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Numerical analysis of first-passage processes in finite Markov chains exhibiting metastability
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We describe state-reduction algorithms for the analysis of first-passage processes in discrete- and continuous-
time finite Markov chains. We present a formulation of the graph transformation algorithm that allows for
the evaluation of exact mean first-passage times, stationary probabilities, and committor probabilities for all
nonabsorbing nodes of a Markov chain in a single computation. Calculation of the committor probabilities
within the state-reduction formalism is readily generalizable to the first hitting problem for any number of
alternative target states. We then show that a state-reduction algorithm can be formulated to compute the expected
number of times that each node is visited along a first-passage path. Hence, all properties required to analyze
the first-passage path ensemble (FPPE) at both a microscopic and macroscopic level of detail, including the
mean and variance of the first-passage time distribution, can be computed using state-reduction methods. In
particular, we derive expressions for the probability that a node is visited along a direct transition path, which
proceeds without returning to the initial state, considering both the nonequilibrium and equilibrium (steady-state)
FPPEs. The reactive visitation probability provides a rigorous metric to quantify the dynamical importance of
a node for the productive transition between two endpoint states and thus allows the local states that facilitate
the dominant transition mechanisms to be readily identified. The state-reduction procedures remain numerically
stable even for Markov chains exhibiting metastability, which can be severely ill-conditioned. The rare event
regime is frequently encountered in realistic models of dynamical processes, and our methodology therefore
provides valuable tools for the analysis of Markov chains in practical applications. We illustrate our approach
with numerical results for a kinetic network representing a structural transition in an atomic cluster.
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I. INTRODUCTION

The analysis of first-passage processes [1–4], concerning
the evolution of a system until a specified target state is hit, is
of fundamental interest in the theory of stochastic dynamics.
The usual dynamical observable is the mean first-passage time
(MFPT), defined as the expected time for trajectories to hit
the target state [5–8]. The set of possible paths and their
associated probabilities, for a given initial occupation prob-
ability distribution, defines the (nonequilibrium) first-passage
path ensemble (FPPE) [9–17]. Finite Markov chains [18–24],
in which a dynamical process is modeled as a sequence of
memoryless jumps between the nodes of a network [25],
are a class of discrete-state stochastic model that have been
widely adopted in diverse disciplines. First-passage processes
in Markov chains can be used to model stochastic phenomena
as varied as biomolecular conformational transitions [26–33],
animal movement to a foraging site within an ecosystem [34],
and the sequence of events leading to a stock market crash in
economics [35].

The dynamical properties of interest characterizing the
FPPE for a Markov chain can in principle be computed by
solving a corresponding system of linear equations [36,37].
However, the required computations, including eigendecom-
position or matrix inversion operations, are liable to encounter
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numerical issues arising from finite precision when the
Markov chain exhibits metastability [38]. For Markov chains
featuring a separation of characteristic timescales, the sub-
dominant eigenvalue of the underlying transition probability
(rate) matrix approaches unity (zero) [39,40], respectively,
and the system is therefore severely ill-conditioned [41–44].
Moreover, in general, it is nontrivial to apply preconditioning
techniques to improve the numerical stability of sparse linear
algebra methods [42,45]. In realistic applications, there is
typically a rare event that is of particular interest, which is the
first-passage process that we wish to analyze [38,46–59]. This
situation motivates the development of alternative procedures
that have inherent numerical stability, so that the fundamental
dynamical properties of a Markov chain can be computed
robustly.

In the present work we focus on state-reduction meth-
ods [60] to derive numerically stable algorithms for the
analysis of Markov chain dynamics [61–64]. These methods
proceed via elimination of the nodes in a Markov chain,
while preserving averages for the dynamical properties of
interest, and may also employ a back substitution phase to
restore the eliminated nodes in turn [65]. State-reduction
algorithms have been formulated to compute the stationary
distribution [66,67], MFPTs [68], moments of the FPT dis-
tribution [69], and the group inverse [36,37] of an irreducible
Markov chain [70–72].

We present a convenient formulation of the graph trans-
formation (GT) algorithm [73–78] that allows for the
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simultaneous determination of the MFPTs, stationary prob-
abilities, and committor probabilities [79–82] for all nonab-
sorbing nodes of a Markov chain in a single computation
(Sec. II), as well as the absorption probabilities [18]. We
also show that a state-reduction algorithm can be designed
to compute the expected number of times that nodes are
visited along first-passage paths (Sec. III B). Other quanti-
ties that characterize the global and local properties of the
FPPE, such as the variance of the FPT distribution and the
variances in the number of times that nodes are visited, can
be determined from this information (Sec. III). We derive
expressions for the probabilities that nodes are visited along
reactive transition paths, which proceed directly to the absorb-
ing state without returning to the initial state, considering both
the nonequilibrium and equilibrium (i.e., steady-state) FPPEs
(Sec. III D). The reactive visitation probabilities quantify the
dynamical relevance of individual nodes, and therefore allow
us to identify the key mechanisms for productive transitions
and the bottleneck nodes that mediate the dominant pathways.
The theory of committor and reactive visitation probabilities,
and of reactive fluxes along individual edges of the network,
is generalizable to the case where there are multiple taboo
states [83–85]. Separation of the dynamics into competing
first-passage processes associated with alternative target states
is frequently of interest in models featuring several attractors.

The use of the state-reduction algorithms is illustrated
with numerical results for a kinetic network representing
a solid-solid structural transition in a model atomic clus-
ter, for which standard linear algebra methods are unable
to compute any of the aforementioned dynamical quantities
(Sec. IV). Hence, our methodology provides a viable means
to analyze first-passage processes in Markov chains exhibiting
rare event dynamics, at both a microscopic and macroscopic
level of detail. The computations were performed using our
DISCOTRESS software [86], further information on which is
provided in the Appendix.

II. LU DECOMPOSITION FORMULATION OF GRAPH
TRANSFORMATION

A. Markov chain dynamics

We consider discrete-time Markov chains (DTMCs) pa-
rameterized by a transition probability matrix T(τ ), where
i ← j transitions have probabilities Ti j (τ ) and are associated
with a fixed lag time τ [18], and continuous-time Markov
chains (CTMCs) parameterized by a transition rate matrix
K [20]. The off-diagonal elements of K are the i ← j
transition probabilities per unit time in the limit of an in-
finitesimally small time step, and the diagonal elements
are Kj j = −∑

γ �= j Kγ j , so that the columns of the matrix
sum to zero [87]. The i ← j transition probabilities for a
CTMC are the elements Pi j = Ki j/

∑
γ �= j Kγ j of the branch-

ing probability matrix P, and the waiting time for the i ← j
transition is drawn from an exponential distribution with mean
τ j = 1/

∑
γ �= j Kγ j [88]. We shall denote the transition prob-

ability matrix, either T(τ ) or P, by T for generality. We
consider a Markov chain with state space S partitioned into
the set of absorbing nodes A and the set of transient (non-
absorbing) nodes Q, so that S ≡ Q ∪ A [89]. That is, we

consider Markov chains where the set A must eventually be
reached when the process is initialized at any node of the set
Q ≡ Ac [18]. If the nodes of the set A are not absorbing
in the underlying model, so that it is possible to reach any
node of the network from any other node, then the Markov
chain is said to be irreducible [36,90–92]. We may then de-
fine the stationary probability distribution (column) vector π,
which satisfies the global balance equations T(τ )π = π and
Kπ = 0 [87].

A key dynamical quantity characterizing a first-passage
process is the A ← j mean first-passage time (MFPT) TA j ,
defined as the expected time at which a trajectory first hits
the state A, given that it was initialized at node j [20,93,94].
Let the time associated with a particular A ← j first-passage
trajectory be denoted by tFPT. Then the MFPT is defined as

TA j = 〈tFPT〉 =
∫ ∞

0
tFPT p(tFPT)dtFPT. (1)

Here, p(tFPT) is the first-passage time (FPT) distribution [15]

p(tFPT) = Pr{ξ (tFPT) ∈ A, ξ (0 � t < tFPT) /∈ A
| ξ (t = 0) = j}, (2)

where ξ (t ) denotes the node of the Markov chain that is occu-
pied for the first-passage path ξ = (A ← in←. . .←i1 ← j)
at time t , where j, i1, . . . , in /∈ A [95]. The MFPTs satisfy a
first-step relation [22],

TA j = τ j +
∑
γ /∈A

Tγ jTAγ . (3)

Therefore, in principle, the MFPTs TA j ∀ j /∈ A can be deter-
mined by solving Eq. (3) using any appropriate linear algebra
method, such as Gauss-Siedel iteration [96] or successive
over-relaxation [97]. The MFPT for a transition from an initial
set B ⊆ Ac, associated with a specified initial occupation
probability distribution vector p(0), is then obtained simply
as a weighted average,

TAB =
∑
b∈B

pb(0)TAb. (4)

However, for Markov chains exhibiting metastability, the
linear system of equations in Eq. (3) can be severely ill-
conditioned, so that standard dense linear algebra methods
may experience a severe propagation of numerical error
arising from finite precision [76,77], and Krylov subspace
methods [45,98] may fail to converge [42,99].

B. Stochastic complements and the graph
transformation algorithm

The A ← j MFPT for a transition from a particular node
j /∈ A can be computed robustly using stochastic complemen-
tation [100–102]. Let us partition the transition probability
matrix as

T =
[

TZZ TZN
TNZ TNN

]
, (5)

where Z ≡ A ∪ { j} and N ≡ Zc ≡ Q \ { j}. In Eq. (5), TZN
contains the probabilities for transitions from nodes of the set
N to the set Z , and the other blocks are defined similarly.
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FIG. 1. Illustration of a renormalization operation performed on
the stochastic matrix T to yield the censored Markov chain T′. To
eliminate the block of nodes N , the renormalized transition proba-
bilities [Eq. (6)] in the resulting censored Markov chain (or stochastic
complement [100]) must account for transitions that proceed via N
in the original network. Hence, the renormalized stochastic matrix
includes a direct γ ← β transition that is not present in the original
network, which corresponds to the collective probabilities of all
possible γ ← N ← β paths. By the same reasoning, the stochas-
tic complement contains nonzero probabilities for β ← β, β ← γ ,
γ ← γ , and γ ← δ transitions. The probability for the δ ← γ transi-
tion does not increase with renormalization, and likewise there is no
δ ← β transition in the derived stochastic complement, since there
are no such indirect transitions proceeding via N in the original
Markov chain. The waiting times associated with all three of the
retained nodes are increased in the censored Markov chain [Eq. (7)],
since the transition probabilities to N are nonzero for each of these
nodes.

The diagonal blocks TZZ and TNN are therefore square
substochastic matrices [91,103]. The stochastic complement
for the nodes in Z is defined as [100–102]

T′
ZZ = TZZ + TZN (INN − TNN )−1TNZ , (6)

where INN is the |N | × |N |-dimensional identity matrix.
Equation (6) defines renormalized transition probabilities
for the nodes in Z . This transformed system is sometimes
referred to as a censored Markov chain, because the renor-
malized probabilities correspond to the values that would
be observed if the transitions within N were obscured (see
Fig. 1) [104–106]. With Z ≡ A ∪ { j}, the only remaining
transitions associated with node j in the renormalized net-
work are to nodes of the set A, and the j ← j self loop.
If the waiting times of the nodes in the set Z , contained in
the |Z|-dimensional vector τZ , are renormalized according
to [78,107],

τ ′
Z = τZ + τN (INN − TNN )−1TNZ , (7)

then the MFPT for the A ← j transition after eliminating the
|Q| − 1 nodes of set N is given by [76]

TA j = [τ ′
Z ] j (1 − [T′

ZZ ] j j )
∞∑

n=1

n[T′
ZZ ]n−1

j j

= [τ ′
Z ] j

1 − [T′
ZZ ] j j

. (8)

Here, we have used the fact that (1 − [T′
ZZ ] j j )−1 is the ex-

pected number of j ← j transitions before node j is exited
plus one for the final escape step [18].

The renormalization of the mean waiting (or lag) times
[Eq. (7)] accounts for the expected number of transitions
within the set of nodes to be eliminated, N . That is, the
updated waiting time for the jth node, j /∈ N , includes a con-
tribution corresponding to the average of all N c ← N ← j
paths that leave j, enter N , and exit to N c. Because this con-
tribution is not specific to which node N c is hit upon leaving
N , the GT algorithm [Eqs. (6) and (7)] preserves the average
MFPT to the set of absorbing nodes A, and not the indi-
vidual MFPTs to particular absorbing nodes a ∈ A [76,107].
The renormalized i ← j transition probabilities do preserve
the probabilities of the (censored) paths to individual ab-
sorbing nodes, because the updated transition probabilities
exactly account for the probability to transition from j to i
via N [73–75,100].

The mean first-passage path length for the A ← j /∈ A
transition can be derived by direct analogy to the MFPT. In
general, the two are not related for a CTMC parameterized by
the branching probability matrix P, because the mean waiting
times for nodes are nonuniform [88]. For a path on the original
Markov chain, an i ← j transition increments the path length
by one, and so the initial mean number of steps to exit node j,
� j , are all unity. When nodes of the set N are eliminated, an
i ← j transition on the renormalized network also includes
steps taken within the censored region N . Hence, the {� j}
can be renormalized by analogy with Eq. (7), and the mean
A ← j path length is then given by a relation analogous to
Eq. (8), again with � j replacing τ j .

We can also apply GT renormalization analogous to
Eqs. (6) and (7) to eliminate nodes n = 1, 2, . . . , |Q| − 1 one
at a time, where n /∈ A [73–78]. In a variation of this iterative
procedure, where all |Q| transient nodes are now to be elimi-
nated, the network of the (n − 1)th iteration can be related to
the network of the nth iteration via

T (n−1)
i j = T (n)

i j − UinLn j, (9)

where the matrix U has elements

Uin = T (n−1)
in − δin, (10)

with δin the Kroenecker delta, and the matrix L has elements

Ln j = T (n−1)
n j /

(
1 − T (n−1)

nn

)
. (11)

In practice, the equivalence 1 − Tnn ≡ ∑
γ �=n Tγ n is exploited

to avoid subtraction operations and thus maintain numerical
stability [61–64]. This iterative version of the GT algorithm
can be thought of as a LU decomposition of a stochas-
tic matrix [90,108]. The LU decomposition formulation of
the GT algorithm [Eqs. (9) and (10)] gives T (n)

n j = 0 and

T (n)
in = T (n−1)

in /(1 − T (n−1)
nn ), thereby removing transitions to

the eliminated node, n, and renormalizing the i ← n transition
probability to account for self-transitions. Hence, renormal-
ization using Eqs. (9) and (10) preserves transitions from
eliminated to noneliminated nodes, but not vice versa. Com-
paring Eqs. (7) and (11), the renormalized waiting time for the
jth node in the censored Markov chain at the nth iteration can
be written as

τ
(n)
j = τ

(n−1)
j + τ (n−1)

n Ln j . (12)
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The A ← j MFPT for the j ≡ |Q|th (transient) node,
i.e., the last node to be eliminated, is therefore obtained
straightforwardly as the associated renormalized waiting time
in the censored Markov chain for which only the |A| absorb-
ing nodes remain noneliminated. Although the preservation of
transitions from eliminated nodes is not necessary to compute
the A ← j MFPT, the formulation of the GT algorithm in
Eqs. (9) and (10) can be used to compute other dynamical
quantities such as committor probabilities, as we show in the
following section.

C. Committor and absorption probabilities from graph
transformation

If we define an initial macrostate B ⊂ Ac, then the transi-
tion probabilities for the renormalized Markov chain where
all nodes of the intervening set I ≡ (A ∪ B)c have been
eliminated by the LU decomposition formulation of the GT
algorithm relate straightforwardly to the committor probabil-
ities. The A ← B committor probability for the jth node,
q+

j , is defined as the probability that a trajectory at node
j first hits the target macrostate A before returning to the
initial macrostate B [79–82]. By definition, q+

a∈A = 1 and
q+

b∈B = 0 [93]. The committor probabilities of all other nodes
satisfy a first-step relation [77,96],

q+
j =

∑
γ /∈B

Tγ jq
+
γ . (13)

For the renormalized Markov chain where all nodes of the set
I have been eliminated according to Eqs. (9) and (10), with
transition probabilities T ′

i j , the only transitions from nodes of
the set I are directly to either of the endpoint macrostates A
or B. The A ← B committor probability for the jth node is
therefore given straightforwardly by

q+
j =

∑
a∈A

T ′
a j ≡ T ′

A j = 1 − T ′
B j . (14)

An analogous expression yields the committor probabilities
for the reverse (B ← A) direction.

The definition of the committor probability in Eq. (14) is
readily extended to the case where there are multiple taboo
macrostates where visits are forbidden [83,84]. Let us de-
fine the set of macrostates H ≡ {H1 ∪ . . . ∪ HN } ⊂ S , which
forms a subset of the complete state space. We wish to deter-
mine the probability of hitting a particular target macrostate
Hk before hitting any of the taboo nodes of the set H \ Hk ,
when the process is initialized at node j ∈ Hc. The jth node is
associated with separate committor probabilities correspond-
ing to each of the first-passage processes defined by permuting
the state Hk that is considered to be the target. We denote by
qHk

j the committor probability for the Hk ← Hc transition,
with all nodes of the set H \ Hk considered taboo. These
committor probabilities satisfy qH1

j + . . . + qHN
j = 1 ∀ j. The

committor probabilities of all nodes with respect to all first-
passage processes can be determined efficiently by solving
a single system of linear equations using the GT approach.
That is, the transition probabilities of the renormalized net-
work for which all nodes of the set Hc have been eliminated
using the LU decomposition formulation of the GT algorithm
[Eqs. (9) and (10)] yield the various committor probabili-

ties via Eq. (14). We can then define a net reactive flux to
the target state along an i ← j edge for each first-passage
process [109–113]. Specifically, for an irreducible Markov
chain at equilibrium, the i ← j net flux to the target
macrostate Hk when all nodes of the set H \ Hk are taboo is

f Hk
i j =

{
π jTi j

(
qHk

i − qHk
j

)
, if qHk

i > qHk
j ,

0, otherwise,
(15)

where π j is the stationary (equilibrium occupation) probabil-
ity of node j.

For an A ← B transition, if we also eliminate the nodes
b ∈ B of the initial macrostate according to Eqs. (9) and (10),
thus leaving only the nodes of the absorbing macrostate A,
then the final renormalized transition probabilities are

T ′′
a j = T ′

a j + T ′
a jT

′
j j/(1 − T ′

j j ) = T ′
a j/T ′

A j ≡ Ba j . (16)

Here, we have denoted the absorption (hitting) probability,
i.e., the probability that trajectories initialized at the jth tran-
sient node, j ∈ Q, will be absorbed at the ath absorbing node,
a ∈ A, by Ba j . The sum over absorbing nodes a ∈ A for Ba j

is unity for all nodes j.

D. Extension of graph transformation with
a backward pass phase

Following |Q| − 1 renormalization steps of the standard
formulation of the GT algorithm [Eqs. (6) and (7)] to eliminate
a single node at each iteration, the network only has a single
noneliminated transient node j ≡ |Q| /∈ A, and the A ← j
MFPT is given by

TA j = τ
( j−1)
j

1 − T ( j−1)
j j

. (17)

Working backwards to undo the GT procedure, in the previous
iteration the first-step relation [Eq. (3)] gives

TA, j−1 = τ
( j−2)
j−1 + TA, j−1T ( j−2)

j−1, j−1 + TA jT
( j−2)
j, j−1 ,

so TA, j−1 = τ
( j−2)
j−1 + TA jT

( j−2)
j, j−1

1 − T ( j−2)
j−1, j−1

, (18)

and we can therefore determine TA, j−1 from TA j if we save
the necessary quantities from iteration j − 2. In general, we
have the following expression to compute the MFPT for the
A ← n transition, where n is the node that was eliminated at
the nth iteration of the forward pass phase:

TAn = τ (n−1)
n +

∑
n�γ�|Q|

TAγ T (n−1)
γ n ,

or TAn =
τ (n−1)

n +
∑

n<γ�|Q|
TAγ T (n−1)

γ n

1 − T (n−1)
nn

. (19)

Note the change in the summation range between the two lines
of Eq. (19). Hence, we can work backwards and compute TAn

from TAγ with γ = n + 1, n + 2, . . . , |Q| if we save τ (n−1)
n

and T (n−1)
γ n for n � γ � |Q| during the forward pass phase.

An analogous scheme can be written for the committor proba-
bilities, which obey a first-step relation [Eq. (13)] of the same
form as that for MFPTs [Eq. (3)] [93].
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Using the LU decomposition formulation of the GT al-
gorithm [Eqs. (9) and (10)], we can write a more concise
expression for the A ← n MFPT, where node n was elim-
inated at the nth iteration of the forward pass phase. This
expression requires the renormalized probabilities for transi-
tions from, and waiting time for, the nth node at the iteration
where this node was eliminated, as well as the MFPTs for
transitions from nodes that were eliminated after node n in the
forward pass phase:

TAn = τ (n)
n +

∑
γ /∈A

TAγ T (n)
γ n . (20)

This equation follows from the fact that the γ ← n transition
probabilities for eliminated nodes γ � n vanish in T(n) by
construction from Eq. (9).

The above derivation shows that we can calculate the
MFPTs for all nonabsorbing nodes in a backward pass phase
of the GT algorithm, by iteratively undoing the steps of the
renormalization procedure and computing the MFPT for the
newly restored node. This is the idea behind the extended
GTH (EGTH) algorithm of Hunter [94,114]. As we have
shown, it is not necessary to store the complete transition
matrices at each iteration in the course of the forward (elimi-
nation) phase of the algorithm, and instead only a subset of
waiting times and transition probabilities are required. An-
other convenient way to implement the backward pass phase
of the algorithm that avoids excessive memory usage is to
exploit the analogy between the GT algorithm and LU de-
composition [Eq. (9)], in which case the MFPTs for restored
nodes are computed via Eq. (20). This procedure has the
advantage of simultaneously yielding the committor and ab-
sorption probabilities via Eqs. (14) and (16), respectively. The
overall procedure is given as pseudocode in Algorithm 1 and
illustrated in Fig. 2. The steps of the GTH algorithm [66,67] to
compute the stationary distribution of an irreducible Markov
chain can also be readily incorporated into this procedure.

There are numerous practical factors to consider in opti-
mizing the efficiency and memory usage of state-reduction
algorithms. Prioritizing renormalization of nodes with the
lowest number of connections can speed up the calculation
significantly [76]. The GT procedure in our PATHSAMPLE pro-
gram uses a compressed row storage scheme at the start of a
calculation for the MFPT, when the transition matrix is sparse.
The GT renormalization adds nonzero probabilities as nodes
are eliminated, and the program switches to dense storage
when more than 2% of the elements became nonzero, if there
are fewer than 11,000 remaining nodes. Our DISCOTRESS
software [86] is designed similarly, employing a sparse data
structure to keep memory requirements manageable and avoid
unnecessary floating point operations when the network is
large.

III. EXPECTED NUMBER OF NODE VISITS AND NODE
VISITATION PROBABILITIES FOR FIRST-PASSAGE AND

TRANSITION PATHS

A. Fundamental matrix of an absorbing Markov chain

Consider the substochastic |Q| × |Q|-dimensional matrix
TQQ whose elements are the probabilities for transitions

within the set Q ≡ Ac. All nodes represented in TQQ must
be transient. That is, it must be possible to reach the absorbing
set of nodes A from any node in Q. Then the inverse NQQ =
IQQ + TQQ + T2

QQ + . . . = (IQQ − TQQ)−1 exists, and is
called the fundamental matrix of the absorbing Markov
chain [21]. Since the fundamental matrix of a reducible
Markov chain with |Q| transient nodes is always a |Q| × |Q|-
dimensional square matrix, in the following we will use the
notation N for brevity.

The element Ni j of the fundamental matrix is the ex-
pected number of times that the ith node is visited along a
first-passage path initialized from node j [115]. Many more
dynamical properties of interest can be written straightfor-
wardly in terms of N [18]. For example, the variance in the
number of times that node i is visited prior to absorption when
trajectories are initialized from node j is given by the relevant
element of the matrix [18]

N(2) = N(2Nd − I) − (N ◦ N), (21)

where ◦ denotes the Hadamard (i.e., element-wise) product,
and Nd is the matrix whose only nonzero elements are the
diagonal elements of N. A general expression for the nth
moment of this distribution, N(n), is derived in Ref. [18]. The
probabilities Hi j that the ith node is visited along first-passage
paths initialized from the jth node, excluding the initial oc-
cupation of j, also follow directly from the Ni j elements. The
mean number of visits to node i for such first-passage paths,
Ni j , must be equal to the probability of hitting node i, multi-
plied by the mean number of visits to i prior to absorption for
paths starting from i, plus one if i is the initial node:

Ni j = δi j + Hi jNii ⇒ Hi j = (Ni j − δi j )/Nii. (22)

The above condition in matrix form is

H = N−1
d (N − I). (23)

The absorption probabilities Bi j are the elements of the matrix
B = TAQN, where TAQ is the matrix of probabilities for tran-
sitions from Q to A. The absorption probabilities are nonzero
only for i ∈ A, j /∈ A.

The A ← B MFPT can be obtained from N via

TAB =
∑
j∈Q

∑
b∈B

pb(0)Njbτ j, (24)

for an initial probability distribution p(0) localized in B,∑
b∈B pb(0) = 1. Higher moments of the FPT distribution can

also be determined given the elements of the fundamental
matrix. For a DTMC, the waiting times for nodes are fixed
and equal to the lag time τ . It can be shown that the vector
with elements VA j , i.e., the variance of the FPT distribution
for transitions from the jth (transient) node, is [69]

VA = (
(2N� − I)� − (� ◦ �)

)
τ 2, (25)

where � = N�1Q is the vector of mean first-passage path
lengths, and 1Q is the |Q|-dimensional column vector with
all elements equal to unity. See Ref. 18 for a derivation. In the
continuous-time case, Eq. (25) gives the variances of the FPT
distributions for transitions from nodes of the Markov chain
parameterized by the linearized transition probability ma-
trix [108] Tlin(τ ) = I + τK, where τ � min{−K−1

j j : ∀ j}, for
which the mean waiting times are uniform, τ j ≡ τ ∀ j [115].
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FIG. 2. Illustration of the LU decomposition formulation of the graph transformation (GT) algorithm with a backwards pass phase
(Algorithm 1), which computes the committor probabilities and MFPTs for all transient nodes, as well as the absorption probabilities. The
steps of the GTH algorithm [66,67] to compute the stationary distribution can also be incorporated into this procedure. Nodes that have been
eliminated by renormalization (see Fig. 1) are shown as transparent. LU decomposition [Eqs. (9) and (10)] is used to renormalize transition
probabilities, so that transitions from eliminated to noneliminated nodes are preserved (such connections are indicated by a transparent, dashed
line). (i) A Markov chain for which the state space S is divided into the set of absorbing nodes A and the set of transient nodes Q. The set of
transient nodes is further divided into an initial macrostate, B, and the set of intervening nodes, I. (ii) In the first stage of the forward pass phase
of the algorithm, all nodes of the state I are iteratively eliminated by renormalization [Eqs. (9) and (10)], with the mean waiting (or lag) times
for nodes renormalized according to Eq. (12). In the censored Markov chain where only nodes of the set A ∪ B remain noneliminated, the
sum of transition probabilities from the jth transient node to absorbing nodes is the A ← B committor probability for node j, q+

j [Eq. (13)].
(iii) In the remainder of the forward pass phase, the nodes of the initial state B are iteratively eliminated. In the censored network where only
absorbing nodes remain noneliminated, the renormalized i ← j transition probabilities from transient to absorbing nodes are the absorption
probabilities Bi j [Eq. (16)]. The MFPT for the A ← b transition, where b ∈ B was the last node to be eliminated, is equal to the renormalized
waiting time for the bth node in the final censored Markov chain. (iv) In the backwards pass phase, eliminated nodes are iteratively restored
using the L and U matrices that were constructed during the forward pass phase, and the MFPTs for transitions from transient nodes are
computed by a recursive formula [Eq. (20)]. The figure shows the first step of this phase, in which the final node to be eliminated, b,
for which the A ← b MFPT has previously been calculated, is restored. The A ← b′ MFPT, where b′ is the node that was eliminated
before b, has two contributions. The first term is the renormalized mean waiting (or lag) time for the b′th node in the censored Markov
chain of the b′th iteration. The second contribution corresponds to transitions to noneliminated transient nodes (here, b ← b′) of the relevant
renormalized network.

B. Fundamental matrix of an absorbing Markov chain
computed using state reduction

Inversion of the Markovian kernel IQQ − TQQ, which
is required to compute the fundamental matrix N of an
absorbing Markov chain, is numerically unstable when the
transition matrix features metastable macrostates. Therefore,
as for the computation of MFPTs and committor probabilities
in Markov chains exhibiting rare event dynamics (Sec. II),
we wish to devise an inherently stable algorithm to robustly
compute N, and hence many additional dynamical properties

of interest. To this end, we define the augmented matrix

N∗ =
⎛
⎝TQQ IQQ
IQQ 0QQ
TAQ 0AQ

⎞
⎠, (26)

where 0QQ is the |Q| × |Q|-dimensional null matrix. Evi-
dently, N∗ does not relate to a stochastic matrix, since the
column sums corresponding to transition probabilities from
transient nodes necessarily exceed unity. Nonetheless, if we
proceed to compute the analog of the stochastic complement
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transient nodes

absorbing nodes

form augmented 
network

∗

eliminate a 
transient node

eliminate all 
transient nodes

dummy nodes

FIG. 3. Illustration of the numerically stable state-reduction procedure to compute the fundamental matrix N for an absorbing Markov
chain, effectively performing a matrix inversion operation on the Markovian kernel IQQ − TQQ. (i) The state space S ≡ Q ∪ A of the
Markov chain is divided into sets of transient and absorbing nodes, denoted Q and A, respectively. The substochastic matrix TQQ only
includes transition probabilities between transient nodes (blue), and does not include absorbing nodes (red). (ii) Dummy nodes (yellow), of
the set Q∗, are partnered with transient nodes via forward and reverse edges with weights equal to unity. (iii) State reduction [cf. Eq. (6)] is
used to eliminate transient nodes either iteratively [Eq. (27)] or in blocks [Eq. (28)]. The updated i ← j edge weights account for paths that
proceed via the eliminated nodes. Transitions from dummy to absorbing nodes do not have a meaningful interpretation and are not required in
the algorithm, so can be ignored. (iv) The i ← j edge weights in the network where only the dummy nodes remain are the elements Ni j of the
fundamental matrix N.

[Eq. (6)] corresponding to the remaining network when all
nodes represented in TQQ are eliminated from N∗, then we
obtain the fundamental matrix N.

Specifically, the proposed state-reduction algorithm to
compute the fundamental matrix N of an absorbing Markov
chain is as follows. For each of the transient nodes in the
network, of the set Q, we introduce a dummy partner node.
Thus, we have the augmented state space S∗ ≡ S ∪ Q∗,
where Q∗ denotes the set of dummy nodes, with |Q∗| ≡ |Q|.
Each dummy node is connected to its transient partner by
forward and reverse edges, both with weights equal to unity
[cf. Eq. (26)]. When all of the transient nodes have been elim-
inated, via the analog of a stochastic complement [Eq. (6)],
the weights of the i ← j edges in the remaining network
that correspond to transitions between dummy nodes are the
elements Ni j of the fundamental matrix N. In the nodewise
iterative formulation of this procedure, upon eliminating a sin-
gle transient node n, the edge weights for transitions between
all remaining nodes in the augmented network are updated
according to

N∗
i j ← N∗

i j + N∗
inN∗

n j∑
γ∈S\{n} N∗

γ n

∀ i, j ∈ S∗ \ {n}. (27)

This state-reduction procedure is illustrated in Fig. 3 and
given as pseudocode in Algorithm 2. Equation (27) shows the
advantage of including the absorbing nodes in the augmented
state space. In particular, if the probabilities for transitions

from transient to absorbing nodes are renormalized in the
course of the algorithm, then the total probabilities for tran-
sitions from transient to nondummy nodes remain conserved,
and equal to unity. Hence, since only the transient nodes
are eliminated, all subtraction operations can be avoided by
exploiting the relation 1 − Tnn = ∑

γ �=n Tγ n, where T denotes
the stochastic matrix of the censored Markov chain com-
prising the noneliminated nodes of the state space S . Using
this trick, the state-reduction algorithm is numerically sta-
ble [61–64].

The theory of stochastic complements presented in
Sec. II B can be leveraged to design a block formulation of this
state-reduction algorithm, wherein multiple nodes are elimi-
nated simultaneously [100]. Let us consider the elimination
of a set of transient nodes N ⊆ Q, and denote the set of all
remaining nonabsorbing nodes in the augmented state space
as Z ≡ S∗ \ (A ∪ N ). The augmented matrix [Eq. (26)] is
then updated according to [cf. Eq. (6)]

N∗
ZZ ← N∗

ZZ + N∗
ZN (INN − TNN )−1N∗

NZ , (28)

where we have used the notation N∗
ZZ to explicitly indicate

the dimensionality of the augmented network. For N ≡ {n},
Eq. (28) reduces to Eq. (27). After eliminating all transient
nodes, the resulting matrix N∗

ZZ is the fundamental matrix N.
This procedure is numerically stable if the blocks of nodes to
be eliminated, N , correspond to metastable macrostates, so
that the matrix inversion operations for the Markovian kernels
INN − TNN are not associated with significant numerical
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(a) (b)

FIG. 4. Schematic depiction of the nonequilibrium and equilibrium (i.e., steady state) A ← B first-passage and transition path ensembles
(FPPE and TPE, respectively). (a) Trajectories of the nonequilibrium FPPE start within the initial state B and are absorbed upon hitting the
target state A. The TPE (solid line) is the portion of the FPPE that transitions directly to A from B without revisiting B. (b) For an irreducible
Markov chain, we can also consider the equilibrium FPPE and TPE, which result from considering an infinitely long trajectory that continually
transitions between the B and A states. The steady-state A ← B TPE is the set of path segments that transition directly from B to A at
equilibrium. The steady-state MFPT is the inverse of the rate at which trajectories that last visited the initial state hit the target state.

error. This formulation of the algorithm therefore requires a
careful partitioning of the nodes into appropriate communi-
ties, but leads to improved time complexity [107,116].

C. Reactive and nonreactive segments of the
first-passage path ensemble

Knowledge of the committor probabilities, {q+
j } [Eq. (14)],

and the fundamental matrix of the absorbing Markov chain,
N (Sec. III A), can be exploited to divide the A ← B first-
passage path ensemble (FPPE) into nonreactive (B ← B) and
reactive (direct A ← B) segments [Fig. 4(a)] [17]. This di-
vision allows for a more detailed analysis of the FPPE at
a nodewise level of detail, beyond the results outlined in
Sec. III A. The reactive segments of the FPPE, which corre-
spond to the transition path ensemble (TPE) [109–113], are
particularly insightful to understand the characteristics of the
productive A ← B process. In Sec. III D, we will derive novel
analytical results for key dynamical properties characterizing
the influence of individual nodes on direct A ← B transitions,
such as the probability that a particular node is visited along
a reactive (transition) path [Eq. (44)]. Since we have shown
that both the {q+

j } and N can be computed robustly by state-
reduction methods (Secs. II C and III B, respectively), we can
likewise compute the derived properties by a numerically sta-
ble route. In the remainder of the current section, we formally
introduce the factorization of first-passage paths into reactive
and nonreactive trajectory segments.

The expected number of times that a nonabsorbing node is
visited along a first-passage path is simply an average of the
mean number of visits when starting from the initial state B ⊆
Q, taken over the initial occupation probability distribution
localized within this set:

θ j =
∑
b∈B

pb(0)Njb ∀ j ∈ Q, (29)

with
∑

b∈B pb(0) = 1. Absorbing nodes can only be visited
once along a particular first-passage path, with probability
Ba j , and the average over the initial distribution is

θa =
∑
j /∈A

p j (0)Ba j ∀ a ∈ A. (30)

The first-step relation for the elements of the fundamental
matrix of the absorbing Markov chain, which includes only

transient nodes of the set Q, is [18]

Ni j = δi j +
∑
γ∈Q

[TQQ]γ jNiγ . (31)

Note that this expression does not have the same form as the
first-step relations for the MFPTs, committor probabilities,
or absorption probabilities [cf. Eq. (3)], and therefore the
state-reduction algorithms presented in Secs. II B–II D cannot
be used to compute the {θ j}. Since TQQN = NTQQ, which
follows from writing N as a geometric progression in TQQ,
we can rewrite the first-step relation [Eq. (31)] and sum over
the initial distribution within B to obtain∑

b∈B
pb(0)Njb =

∑
b/∈B

pb(0)δ jb +
∑
γ∈Q

[TQQ] jγ

∑
b∈B

pb(0)Nγ b

so θ j = p j (0) +
∑
γ∈Q

[TQQ] jγ θγ ∀ j ∈ Q. (32)

The absorption probability matrix is B = TAQN, so for ab-
sorbing nodes we have

θa =
∑
b∈B

pb(0)Bab =
∑
γ∈Q

[TAQ]aγ

∑
b∈B

pb(0)Nγ b

=
∑
γ∈Q

[TAQ]aγ θγ ∀ a ∈ A. (33)

Hence, the {θ j} satisfy the following system of linear equa-
tions:

θ j = p j (0) +
∑
γ∈Q

Tjγ θγ ∀ j ∈ S, (34)

where pj (0) = 0 for j /∈ B. Equation (34) can be solved di-
rectly by standard linear algebra methods, but the {θ j} are
most robustly determined via Eqs. (29) and (30) when N is
computed using the state-reduction algorithm described in
Sec. III B.

We can now break down properties of the FPPE
into contributions from reactive and nonreactive path
segments [17,112,117]. Recall that nodes not belonging
to endpoint states are members of the intervening set
I ≡ (A ∪ B)c. A reactive path from B is one that leaves B
and reaches A without returning to B [110]. Nonreactive paths
contain nodes from B ∪ I in first-passage path segments start-
ing in B up to the final escape from B before reaching A. The
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average numbers of visits to the jth node along nonreactive
and reactive paths, θ̄ j and θ̃ j , respectively, are given by [17]

θ̄ j = θ j (1 − q+
j ), (35a)

θ̃ j = μ j + θ jq
+
j , (35b)

where

μ j = 1B( j)θ̄ j

∑
γ

Tγ jq
+
γ , (36)

is the probability that a reactive path left the initial state B
from node j ∈ B. Here, 1B( j) is the indicator function for
the initial region, equal to unity for j ∈ B and zero other-
wise, which ensures that the initial probability distribution
in Eq. (36) is contained within B. Let ∂B ⊆ B denote the
boundary nodes of the initial set, i.e., nodes of the initial set
for which a direct transition to a node of the set Bc exists.
Then

∑
b∈∂B μb = 1 and μ j = 0 ∀ j /∈ ∂B. Equation (35b)

simply states that the expected number of times that a reactive
trajectory, beginning at the boundary ∂B of the initial state
B, visits a node j /∈ B is the product of the expected number
of times that any first-passage trajectory visits the jth node
and the probability that a trajectory initialized from node j is
reactive.

The decomposition of the FPPE into reactive and nonre-
active segments allows for analysis of the individual nodes
and edges of the Markovian network that make significant
and productive contributions to the A ← B process. The
flux along the i ← j edge of the network is defined as
Ji j = θ jTi j [17]. This flux can also be split into nonreactive
and reactive contributions J̄i j and J̃i j , respectively,

Ji j ≡ θ jTi j = J̄i j + J̃i j, (37)

where the reactive flux along the i ← j edge is given by [17]

J̃i j = θ̃ jTi jq
+
i∑

γ Tγ jq+
γ

, (38)

for i ∈ I ∪ A, j ∈ I, and when the set A is reachable from
both nodes i and j. Here, “reachable” means that a path to A
exists that passes through the I set without hitting B. Other
than this condition, the derivation of Eqs. (34)–(38) does not
assume that the Markov chain is ergodic [17]. J̃i j is essentially
the nonequilibrium analog of the stationary (i.e., equilibrium)
reactive flux f +

i j [Eq. (15)].

D. Analysis of reactive paths

A further key dynamical property characterizing the en-
semble of A ← B transition (i.e., reactive) paths [112] is
the conditional probability that the ith node is visited along
a trajectory initialized from node j when the trajectory is
reactive. We shall denote this quantity by H̃i j . To simplify the
notation in deriving this probability, we assume that there are
no nodes in the set I from which the absorbing macrostate
A is not reachable, since such nodes do not contribute to the
reactive segment of the FPPE. Similarly, it is not necessary to
consider nodes of the set B \ ∂B. If there are no such internal
initial nodes, so that ∂B ≡ B, then we have |Q| nodes in the
relevant set of transient nodes ∂B ∪ I ⊆ Q. For brevity, we

shall assume this to be the case, and we therefore consider the
|Q| × |Q|-dimensional substochastic matrix TQQ.

To derive the H̃i j probabilities, we introduce the sub-
stochastic transition probability matrix for the reactive process
on the set of (relevant) transient nodes, T̃QQ [117]. We also
define the |Q|-dimensional vector of committor probabili-
ties for the relevant transient nodes, q+

Q, and the modified
committor probability vector q+′

Q , for which the elements cor-
responding to initial boundary nodes are nonzero, equal to
q+′

b∈∂B = ∑
γ /∈B Tγ bq+

γ . This probability is the probability that
a trajectory is absorbed before hitting any node of the set B [cf.
Eq. (13)] [76]. Then the reactive transition probability matrix
for transient nodes is [17]

T̃QQ = diag(q+
Q)TQQdiag(q+′

Q )−1, (39)

and can be evaluated robustly by using a state-reduction algo-
rithm to compute the committor probabilities (Sec. II C). We
note again that internal initial nodes are discarded in this rep-
resentation, since such nodes do not contribute to the reactive
segment of the FPPE, i.e., q+′

b∈B\∂B = 0. The corresponding
fundamental matrix for the reactive process is

ÑQQ = (IQQ − T̃QQ)−1, (40)

and can be computed using the numerically stable state-
reduction algorithm derived in Sec. III B. We shall henceforth
omit the dimensionality subscripts from Ñ for notational
simplicity. The fundamental matrix for the reactive process
provides a natural means to express the expected number of
visits to a transient node along a reactive path:

θ̃ j =
∑
b∈∂B

μbÑjb ∀ j ∈ Q. (41)

Recall that for absorbing nodes we simply have θ̃a = θa ∀ a ∈
A. By analogy with the visitation probability matrix H as-
sociated with the FPPE [Eq. (23)], we can calculate H̃i j , the
probability that a reactive trajectory will ever visit node i if it
starts at node j for i, j ∈ Q, not counting the occupancy of the
initial node:

Ñi j = δi j + H̃i j Ñii. (42)

Hence, we obtain the matrix H̃:

H̃ = Ñ−1
d (Ñ − I). (43)

Thus, the reactive visitation probabilities H̃i j can be de-
termined robustly by using state-reduction algorithms to
compute the committor probability vector, q+

Q, and the fun-
damental matrix for the reactive process, Ñ.

We can similarly define a substochastic transition ma-
trix corresponding to the nonreactive process on the set of
transient nodes. This Markov chain is constructed so that
“absorption” corresponds to the first-passage trajectory hitting
a node at the boundary of the initial state for the final time,
after which point the trajectory proceeds to be reactive [17].
Fundamental and visitation probability matrices for the non-
reactive segment of the FPPE then follow by an analogous
argument to the reactive case.

The probability that the jth noninitial transient node is
visited along a reactive A ← B transition path [118], r+

j , is

an average of the H̃jb elements with respect to the initial
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occupation probability distribution for reactive trajectories μ

[Eq. (36)],

r+
j =

∑
b∈∂B

μbH̃jb ∀ j ∈ Q \ ∂B. (44)

For initial boundary nodes b ∈ ∂B, H̃b j = 0 ∀ j, since initial
nodes cannot be revisited along reactive paths by definition.
The probability that a node at the boundary of the initial state
appears along a reactive path is therefore simply r+

b = μb.
The probability that an absorbing node a ∈ A appears along
a reactive path is an average of the elements of the absorption
probability matrix [Eq. (16)] weighted by the μ distribution;
r+

a = ∑
b∈∂B μbBab.

The reactive visitation probability r+
j provides detailed

characterization of the FPPE at a microscopic level of detail.
Nodes that have a high probability of being visited along
reactive trajectories are those that mediate the dominant path-
ways for the overall productive transition. For an effective
two-state system, nodes that are associated with a high r+

j
probability, and which also have values for the committor
probability q+

j close to 0.5, represent the dynamical bottle-
neck region of the network [119–121]. That is, these nodes
constitute the transition state ensemble (TSE) [122]. Global
dynamical quantities, including the A ← B MFPT [123], are
most sensitive to perturbations in the transition probabilities
associated with these bottleneck nodes [124,125]. Therefore,
the reactive visitation and committor probabilities are the cen-
tral objects in understanding how the local dynamics at a small
subset of nodes, namely, the TSE, modulate the slow, macro-
scopic dynamics. In general, for systems exhibiting multiple
metastable macrostates, there are multiple TSEs that are the
boundary regions between the metastable states, across which
the committor probability changes sharply.

The visitation probability of the jth node along reactive
trajectories in Eq. (44) corresponds to the nonequilibrium
TPE [17]. If the set of initial boundary nodes ∂B contains
more than one node, then Eq. (44) differs from the result
when the system is at a steady state, i.e., corresponding to the
equilibrium TPE [112]. The two path ensembles are illustrated
schematically in Fig. 4. In the steady-state regime, which ex-
ists if the Markov chain is irreducible [100], the A ← B path
ensemble has relaxed to equilibrium. The probability μSS

j that
the reactive portion of trajectories began after the nonreactive
trajectory segment hit node j is therefore dependent on the
stationary distribution [17],

μSS
j ∝ 1B( j)π j

∑
γ

Tγ jq
+
γ . (45)

Similar to the nonequilibrium case [Eq. (36)], this initial
distribution for reactive trajectories at steady state satisfies∑

b∈∂B μSS
b = 1 and μSS

j = 0 ∀ j /∈ ∂B. That is, this distri-
bution is localized at the boundary of the initial state. The
visitation probability of the jth noninitial transient node along
reactive trajectories for the equilibrium TPE is a weighted
average of the elements of the H̃ matrix [Eq. (43)] with respect
to this initial occupation probability distribution,

r+, SS
j =

∑
b∈∂B

μSS
b H̃jb ∀ j ∈ Q \ ∂B. (46)

In addition, r+, SS
b = μSS

b ∀ b ∈ ∂B and r+, SS
a =∑

b∈∂B μSS
b Bab ∀ a ∈ A. Similarly, the average number of

times that the transient node j is visited along reactive
trajectories at steady state is a weighted average of the
elements of the Ñ matrix [Eq. (40)] with respect to the μSS

distribution,

θ̃SS
j =

∑
b∈∂B

μSS
b Ñjb ∀ j ∈ Q, (47)

and for absorbing nodes we have θ̃SS
a = ∑

b∈∂B μSS
b Bab

∀ a ∈ A.
Recall that within the state-reduction formalism, a single

linear system of equations can be solved to robustly obtain
the set of committor probabilities {qH1 , . . . , qHN }, where each
committor probability vector qHk is associated with a different
target macrostate Hk ∈ H, conditioned on all nodes of the set
H \ Hk being taboo (Sec. II C). This formulation allows us
to compute all the dynamical properties that we have derived
relating to the reactive segments of the FPPEs for alternative
Hk ← Hc transitions. This result is useful if, for example, we
want to analyze transition paths associated with a particular
sequence of events, which form a subset of the ensemble of
all paths transitioning to the target state. This analysis can be
achieved by setting states that are not involved in the paths of
interest to be taboo. For instance, a Markov chain representing
the folding transition of a protein may feature several compet-
ing mechanisms that can be distinguished on the basis of the
intermediate metastable states that are visited [27,126–128].
By designating a particular intermediate state to be taboo,
we can investigate the TPE specifically for transitions that
proceed via alternative intermediate states.

IV. NUMERICAL RESULTS

We demonstrate the methodology outlined in Secs. II
and III with numerical results for a kinetic network repre-
senting a structural transition for a cluster of 38 atoms bound
by the Lennard-Jones potential (LJ38) [129,130]. Specifi-
cally, we consider the transition from a structure based on
an incomplete Mackay icosahedron (Ih) to a face-centered
cubic (F ) geometry, which was also analyzed in Ref. [38].
The network model was constructed by mapping the local
minima and transition states of the underlying potential en-
ergy landscape to the nodes and edges of a CTMC, which
consists of 885 nodes and 1126 bidirectional edges. The face-
centered cubic (F ) state is represented by the single node
of the Markov chain with the largest stationary probability
(lowest free energy), and the icosahedral (Ih) state is repre-
sented by the single node with lowest free energy belonging
to a separate funnel on the landscape. Because these two
competing low-energy nodes are separated by a large energy
barrier, the F ← Ih solid-solid transition becomes an increas-
ingly rare event [59] with decreasing temperature. We employ
standard reduced units for the LJ potential in the following
analysis [129,130].

We analyze the Markov chain parameterized at a tem-
perature of T = 0.12, which approximately coincides with
the start of the regime where the kinetic network exhibits
significant metastability. At this temperature, the number
of internode transitions in F ← Ih first-passage paths is
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typically 108 or 109, precluding the use of the standard kinetic
Monte Carlo [131] (kMC) algorithm to sample the FPPE.
Moreover, dense linear algebra methods to perform an eigen-
decomposition of the Markov chain, to invert the Markovian
kernel IQQ − TQQ (required to compute the fundamental
matrix N and the stochastic complement [Eq. (6)]), or to
solve relevant linear systems of equations [Eqs. (3), (13),
and (34)] suffer from a severe propagation of numerical error
arising from finite precision [116]. Similarly, iterative sparse
linear algebra methods [42] fail to converge. Computational
analysis of this Markov chain is therefore intractable with-
out employing the state-reduction algorithms described in
Secs. II and III.

Figure 5 shows the results of various state-reduction calcu-
lations to robustly compute the salient dynamical properties
associated with individual nodes of the kinetic network, for
the F ← Ih transition. The Markov chain is visualized as
a disconnectivity graph [132], where the interconvertibility
of sets of nodes in the network is considered at decreas-
ing threshold increments representing the available energy.
A fork in the graph indicates that a transition between the
sets of nodes requires energy exceeding the threshold, and
the branches terminate at the energies of the corresponding
nodes. MFPTs to the F state and committor probabilities
were computed by the iterative LU decomposition formu-
lation of the GT algorithm with a backward pass phase
(Algorithm 1). The expected number of node visits along
reactive paths, θ̃ j [Eq. (41)], were obtained from the funda-
mental matrix for the reactive process [Eq. (40)], computed
using the state-reduction procedure given in Algorithm 2. The
reactive visitation probabilities for nodes were determined
from the elements of the reactive fundamental matrix and
from the committor probabilities via Eqs. (39)–(44). The ex-
act results from the state-reduction calculations were verified
numerically by comparison with kinetic path sampling simu-
lations [108,133], an advanced method to sample the numbers
of internode transitions along trajectories that is unaffected by
metastability [118].

Inspection of the committor probabilities [Fig. 5(a)] reveals
that the network is effectively a two-state system, with the Ih

and F nodes representing strong attractors that characterize
the respective regions of the state space. That is, there are rel-
atively few nodes with intermediate values for the committor
probability (q+

j ≈ 0.5), and instead the vast majority of nodes
are strongly associated with relaxation to either the Ih or the F
state (indicated by committor probabilities q+

j ≈ 0 and q+
j ≈

1, respectively). The MFPTs to the F state are TF← j ≈ 109

for most nodes j, although there are a small number of nodes
associated with extreme values for TF← j . In particular, nodes
separated from the F state by small energy barriers relax to
the F state comparatively rapidly (TF← j ≈ 104), but there are
nodes that constitute kinetic traps, for which transitions to F
correspond to very long timescales (TF← j ≈ 1018).

A striking feature of the network is the localization of the
reactive dynamics to a small subset of nodes, demonstrating
that there are strongly preferred pathways for the F ← Ih

transition at this temperature. On average, only around
10 % of nodes are visited more than once along a reactive
F ← Ih path, and the average number of visits is θ̃ j < 10−4

for around half of the nodes j [Fig. 5(c)]. The localization of
the transition path ensemble is also evident from the reactive
visitation probabilities r+

j for nodes [Fig. 5(d)]: less than 10 %
of nodes are associated with values r+

j > 0.1, and only around
half of the nodes have r+

j > 10−5. The reactive visitation
probabilities for the 10 % of nodes with the highest station-
ary probabilities are essentially negligible (r+

j < 10−10). With
decreasing temperature, the number of nodes associated with
nonnegligible values for the reactive visitation probability
becomes even smaller [118]. Moreover, the expected number
of times that nodes are visited along F ← Ih transition paths
represents only a small fraction of the expected number of
times that nodes are visited along first-passage paths. This
result confirms that the majority of the MFPT is accounted
for by unproductive “flickering” [108] within nodes that have
a strong tendency to relax back to the Ih attractor node.

It is often insightful to closely examine the properties of
specific nodes that play a critical role in the reactive dynamics.
In Fig. 5, we highlight two metastable intermediate structures,
M1 and M2, that are particularly relevant to the F ← Ih tran-
sition. The M1 state is a somewhat disordered structure that is
highly likely to be visited along a reactive F ← Ih transition
path (r+

M1
≈ 0.9), although trajectories at this node have a high

probability of returning to the initial Ih state (q+
M1

≈ 10−3).
The M1 state therefore represents a structure that (usually)
must be located to successfully transition to the F from the
Ih state, but this is an early step that does not modulate the
slow dynamics. Large perturbations to the transition probabil-
ities associated with the M1 node would significantly affect
the MFPT, but the global dynamics are not overly sensitive
to small perturbations of this node, since the state does not
constitute a limiting step in the rare event [124,125]. The
M2 state, a configuration that retains some of the symmetry
of the incomplete icosahedral Ih state, is a true dynamical
bottleneck node in the network. Around half of the reactive
trajectories proceed to F via M2 (r+

M2
≈ 0.47). Furthermore,

the M2 node is a member of the TSE [122] of nodes dividing
the effective regions of attraction characterized by the Ih and
F states. That is, trajectories reaching the M2 state then have
an approximately equal probability of first hitting either Ih or
F , with the latter state slightly favoured (q+

M2
≈ 0.63). Since

the M2 node is likely to be visited along reactive paths and
corresponds to a limiting step of the overall slow transition,
the global dynamics, including the MFPT, are highly sensi-
tive even to small perturbations of the transition probabilities
corresponding to this node [123].

The principles that we have used in our analysis of the
LJ38 system can be applied to yield insight into the dynamics
of an abritrary discrete- or continuous-time Markov chain.
It is particularly useful to identify the nodes that comprise
the TSE, for which the local dynamics have a critical effect
in determining the global dynamics [118], and to identify
the favoured nodes that mediate the dominant pathways for
the productive transition between two endpoint states. For
Markov chains where the transition probabilities or rates de-
pend on an external parameter [134], such as the temperature
in physical systems, perturbations may significantly alter the
dynamical behavior. For instance, a switching effect may be
observed in systems with alternative competing mechanisms
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FIG. 5. Disconnectivity graphs [132] showing the dynamical properties of nodes in the Markov chain for the transition of the LJ38 cluster
from an incomplete icosahedron (Ih) to a face-centered cubic (F ) structure, computed using state-reduction algorithms as described in Sec. IV.
The vertical axis represents the potential energy, and the threshold increment is �E = 0.5 (in reduced units). (a) Committor probabilities
q+

j for nodes j. (b) MFPTs TF← j for transitions to the F state. (c) Expected numbers of node visits along reactive paths that leave Ih and

reach F without returning to Ih, θ̃ j [Eq. (41)]. (d) Reactive visitation probabilities r+
j [Eq. (44)]. Nodes M1 and M2 both have high visitation

probabilities, but only the latter has a committor probability close to 0.5. The M2 structure is therefore a dynamical bottleneck that has a critical
role in modulating the overall transition.

015301-12



NUMERICAL ANALYSIS OF FIRST-PASSAGE PROCESSES … PHYSICAL REVIEW E 104, 015301 (2021)

for a given A ← B transition, with different reactive pathways
and dynamical bottlenecks being favoured in separate param-
eter regimes. When the system exhibits rare event dynamics,
the origins of switching behavior can likely be traced to a
small number of influential states. The quantities discussed
in the present work, and especially the reactive visitation
probability [118] derived herein, provide a convenient means
to rigorously assess which regions of the state space are ki-
netically relevant with respect to a particular A ← B process
of interest. Our proposed methodology, which allows for the
treatment of models with metastable states, is therefore es-
sential to analyzing the features of a general Markov chain,
and to understanding differences in the dynamical behavior of
related models.

V. CONCLUSIONS

We have described state-reduction algorithms for the
numerically stable analysis of first-passage processes in fi-
nite discrete- and continuous-time Markov chains exhibiting
metastability, for which the systems of linear equations to be
solved are severely ill-conditioned [41–44]. Since a separation
of characteristic timescales is a ubiquitous feature of Markov
chains representing realistic dynamical processes [38,46–59],
our methodology provides a valuable approach to analyze
complex systems in practical applications. The limiting fac-
tor affecting the viability of the state-reduction procedures
presented here is the available computer memory. Nonethe-
less, the methodology remains feasible for sparse networks
comprising several thousand nodes [108]. For larger networks,
metastability can be exploited to lump [18,135–137] the nodes
of the Markov chain without introducing significant error
in the representation of the slow dynamics [38]. We have
illustrated our approach with numerical results for a CTMC
representing a structural transition in a model atomic cluster
at a low temperature, which is not amenable to analysis by
standard linear algebra methods [38].

We have presented an iterative formulation of the GT
algorithm [73–78] (Sec. II B) that incorporates a backward
pass phase, which enables the MFPTs for transitions from all
nonabsorbing nodes to the absorbing state to be determined
simultaneously (Sec. II D). The procedure requires storing a
subset of elements of the transition probability matrix, and
(optionally) waiting times for nodes, during the forward pass
phase. If the MFPTs for transitions from all nonabsorbing
nodes of the Markov chain are of interest, then our proposed
variation of the GT algorithm (Algorithm 1) is preferable to
previous formulations [76,107] that compute the MFPT for
a single transition from a particular node. For example, the
new version is particularly advantageous when computing the

optimal coarse-grained transition probabilities or rates for a
given partitioning of the Markov chain [8,138,139], which
requires the matrix of MFPTs for all pairwise transitions be-
tween nodes [116]. Efficient and robust computation of the
stationary, committor [79–82], and absorption probabilities
can also be incorporated into this GT algorithm (Sec. II C).

We then derived a state-reduction algorithm to com-
pute the fundamental matrix of an absorbing Markov chain
(Sec. III B), the elements of which are the expected num-
ber of node visits along first-passage paths. This procedure
provides a numerically stable route to compute the variance
of the FPT distribution [Eq. (25)], a key global dynamical
property that is otherwise challenging to obtain in a robust
manner [69]. Together with the committor probabilities, the
expected number of node visits allows for the straightforward
evaluation of key dynamical properties that characterize the
direct transition process to the absorbing state at a nodewise
level of detail (Sec. III C). In particular, we have derived
expressions for the reactive visitation probabilities of nodes
(Sec. III D), that is, the probability that a node is visited
along a trajectory that hits the absorbing state without first
re-entering the initial state (cf. Fig. 4). We considered reactive
visitation probabilities for both the nonequilibrium [17] and
equilibrium [112] (i.e., steady state) path ensembles [Eqs. (44)
and (46), respectively]. The expected number of times that
nodes are visited along reactive paths [Eqs. (41) and (47)] can
be obtained similarly.

The methodology presented herein can be used to gain fun-
damental insight into dynamical processes on finite Markov
chains, including for models with metastable states. The sepa-
ration of the first-passage path ensemble into nonreactive and
reactive components [17] allows for the individual nodes and
edges that are critical in facilitating the productive transition
process to be readily identified. Patterns in quantities such as
the reactive visitation probabilities of nodes may be evident
for different classes of network structure [140]. The effects of
important features of the network, such as an edge that is asso-
ciated with a large net reactive flux, or a node that constitutes a
dynamical bottleneck, can be investigated by applying pertur-
bations [141]. Thus, our methodology provides a framework
to assess the robustness of a Markovian network [142–144]
and to probe the relationship between network topology and
dynamics at both a local and global scale [145,146].
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APPENDIX

All algorithms described herein are implemented in DISCOTRESS [86]. a highly flexible C++ program for simulation
and analysis of arbitrary discrete- and continuous-time Markov chains, including models featuring metastable states, which
are numerically challenging. DISCOTRESS is freely available software under the GNU General Public License. For code,
documentation, and tutorials, see Ref. [86].
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Algorithm 1: State-reduction algorithm to simultaneously compute the MFPTs, committor probabilities, and absorption probabilities for
all transient (i.e., nonabsorbing) nodes in a DTMC or CTMC. This algorithm is illustrated in Fig. 2. The steps of the Grassmann-Taksar-Heyman
(GTH) algorithm [66,67] are also incorporated into this procedure, so that the stationary distribution is computed if the Markov chain is
irreducible.

input: discrete-or continuous-time transition probability matrix T with state space S ≡ Q ∪ A
set of absorbing nodes A and set of transient nodes Q ≡ Ac

set of initial nodes B ⊆ A (note that nodes of the set I ≡ (A ∪ B)c are prioritized for elimination)

|Q|-dimensional vector of mean waiting (or lag) times τ for nodes j ∈ Q
output: |Q|-dimensional vector of A ← j MFPTs T A for nodes j ∈ Q

|Q|-dimensional vector of A ← B committor probabilities q+ for nodes j ∈ Q
|A| × |Q|-dimensional matrix B of i ∈ A ← j /∈ A absorption probabilities Bi j

|S|-dimensional stationary distribution vector π for all nodes (exists if the chain is irreducible)

initialize T A, q+, B,π, L, U;

T(0) ← T, n ← 1;

/* forward pass phase to eliminate all transient nodes by renormalization */

while n � |Q| (i.e. n /∈ A) do

for i ∈ S, j /∈ A do

Ln j ← T (n−1)
n j /(1 − T (n−1)

nn ), Uin ← T (n−1)
in − δin; LU decomposition of transition matrix

T (n)
i j ← T (n−1)

i j + UinLn j ; eliminate node by graph transformation

τ
(n)
j ← τ

(n−1)
j + τ (n−1)

n Ln j ; renormalize waiting times

n ← n + 1;

if all nodes of the set I ≡ (A ∪ B)c have been eliminated with this iteration then q+
b ← 0 ∀ b ∈ B;

/* compute committor probabilities for all intermediate nodes */

for j ← n, n + 1, . . . , |Q| (i.e. j ∈ I) do

q+
j ← ∑

a∈A T (n)
a j ;

Bi j ← T (n)
i j ∀ i ∈ A, j /∈ A; compute absorption probabilities

/* If the Markov chain is irreducible, eliminate and then restore all

but one of the absorbing nodes, needed to compute the stationary distribution (GTH algorithm) */

while |Q| < n < |S| (i.e. n ∈ A \ |S|) do
Ln j ← T (n−1)

n j /(1 − T (n−1)
nn ), Uin ← T (n−1)

in − δin;

T (n)
i j ← T (n−1)

i j + UinLn j ; eliminate node by graph transformation

n ← n + 1;

πn ← 1, μ ← 1; at this point, only the |S|th node remains

while |Q| < n < |S| (i.e. n ∈ A \ |S|) do

T (n−1)
i j ← T (n)

i j − UinLn j ; restore node (i.e., undo graph transformation)

n ← n − 1;

πn ← Ln,|S| +
∑|S|−1

k=n+1 πkLnk , μ ← μ + πn; GTH step

/* compute MFPT and stationary probability for the |Q|th node, which was the last transient node to be eliminated */

TAn ← τ (n)
n ;

/* backward pass phase to compute MFPTs and stationary probabilities for all other transient nodes */
while n � 1 (i.e. n /∈ A) do

T (n−1)
i j ← T (n)

i j − UinLn j ; restore node (i.e., undo graph transformation)

τ
(n−1)
j ← τ

(n)
j − τ (n−1)

n Ln j n ← n − 1;

TAn ← τ (n)
n + ∑

γ /∈A TAγ T (n)
γ n ; compute MFPT for restored node

πn ← Ln,|S| +
∑|S|−1

k=n+1 πkLnk , μ ← μ + πn; GTH step

π j ← π j/μ ∀ j; renormalization of the stationary distribution (GTH)

deallocate L, U

return T A, q+, B, π
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Algorithm 2: State-reduction algorithm to robustly compute elements Ni j , the expected number of times that the ith node is visited along
a first-passage path initialized at node j prior to absorption, for all transient nodes i, j ∈ Q. This procedure is illustrated in Fig. 3.

input: discrete-or continuous-time transition probability matrix T with state space S ≡ Q ∪ A
set of transient nodes Q ⊂ S
set of absorbing nodes A ⊂ S
set of dummy nodes Q∗, where |Q∗| = |Q|

output: |Q| × |Q|-dimensional fundamental matrix N associated with the absorbing Markov chain

/* define a network with augmented state space S∗ that includes transient, absorbing, and dummy nodes */

S∗ ← S ∪ Q∗;

/* set the initial i ← j edge weights, N∗
i j , of the augmented network with state space S∗ */

N∗
i j ← Ti j ∀ i ∈ S, j ∈ Q;

N∗
i j ← 1 ∀ i ∈ Q∗, j ∈ Q;

N∗
i j ← 1 ∀ i ∈ Q, j ∈ Q∗;

N∗
i j ← 0 ∀ i ∈ S, j ∈ A;

N∗
i j ← 0 ∀ i, j ∈ Q∗;

/* eliminate all transient nodes of the augmented network by renormalization */

E ← ∅; set of nodes that have been eliminated (initially empty)

for n ∈ Q do

E ← E ∪ {n};
N∗

n ← ∑
γ∈S\E N∗

γ n (≡ 1 − N∗
nn); confers numerical stability

for i, j ∈ S∗ \ E do

N∗
i j ← N∗

i j + (N∗
inN∗

n j/N∗
n ); renormalization preserves

∑
γ∈S\E N∗

γ n = 1 ∀ n ∈ Q \ E
/* once all transient nodes have been eliminated, the edge weights for transitions between dummy

nodes in the remaining network are the elements of the fundamental matrix N */

initialize N;
Ni j ← N∗

i j ∀ i, j ∈ Q∗;
return N
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