then rederived in chapter 4 of [42], performing
a third-order Chapman-Enskog perturbative expansion in the
limit of small Knudsen number (Kn), it is possible to obtain a
macroscopic approximation of δνα , which can be written as

δνM
α = −c2

s �t2 S
 jSi jSi


Si jSi j
, (7)

where Si j = 1/2(∂ jui + ∂iu j ) is the strain rate tensor. The
entropic eddy viscosity in Eq. (7) is particularly interesting
because it is not positive definite and can reproduce events of
energy backscatter, which is generally not the case among the
other LES closures, i.e., see the Smagorinsky eddy viscosity
[43]. After the introduction of the new LES model, see Sec. II,
we compare it with standard Smagorinsky closure and with
fully resolved data obtained from DNS. At the same time, we
also present for the first time a quantitative investigation of
the inertial range statistics provided by the mesoscopic ELBM
approach in the context of 3D turbulence. Results provide
evidence that ELBM is a good approximation of the 3D flows
up to turbulent regimes never reachable with the standard
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BGK-LBM. We found that ELBM guaranties the simulation
stability producing a considerable extension of the inertial
range scaling, i.e., the extension of the energy spectrum power
law. Measuring statistical properties of higher-order observ-
ables such as the structure functions, we found that ELBM is
also able to reproduce qualitatively the intermittent features
of real 3D turbulent flows with an accuracy comparable to the
Smagorinsky model. To get a more accurate estimation of the
anomalous exponents more refined models are required [44].

The paper is organized as follows. In Sec. II we introduce
the details of the ELBM and the LES models considered
in this work. In Sec. III we present the set of simulations
performed. In Sec. IV we evaluate the quality of the two LES
closures by comparing them with the real SGS energy transfer
measured from fully resolved DNS. In Sec. V we focus on the
intermittent properties by analyzing high-order inertial range
statistics [11,45]. In Sec. VI we discuss our conclusions.

II. TURBULENCE MODELLING

In this section we give a description of the SGS modeling
approaches considered in this work. We start discussing the
mesoscopic ELBM approach highlighting the differences with
respect to the standard BGK-LBM. Following we discuss
the new hydrodynamic LES closure inspired by the ELBM
macroscopic approximation first derived in Ref. [41]. In the
end of this section we briefly recall the well known Smagorin-
sky model.

A. Entropic lattice Boltzmann method

Using the same formalism as in Ref. [32], the ELBM,
Eq. (5), can be rewritten as

fi(x + ci�t , t + �t )

= fi(x, t ) − α(x, t )β
[

fi(x, t ) − f eq
i (x, t )

]
= (1 − β ) f pre

i (x, t ) + β f mir
i (x, t )

= f post
i (x, t ), (8)

where the fluctuating relaxation time is τeff(x, t ) =
1/(α(x, t )β ), with β = 1/(2τ0) and where α(x, t ) is the
time and space dependent, locally calculated, entropic
parameter. The postcollision distribution, f post(β ), can
be understood as a convex combination between the
precollision distribution, f pre = f , and the so-called mirror
distribution, f mir(α) = f pre − α f neq, with f neq = f pre − f eq,
the nonequilibrium part of f pre. This convex combination is
parametrized by the parameter β in the range 0 < β < 1 for
which we have 0.5 < τ0 < +∞. From the definition of the
H-functional given in Eq. (4) the discrete H-theorem can
then be expressed as a the local decrease of the H-functional
between the precollision and postcollision distributions,

�H = H[ f post] − H[ f pre]

= H[(1 − β ) f pre + β f mir(α)] − H[ f ] � 0, (9)

The equilibrium distribution function f eq can be calculated
as the extremum of the convex H-functional introduced in
Eq. (4), which has an analytical solution for the D1Q3 lattice,
whose tensorial product is solution for three D2Q9 and the

D3Q27 lattice,

f eq
i (x, t )

= wiρ

d∏
j=1

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

⎛
⎝2 −

√
1 + u2

j

c2
s

⎞
⎠
⎡
⎢⎢⎣

2u j√
3cs

+
√

1 + u2
j

c2
s

1 − u j√
3cs

⎤
⎥⎥⎦

ci j√
3cs

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

,

(10)

where d is the dimension of the DdQq lattice, cs is the
speed of sound, wi are the weights associated with each lat-
tice direction, and u j (x, t ) = ∑q−1

i=0 fi(x, t )ci j/ρ(x, t ) is the
flow macroscopic velocity. It is important to remark that the
first three moments of the entropic equilibrium distribution
Eq. (10) are exactly the same as the one coming from the
third-order Hermite polynomial expansion of the Maxwell-
Boltzmann equilibrium distribution, namely,

f eq
i (ρ, u) = wiρ

(
1 + u · ci

c2
s

+ uu : cici − c2
s |u|2

2c4
s

+ uuu : · cicici − 3c2
s |u|2u · ci

6c6
s

)
; (11)

therefore, it allows the recovery of the same athermal weakly
compressible NSE as in the case of BGK-LBM [34]. This
recovery, obtained by performing a Chapman-Enskog expan-
sion at the second-order in Kn, is also valid for ELBM as
fluctuation of α around 2 leads to higher-order terms in Kn,
absorbed in O(Kn2) [42]. In this work, following the approach
used in Ref. [32], we calculate α(x, t ) as the solution of

H[ f pre] = H[ f mir], (12)

which can be estimated via the popular Newton-Raphson
algorithm. In this way, f post

i being a convex combination be-
tween two distributions, f pre

i and f mir
i of equal H-value, and

being H at the same time a convex functional, the monotonic
decrease of the H is ensured. Let us stress that, as it was shown
in Ref. [42], the ELBM equation cannot be considered macro-
scopically as an approximation to the weakly compressible
NSE with the addiction of a sole eddy viscosity term of the
form of Eq. (7). Indeed, this term appears in a macroscopic
equation of motion that requires a Chapman-Enskog expan-
sion of third-order in the Knudsen number, while the NSE
are recovered at the second-order. As a consequence a num-
ber of extra third-order terms are part of the implicit ELBM
SGS model. This makes the actual ELBM closure even more
complex than a simple eddy viscosity, and in principle, able
to outperform standard methods. On top of this, as already
discussed in the introduction, the macroscopic approximation
of the ELBM eddy viscosity, Eq. (7), has itself a very in-
teresting formulation, being similar to a Smagorinsky eddy
viscosity [43], but being not positive-definite and therefore
allows events of energy backscatter, i.e., energy transfer from
the unresolved to the resolved scales. Indeed, while energy in
3D turbulence is on average cascading from the large toward
the small scales, in real flows there are local events of energy
going backward with nontrivial implications on the statistical
properties of the resolved scales.
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B. Large-eddy simulations

The LES governing equations can be directly derived
by filtering each term of the incompressible NSE, see
Refs. [13,18]. The filtering operation consist in a convolution
between the full velocity field and a filter kernel. There are
several choices that can be made for the filter kernel, see
Ref. [3], in this work, we consider a “sharp spectral cutoff”
in Fourier space. This choice is convenient for two reasons,
first, the sharp cutoff produces a clear separation between
resolved and subgrid scales, defined, respectively, as all scales
above and below the cutoff wave number, kc. Second, it is a
Galerkin projector that produces the same results when oper-
ating multiple times on a field, which allows to have a clear
scale separation also in a dynamical sense, namely, it projects
on the same support all terms (nonlinear ones included) of
the equations of motion, see Ref. [46]. In the following we
briefly sketch the main operations required to arrive at the LES
equations. Given a filter kernel G�(x), the filtered velocity
u(x, t ) can be defined by the following convolution operation:

u(x, t ) ≡
∫

�

dy G�(|x − y|) u(y, t )

=
∑
k∈Z3

Ĝ�(|k|)û(k, t )eikx, (13)

where Ĝ� is the Fourier transform of G�, and � ∼ π/kc,
is the filter cutoff scale, see Ref. [3]. Applying the filtering
operation to all terms in the Navier-Stokes equations, we get

∂t u + ∇ · (u ⊗ u) = −∇p − ∇ · τ�(u, u) + ν�u. (14)

Here, we have introduced the SGS tensor, τ�(u, u), defined
as

τ�
i j (u, u) = uiu j − uiu j, (15)

which is the only term of Eq. (14) that depends on SGS scales.
Hence, it is the only term that needs to be replaced by a model
to close the equations in terms of the resolved-scales dynam-
ics. From τ�(u, u), we can easily get the exact formulation

of the SGS energy transfer 
�

, namely, the energy transfer
across the filter scale produced by the real nonlinear coupling
in the NSE. To do so we need to multiply with a scalar product
each term of Eq. (14) and the velocity field to obtain the
filtered energy balance equations:

1
2∂t (uiui ) + ∂ jAi j + 

�

L = −
�
. (16)

The terms on the left-hand side of Eq. (16) are defined,
respectively, as ∂ jA j = ∂ jui(uiu j + pδi j + τ�

i j − 1
2 uiu j ) and


�

L = −∂ jui(uiu j − uiu j ). As shown in Refs. [46,47], to get
the correct contribution to the energy transfer, it is important

to distinguish between 
�

L and the actual SGS energy transfer


�

because the former depends only on resolved-scales quan-
tities and does not contribute to the mean energy flux across
the cutoff scale. However,


� = −∂ jui τ�

i j (u, u) = −∂ jui
(
uiu j − uiu j

)
(17)

is the flux which depends on both the SGS and the resolved
scales. In this work, as already mentioned, we consider as
possible closure the Smagorinsky LES model (referred to as

S-LES in the sequel), τ S
i j (u, u), which aims to model the

deviatoric part of the stress tensor, τ�
i j − 1

3τ�
kkδi j → τ S

i j , as
follows:

τ S
i j = −2νS

e (x, t )S̄i j, νS
e = (CS�)2

√
2Si jSi j, (18)

where S̄i j = 1/2(∂ jui + ∂iu j ) is the resolved scales strain-rate
tensor, νS

e is the Smagorinsky eddy viscosity, depending on the
filter cutoff scale � and the nondimensional factor CS . From
the definition of the macroscopic approximation of the ELBM
eddy viscosity in Eq. (7), we can now define the hydrody-
namic ELBM-LES model (called E-LES in the sequel),

τE
i j = −2νE

e (x, t )S̄i j, νE
e = (CE�)2 S
 jS jiSi


Si jSi j
, (19)

where CE is the entropic dimensionless coefficient. Compar-
ing the definition of νE

e with δνM
α , in Eq. (7), we can see that

they both have the same functional dependency on the strain-
rate tensor, but different signs and multiplicative constants.
In particular, the minus sign of the E-LES closure has been
absorbed in the definition of τE

i j to align with the Smagorinsky
closure formulation. Let us stress that the E-LES model has
the same scaling as the Smagorinsky model, proportional to
the strain rate, but it is not positive definite. From the above
definitions of the S-LES and E-LES models the two corre-
sponding SGS energy transfers can be written as


S
LES = −τ S

i jSi j ; 
E
LES = −τE

i jSi j . (20)

To compare the behavior of the mesoscopic ELBM model
with respect to the two hydrodynamical approaches just in-
troduced, we can approximate the SGS energy transfer from
the ELBM as


E
LBM = −2δναSi jSi j, (21)

where 
E
LBM stands for ELBM SGS energy transfer and

δνα = c2
s �t

2−α
2αβ

is the mesoscopic fluctuating viscosity de-
pending on α(x, t ). The strain rate tensor can be measured
from the ELBM data after the calculation of the macroscopic
velocity in terms of the mesoscopic ones, namely, u(x, t ) =∑q−1

i=0 fi(x, t )ci/ρ(x, t ). A summary of these SGS energy
transfer definitions with their respective SGS tensors, eddy
viscosities is given in Table I. It is worth noting that the ELBM
in the limit of small Knudsen numbers is not equivalent to
the entropic LES. Indeed, as previously mentioned, the eddy
viscosity term appears in the Chapman-Enskog expansion at
the third-order in Kn along with various extra terms that are
not contained in the entropic LES formulation.

III. NUMERICAL SIMULATIONS

All simulations performed in this work are intended to
model HIT on a three-dimensional domain with periodic
boundary conditions. In the following we provide some details
about the sets of simulations performed with the differ-
ent modeling techniques. Concerning the lattice Boltzmann
simulation with entropic formulation of the relaxation time,
ELBM, we have conducted a set of 3D simulations with
a number of 512 collocation points along each spatial di-
rection. To reach stationarity the flow is forced at large
scales, 1 � |k| � 2 with a constant and isotropic forcing.
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TABLE I. Summary of definitions of eddy viscosities, subgrid scales stresses, and energy transfers. The ID column indicates the names of
the corresponding set of simulations, see Sec. III, in particular, S-LES and E-LES correspond to the hydrodynamical LES, respectively, with
Smagorinsky and macroscopic ELBM model, while with ELBM we refer to the SGS energy transfer measured from the mesoscopic quantities.

ID Eddy viscosities Stress tensors Energy transfers

DNS – τ�
i j = uiu j − uiu j 

� = −∂ jui τ�
i j (u, u)

S-LES νS
e = (CS�)2

√
2Si jSi j τ S

i j = −2νS
e S̄i j 

S
LES = −τ S

i jSi j

E-LES νE
e = (CE�)2 S
 j S jiSi


Si j Si j
τE

i j = −2νE
e S̄i j 

E
LES = −τE

i jSi j

ELBM δνα = c2
s

2−α

2αβ
�t τα

i j = −2δνα S̄i j 
E
LBM = −τα

i jSi j

More precisely we have used in all simulations the same
forcing, defined in Fourier space with constant phases and
amplitudes, added isotropically to all wave vectors at large
scales. To ensure incompressibility the forcing is projected
on its solenoidal component. The ELBM simulation uses a
lattice with 27 discrete velocities (see Fig. 1), the D3Q27
[21,23,48]. The spectral forcing is implemented using the
exact-difference method forcing scheme [49] for a relaxation
time τ0 = 0.5003 corresponding to β ≈ 0.9994. Consider-
ing the LES we have performed two sets of pseudospectral
fully dealiased simulations on a domain � = [0, 2π ]3 with
periodic boundary conditions both at the resolution of 5123

grid points. The first LES is equipped with the Smagorin-
sky model (S-LES), see Eq. (18), and a second with the
macroscopic formulation of the entropic eddy viscosity, see
Eq. (19), (E-LES). As discussed above, all simulations are
forced with the same isotropic constant forcing mechanisms
acting only on the larger system scales (1 � |k| � 2). In the
expression of Smagorinsky eddy viscosity Eq. (18), we use
the standard value of CS = 0.16, while for the entropic eddy
viscosity Eq. (19), we use CE = 0.45, found to be optimal
values for the best compromise between the maximization

x −1
0

1 y

−1

0

1

z

−1

0

1

D3Q27

FIG. 1. Schematic representation of the D3Q27 lattice stencil
used for the ELBM simulation.

of inertial range extension and the minimization of spuri-
ous effects produced by the model [50]. For both we have
� = π/kmax ≈ 0.0184 with kmax = 171, which comes from
the 2/3 rule for the dealiasing projection [51]. Additionally,
as a reference, we have run a pseudospectral fully resolved
DNS of the NSE with the same forcing scheme on the same
3D domain � = [0, 2π ]3, using a number of 5123 (DNSx1)
and 10243 (DNSx2) collocation points. The resolution in both
DNS is kept such as ηα/dx � 0.7, where dx is the grid spacing
and ηα = (ν3/ε)1/4 is the Kolmogorov microscale [52] with ε

denoting the mean energy dissipation rate. To create ensem-
bles of statistically independent data all the ELBM, LES and
DNS are sampled on time intervals of one large-scale eddy
turnover time after reaching a statistically stationary state. It is
worth mentioning that both the ELBM and E-LES simulations
remain stable even though their modeling terms are not purely
dissipative being their eddy viscosities not positive definite.
In Fig. 2 we show the time-averaged energy spectra, E (k),
for all simulations. It is visible that all modelled simulations
have an extended inertial range with respect to DNS at the
same resolution (DNSx1) with an inertial range slope close
to the Kolmogorov prediction of k−5/3 [7]. Let us stress that
the ELBM spectrum reaches a maximum wave number higher

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

1 10 100

k−5/3

E
(k

)

k

FIG. 2. Time-averaged spectra for the conducted simulations at
5123 grid points, measured from the mesoscopic ELBM simulation
(empty squares, red color), the hydrodynamical LES with entropic
model (E-LES, empty circles) and with Smagorinsky model (S-LES,
empty triangles). The energy spectra from fully resolved DNS at
5123 (DNSx1) and 10243 (DNSx2) are presented, respectively, with
full triangles and full circles. The curves are shifted vertically for the
sake of data presentation. The Kolmogorov predicted slope of k−5/3

is given in Ref. [7].
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FIG. 3. Standardized PDFs of the ELBM SGS energy transfers measured from the correct fluctuating viscosity, δνα , and its approximated
formulation, δνM

α (left panel). Visualization of a plane of ELBM SGS energy transfer measured using the approximated (center panels) and
correct definitions of eddy viscosity (right panel).

than the pseudospectral data, this is because in the ELBM
simulations there is not any dealiasing operation. Anyway also
in the ELBM case the spectrum loses the Kolmogorov inertial
range scaling at wave number larger that the pseudospectral
dealiasing cutoff.

IV. SGS ENERGY TRANSFER ANALYSIS

In this section we provide a statistical comparison of the
SGS energy transfers measured in the modelled simulations
together with the original SGS transfer measured a priori from
higher resolution DNS; see Table I. Before staring the com-
parison between macroscopic and mesoscopic simulations,
we analyze the quality of the approximation made in the
Chapman-Enskog expansion to obtain the macroscopic for-
mulation of the ELBM eddy viscosity [41]. In this direction,
we have computed the SGS energy transfer defined in Eq. (21)
using the two different definitions of the fluctuating viscosity,
namely, either the correct definition, δνα , depending on the
entropic parameter, or its third-order expansion in the limit
of small Kn, δνM

α ; see Eq. (7). Their statistical comparison is
shown in Fig. 3, where on the left panel we show the proba-
bility density functions (PDF) measured from the ELBM SGS
energy transfer using the two different formulations. Here we
can see that the PDFs once rescaled by their standard devia-
tions have almost an identical shape. From the center and right
panels of the same figure, we can qualitatively see two visu-
alizations of the SGS energy transfers measured by selecting
the same plane of the velocity field. From these visualizations
we can appreciate that there is a very high spatial correlation
between them. These results suggest that the approximation of
neglecting the extra third-order terms coming from Chapman-
Enskog expansion is a good approximation of the ELBM eddy
viscosity. Let us now analyze the statistics of the SGS energy
transfers, comparing them also with the statistics of the real
SGS energy transfer, see Eq. (17), measured a priori from

fully resolved DNSx2. To obtain the a priori 
�

we filter
the velocity field with a sharp projector in Fourier space with
a cutoff at the maximum wave number allowed in the mod-

elled simulations, which corresponds to the dealiasing cutoff
(kmax = 171). As known, the presence of a forward energy
cascade, as in 3D turbulence, reflects in a skewed PDF of the
a priori 

�
[46,53,54]; see Fig. 4. Instead, the negative tail

describes the presence of intense backscattering events with
fluctuations up to two orders of magnitude larger than the
standard deviation. The main remarkable difference between
the different models considered here is that, as expected,
the ELBM and E-LES produce backscatter events, while the
Smagorinsky model is positive definite in its energy formu-
lation and it produces a zero tail in the negative region. Let
us notice that ELBM mesoscopic model shows qualitatively a
better overlap with respect to the DNS data.

V. INERTIAL RANGE STATISTICS

In this last section we analyze the inertial range statistics
by measuring the longitudinal velocity increments defined as

10−8

10−6

10−4

10−2

100

−200 −100 0 100 200

σ
Π

(Π
)

Π/σΠ

FIG. 4. Standardized PDF of the SGS energy transfer measured
from the a posteriori data obtained via the ELBM simulations (empty
squares, red color), the LES with hydrodynamical entropic closure
(E-LES, empty circles) and from LES with Smagorinsky model (S-
LES, empty triangles). For comparison the PDF measured for the real
SGS energy transfer measured a priori by filtering data from higher
resolution simulations is presented (DNSx2, full circles).
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FIG. 5. Second-order longitudinal structure functions (left panels) and corresponding local slopes (right panels) for the conducted
simulations at 5123 grid points, using ELBM (empty squares, red color), E-LES with entropic inspired model (empty circles), S-LES with
Smagorinsky model (empty squares), DNSx1 at 5123 grid points (full triangles), and DNSx2 at 10243 grid points (full circles). The straight
line corresponds to the K41 prediction in the inertial range (ξp = p/3), while the dashed line corresponds to the intermittent measure as
reported from the literature [44,56].

δru = [u(x + r) − u(x)] · r/r. In this way we can quantify the
effects produced by the different models at different scales,
r = |r|; hence, we can get an accurate estimation of the quality
of the models in capturing the correct intermittent properties
of the NSE. We study the scaling properties of the longitudinal
structure functions (SF) defined as

Sp(r) ≡ 〈[δru]p〉, (22)

where the angular brackets indicate the ensemble average, that
assuming spatiotemporal ergodicity can be evaluated averag-
ing over space and time, 〈(...)〉 = 1

V
1
T

∫
V

∫ t0+T
t0

(...) dxdt . In
the limit of large Reynolds number, where r can be taken
arbitrarily small the structures function follows a powerlaw
scaling behavior, Sp(r) ∼ rξp [7], where a pth-order scal-
ing exponent that, according to the phenomenological theory
of Kolmogorov (K41) [55], is ξp = p/3. Nevertheless, both
experimental and numerical studies have highlighted as bi-
product of intermittency the presence of anomalous exponents
in turbulent data, with important deviations from the K41
predicted values [11,44,56,57]. However, to get an accurate
measurement of these exponents is extremely difficult. The
reason is twofold, first it is required to have large scaling

range (very well resolved simulations) and second it is si-
multaneously required to have large statistical ensemble. The
first question we ask here is connected to the first of the
aforementioned problems, namely, whether those models are
able or not to extend the length of inertial range of scales in
our simulations. To answer this in the left column of Fig. 5
we show the second- and fourth-order structure functions
measured from all modelled and fully resolved simulations. In
the right column on the same figure we show the local scaling
exponents,

ξp(r) = d log Sn(r)

d log(r)
,

measured from the structure functions shown on the left side.
From these plots it is evident that all modelled simulations
present an extension of the inertial range with respect to the
same resolution, similar to the inertial range observed in the
simulations with a number of grid points two times larger
along each spatial direction, DNSx2. Which means that the
models allows to save a factor 8 in terms of the number of
degrees of freedom required in the simulations. Considering
that also the time-step needs to be changed accordingly in the
higher resolution DNS to resolve the smaller timescales, it
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FIG. 6. Kurtosis of the velocity increment for the simulations
at 5123 grid points, using ELBM (empty squares, red color), E-
LES with the entropic inspired model (empty circles), S-LES with
Smagorinsky model (ampty triangles), DNSx1 at 5123 grid points
(full triangles), and DNSx2 at resolution of 10243 (full circles). The
dashed horizontal line at 3 corresponds to the value of a Gaussian
distribution.

means that the modelled simulations are more than an order
of magnitude cheaper than a DNS with the same inertial
range. However, by measuring the local scaling exponents as
reported on the right column of Fig. 5, we can see that the iner-
tial range extension produced by the model is not as accurate
as the fully resolved DNS. This is a problem if we want the
model to correctly describe intermittency. Let us stress that
the correction to the K41 prediction at the level of the second-
and fourth-order exponents is very small, hence a model needs
to be extremely accurate to correctly capture the intermittent
scaling [44]. In both right panels of Fig. 5 we report with solid
line the ξp value of the K41 prediction, and with dotted lines
the values measured from DNS as reported in Refs. [56,57].
To highlight intermittency we can look at the ratio between
SF at different orders. In particular, any systematic nonlinear
dependency of ξp vs p, will introduce a scale-dependency in
the Kurtosis, defined by the dimensionless ratio among fourth-
and second-order SF,

K (r) = S4(r)

[S2(r)]2 . (23)

In Fig. 6 we see that in all simulations, at large scales the
increments are Gaussian (K ∼ 3), while the Kurtosis quickly
increases, decreasing the scale. This observation shows non-
self similarity in the statistics of all data. It is interesting to
observe that at this level the inertial range of scale observed in
the DNSx2 simulation are well captured by all closures up to
the dissipative scales r ≈ 0.1 where deviations from the DNSs
and models arise. Going further, we measure the most refined
quantity we can observe to quantify intermittency, namely, the
local scaling exponent in extended self-similarity [58],

ζ (r) = ξ4

ξ2
. (24)

A linear K41 behavior would recover in the inertial range a
plateau value of ζ equal to 2. The correction, accounting for
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ζ
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r

FIG. 7. Extended Self-Similarity, ζ (r), for the simulations at
5123 grid points, using ELBM (empty squares, red color), the LES
with entropic inspired model E-LES (empty circles), the LES with
Smagorinsky model S-LES (empty triangles), the fully resolved
DNSx1 (full triangles), and the fully resolved DNS at 10243 grid
points DNSx2 (full circles). The straight line corresponds to the K41
prediction in the inertial range equal to 2, while the dashed line
corresponds to the intermittent measure as reported from numerical
[56] and experimental data [57].

intermittency, measured in both experimental and DNS data
gives the plateau for ζ at the value of 1.86 [44,56,57]. As we
can see in Fig. 7, all models show deviations from the K41
self-similar prediction meaning that they all capture the non-
self-similarity of the turbulent inertial range. However none
of them is really accurate enough to extend the length of the
plateau displayed, hence to improve the prediction obtainable
from the DNS at the same resolution. Indeed, if we compare
the modelled data with the fully resolved simulations, then
we can see that former are not showing any flat plateau in the
inertial range and we cannot estimate precisely the correction
to K41 of the structure function scaling exponents. It is
interesting to point out that the models show a very similar
accuracy up to this last analysis. This suggest the backscatter
events of energy introduced by the entropic closures are not
accurate enough to improve quantitatively the statistics of the
Smagorinsky model. This results supports the observation that
intermittency in turbulent flows comes as a result of highly
nontrivial correlations among all degrees of freedom at dif-
ferent scales [59–61]. The observation that for all models we
have a very similar inertial range statistics goes in agreement
with the common property of these models to have the same
scaling, proportional to the strain rate tensor.

VI. CONCLUSIONS

In this paper, we performed a quantitative assessment of
the ELBM capabilities in the modeling of 3D homogeneous
isotropic turbulent flows by comparing the inertial range
statistics of ELBM data with the one of high resolution DNS
of the NSE. We also compared the quality of ELBM with
respect to the hydrodynamical Smagorinsky model, popular in
the realm of LES. Furthermore, in this work we have proposed
and investigated for the first time, a new hydrodynamical
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closure for LES simulation inspired from the macroscopic
approximation of the ELBM model introduced by Ref. [41].
We found that ELBM extends the length of the inertial range
with respect to the fully resolved DNS, allowing to reduce
the computational cost by an order of magnitude and at the
same time preserving the simulation stability. Results showed
that, in both the macroscopic and mesoscopic formulations,
ELBM is able to reproduce an inertial range with a non
self-similar dynamics. ELBM captures the correct deviations
from the large-scale Gaussian statistics as observed in the
fully resolved DNS, with an accuracy comparable to the one
produced by the Smagorinsky model. From the measure of
the structure functions scaling exponents in ESS, we have
highlighted the limitations of these models to get with high
accuracy the turbulence corrections to the Kolmogorov scal-
ing. In this context we found that the modelled data are not
producing the same inertial range plateau as observed in the
fully resolved DNS and experiments. To conclude, we found
that ELBM suffers in the modeling of extreme and rare in-
termittent fluctuations, while, however, it is very efficient in

modeling the mean properties of 3D turbulence. Which makes
ELBM a good candidate for the modeling of 3D turbulent
flows in complex geometries.

ACKNOWLEDGMENTS

The authors thank Prof. Luca Biferale for inspiration and
many useful discussions. The authors also thank Prof. Roberto
Benzi for many useful discussions. This work was supported
by the European Unions Framework Programme for Research
and Innovation Horizon 2020 (2014–2020) under the Marie
Skłodowska-Curie grant (Grant No. 642069). This project has
received partial funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research
and innovation programme (Grant Agreement No. 882340)).
The authors thank Prof. Dirk Pleiter as well as the Juelich
Supercomputing Center for providing access to the JURON
cluster.

[1] H. Dumitrescu and V. Cardos, Rotational effects on the
boundary-layer flow in wind turbines, AIAA J. 42, 408 (2004).

[2] P. A. Davidson, Turbulence: An Introduction for Scientists and
Engineers (Oxford University Press, Oxford, UK, 2015).

[3] S. B. Pope, Turbulent Flows (Cambridge University Press,
Cambridge, UK, 2000).

[4] A. E. Gill, Atmosphere-ocean Dynamics (Elsevier, Amsterdam,
2016).

[5] A. Alexakis and L. Biferale, Cascades and transitions in turbu-
lent flows, Phys. Rep. 767, 1 (2018).

[6] S. A. Barnes, An assessment of the rotation rates of the host
stars of extrasolar planets, Astrophys. J. 561, 1095 (2001).

[7] U. Frisch, Turbulence: The Legacy of A. N. Kolmogorov (Cam-
bridge University Press, Cambridge, UK, 1995).

[8] R. O. Fox, Computational Models for Turbulent Reacting Flows
(Cambridge University Press, Cambridge, UK, 2003).

[9] T. Ishihara, T. Gotoh, and Y. Kaneda, Study of high-Reynolds
number isotropic turbulence by direct numerical simulation,
Annu. Rev. Fluid Mech. 41, 165 (2009).

[10] P. K. Yeung, X. M. Zhai, and K. R. Sreenivasan, Extreme events
in computational turbulence, Proc. Natl. Acad. Sci. USA 112,
12633 (2015).

[11] R. Benzi, L. Biferale, R. Fisher, D. Lamb, and F. Toschi, Inertial
range Eulerian and Lagrangian statistics from numerical simu-
lations of isotropic turbulence, J. Fluid Mech., 653, 221 (2015).

[12] K. P. Iyer, K. R. Sreenivasan, and P. K. Yeung, Reynolds num-
ber scaling of velocity increments in isotropic turbulence, Phys.
Rev. E 95, 021101(R) (2017).

[13] C. Meneveau and J. Katz, Scale-invariance and turbulence mod-
els for large-eddy simulation, Annu. Rev. Fluid Mech. 32, 1
(2000).

[14] O. Filippova, S. Succi, F. Mazzocco, C. Arrighetti, G. Bella,
and D. Hänel, Multiscale lattice Boltzmann schemes with tur-
bulence modeling, J. Comput. Phys. 170, 812 (2001).

[15] Y.-H. Dong and P. Sagaut, A study of time correlations in lattice
Boltzmann-based large-eddy simulation of isotropic turbulence,
Phys. Fluids 20, 035105 (2008).

[16] Y.-H. Dong, P. Sagaut, and S. Marie, Inertial consistent subgrid
model for large-eddy simulation based on the lattice Boltzmann
method, Phys. Fluids 20, 035104 (2008).

[17] T. Bohr, M. H. Jensen, G. Paladin, and A. Vulpiani, Dynamical
Systems Approach to Turbulence (Cambridge University Press,
Cambridge, UK, 2005).

[18] M. Lesieur, O. Métais, and P. Comte, Large-eddy Simulations
of Turbulence (Cambridge University Press, Cambridge, UK,
2005).

[19] S. Ruurds De Groot and P. Mazur, Nonequilibrium Thermody-
namics (Courier Corporation, Mineola, NY, 2013).

[20] R. Benzi, S. Succi, and M. Vergassola, The lattice Boltz-
mann equation: Theory and applications, Phys. Rep. 222, 145
(1992).

[21] S. Succi, The Lattice Boltzmann Equation for Fluid Dynamics
and Beyond (Oxford University Press, Oxford, UK, 2001).

[22] U. Frisch, B. Hasslacher, and Y. Pomeau, Lattice-Gas Automata
for the Navier-Stokes Equation, Phys. Rev. Lett. 56, 1505
(1986).

[23] D. A. Wolf-Gladrow, Lattice-gas Cellular Automata and Lattice
Boltzmann Models: An Introduction (Springer, Berlin, 2000).

[24] Y.-H. Qian, S. Succi, and S. A. Orszag, Recent advances
in lattice Boltzmann computing, In Annual Reviews of Com-
putational Physics III (World Scientific, Singapore, 1995),
pp. 195–242.

[25] S. Chen and G. D. Doolen, Lattice Boltzmann method for fluid
flows, Annu. Rev. Fluid Mech. 30, 329 (1998).

[26] P. L. Bhatnagar, E. P. Gross, and M. Krook, A model for colli-
sion processes in gases. I. Small amplitude processes in charged
and neutral one-component systems, Phys. Rev. 94, 511 (1954).

[27] G. Tauzin, L. Biferale, M. Sbragaglia, A. Gupta, F. Toschi,
A. Bartel, and M. Ehrhardt, A numerical tool for the study of
the hydrodynamic recovery of the lattice Boltzmann method,
Comput. Fluids 172, 241 (2018).

[28] J. G. M. Eggels, Direct and large-eddy simulation of turbulent
fluid flow using the lattice-Boltzmann scheme, Int. J. Heat Fluid
Flow 17, 307 (1996).

015302-9

https://doi.org/10.2514/1.9103
https://doi.org/10.1016/j.physrep.2018.08.001
https://doi.org/10.1086/323373
https://doi.org/10.1146/annurev.fluid.010908.165203
https://doi.org/10.1073/pnas.1517368112
https://doi.org/10.1017/S002211201000056X
https://doi.org/10.1103/PhysRevE.95.021101
https://doi.org/10.1146/annurev.fluid.32.1.1
https://doi.org/10.1006/jcph.2001.6764
https://doi.org/10.1063/1.2842381
https://doi.org/10.1063/1.2842379
https://doi.org/10.1016/0370-1573(92)90090-M
https://doi.org/10.1103/PhysRevLett.56.1505
https://doi.org/10.1146/annurev.fluid.30.1.329
https://doi.org/10.1103/PhysRev.94.511
https://doi.org/10.1016/j.compfluid.2018.05.031
https://doi.org/10.1016/0142-727X(96)00044-6


MICHELE BUZZICOTTI AND GUILLAUME TAUZIN PHYSICAL REVIEW E 104, 015302 (2021)

[29] H. Yu, L.-S. Luo, and S. S. Girimaji, Les of turbulent square jet
flow using an MRT lattice Boltzmann model, Comput. Fluids
35, 957 (2006).

[30] P. Sagaut, Toward advanced subgrid models for lattice-
Boltzmann-based large-eddy simulation: Theoretical formula-
tions, Comput. Math. Appl. 59, 2194 (2010).

[31] O. Malaspinas and P. Sagaut, Consistent subgrid scale mod-
elling for lattice Boltzmann methods, J. Fluid Mech. 700, 514
(2012).

[32] I. V. Karlin, A. Ferrante, and H. C. Öttinger, Perfect entropy
functions of the lattice Boltzmann method, Europhys. Lett. 47,
182 (1999).

[33] S. Ansumali and I. V. Karlin, Single relaxation time model for
entropic lattice Boltzmann methods, Phys. Rev. E 65, 056312
(2002).

[34] S. Ansumali, I. V. Karlin, and H. C. Öttinger, Minimal entropic
kinetic models for hydrodynamics, Europhys. Lett. 63, 798
(2003).

[35] I. V. Karlin, F. Bösch, S. S. Chikatamarla, and S.
Succi, Entropy-assisted computing of low-dissipative systems,
Entropy 17, 8099 (2015).

[36] B. Dorschner, F. Bösch, S. S. Chikatamarla, K. Boulouchos, and
I. V. Karlin, Entropic multirelaxation time lattice Boltzmann
model for complex flows, J. Fluid Mech. 801, 623 (2016).

[37] B. Dorschner, S. S. Chikatamarla, and I. V. Karlin, Transitional
flows with the entropic lattice Boltzmann method, J. Fluid
Mech. 824, 388 (2017).

[38] B. Dorschner, S. S. Chikatamarla, and I. V. Karlin, Fluid-
structure interaction with the entropic lattice Boltzmann
method, Phys. Rev. E 97, 023305 (2018).

[39] I. V. Karlin, F. Bösch, and S. S. Chikatamarla, Gibbs’ principle
for the lattice-kinetic theory of fluid dynamics, Phys. Rev. E 90,
031302(R) (2014).

[40] F. Bösch, S. S. Chikatamarla, and I. V. Karlin, Entropic mul-
tirelaxation lattice Boltzmann models for turbulent flows, Phys.
Rev. E 92, 043309 (2015).

[41] O. Malaspinas, M. Deville, and B. Chopard, Towards a physical
interpretation of the entropic lattice Boltzmann method, Phys.
Rev. E 78, 066705 (2008).

[42] G. Tauzin, Implicit sub-grid scale modeling within the entropic
lattice boltzmann method in homogeneous isotropic turbulence,
Ph.D. thesis, Universität Wuppertal, Fakultät für Mathematik
und Naturwissenschaften (2019).

[43] J. Smagorinsky, General circulation experiments with the prim-
itive equations, Monthly Weather Review 91, 99 (1963).

[44] L. Biferale, F. Bonaccorso, M. Buzzicotti, and K. P. Iyer, Self-
Similar Subgrid-Scale Models for Inertial Range Turbulence
and Accurate Measurements of Intermittency, Phys. Rev. Lett.
123, 014503 (2019).

[45] A. Arnèodo, R. Benzi, J. Berg, L. Biferale, E. Bodenschatz, A.
Busse, E. Calzavarini, B. Castaing, M. Cencini, L. Chevillard,
R. T. Fisher, R. Grauer, H. Homann, D. Lamb, A. S. Lanotte, E.
Lévèque, B. Lüthi, J. Mann, N. Mordant, W.-C. Müller, S. Ott,
N. T. Ouellette, J.-F. Pinton, S. B. Pope, S. G. Roux, F. Toschi,
H. Xu, and P. K. Yeung, Universal Intermittent Properties of

Particle Trajectories in Highly Turbulent Flows, Phys. Rev. Lett.
100, 254504 (2008).

[46] M. Buzzicotti, M. Linkmann, H. Aluie, L. Biferale, J. Brasseur,
and C. Meneveau, Effect of filter type on the statistics of energy
transfer between resolved and subfilter scales from a priori
analysis of direct numerical simulations of isotropic turbulence,
J. Turbul. 19, 167 (2018).

[47] A. Leonard et al., Energy cascade in large-eddy simulations of
turbulent fluid flows, Adv. Geophys. A 18, 237 (1974).

[48] T. Krüger, H. Kusumaatmaja, A. Kuzmin, O. Shardt, G. Silva,
and E. M. Viggen, The Lattice Boltzmann Method, Gradu-
ate Texts in Physics (Springer International Publishing, Cham,
2017).

[49] A. L. Kuperstokh, New method of incorporating a body force
term into the lattice Boltzmann equation, In Proceedings of
the 5th International EDH Workshop (Poitiers, France, 2004),
pp. 241–246.

[50] M. Buzzicotti and P. Clark Di Leoni, Synchronizing subgrid
scale models of turbulence to data, Phys. Fluids 32, 125116
(2020).

[51] G. S. Patterson and S. A. Orszag, Spectral calculations of
isotropic turbulence: Efficient removal of aliasing interactions,
Phys. Fluids 14, 2538 (1971).

[52] V. Borue and S. A. Orszag, Self-similar decay of three-
dimensional homogeneous turbulence with hyperviscosity,
Phys. Rev. E 51, R856(R) (1995).

[53] T. Gotoh and T. Watanabe, Statistics of transfer fluxes of
the kinetic energy and scalar variance, J. Turbul. 6, N33
(2005).

[54] M. Buzzicotti, H. Aluie, L. Biferale, and M. Linkmann, En-
ergy transfer in turbulence under rotation, Phys. Rev. Fluids 3,
034802 (2018).

[55] A. N. Kolmogorov, The local structure of turbulence in incom-
pressible viscous fluid for very large Reynolds numbers, Proc.
R. Soc. Lond. 434, A4349 (1991).

[56] T. Gotoh, D. Fukayama, and T. Nakano, Velocity field statistics
in homogeneous steady turbulence obtained using a high-
resolution direct numerical simulation, Phys. Fluids 14, 1065
(2002).

[57] M. Sinhuber, G. P. Bewley, and E. Bodenschatz, Dissipative
Effects on Inertial-Range Statistics at High Reynolds Numbers,
Phys. Rev. Lett. 119, 134502 (2017).

[58] R. Benzi, S. Ciliberto, R. Tripiccione, C. Baudet, F. Massaioli,
and S. Succi, Extended self-similarity in turbulent flows, Phys.
Rev. E 48, R29 (1993).

[59] M. Buzzicotti, B. P. Murray, L. Biferale, and M. D. Bustamante,
Phase and precession evolution in the Burgers equation, Eur.
Phys. J. E 39, 1 (2016).

[60] M. Buzzicotti, A. Bhatnagar, L. Biferale, A. S. Lanotte, and
S. S. Ray, Lagrangian statistics for Navier-Stokes turbulence
under Fourier-mode reduction: Fractal and homogeneous deci-
mations, New J. Phys. 18, 113047 (2016).

[61] A. S. Lanotte, R. Benzi, S. K. Malapaka, F. Toschi, and L.
Biferale, Turbulence on a fractal Fourier set, Phys. Rev. Lett.
115, 264502 (2015).

015302-10

https://doi.org/10.1016/j.compfluid.2005.04.009
https://doi.org/10.1016/j.camwa.2009.08.051
https://doi.org/10.1017/jfm.2012.155
https://doi.org/10.1209/epl/i1999-00370-1
https://doi.org/10.1103/PhysRevE.65.056312
https://doi.org/10.1209/epl/i2003-00496-6
https://doi.org/10.3390/e17127867
https://doi.org/10.1017/jfm.2016.448
https://doi.org/10.1017/jfm.2017.356
https://doi.org/10.1103/PhysRevE.97.023305
https://doi.org/10.1103/PhysRevE.90.031302
https://doi.org/10.1103/PhysRevE.92.043309
https://doi.org/10.1103/PhysRevE.78.066705
https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
https://doi.org/10.1103/PhysRevLett.123.014503
https://doi.org/10.1103/PhysRevLett.100.254504
https://doi.org/10.1080/14685248.2017.1417597
https://doi.org/10.1016/S0065-2687(08)60464-1
https://doi.org/10.1063/5.0031835
https://doi.org/10.1063/1.1693365
https://doi.org/10.1103/PhysRevE.51.R856
https://doi.org/10.1080/14685240500317354
https://doi.org/10.1103/PhysRevFluids.3.034802
https://doi.org/10.1098/rspa.1991.0075
https://doi.org/10.1063/1.1448296
https://doi.org/10.1103/PhysRevLett.119.134502
https://doi.org/10.1103/PhysRevE.48.R29
https://doi.org/10.1140/epje/i2016-16034-5
https://doi.org/10.1088/1367-2630/18/11/113047
https://doi.org/10.1103/PhysRevLett.115.264502

