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Correct calculation of nitrogen charge state passing through highly ionized carbon plasmas
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In the present work, we reanalyze the energy loss experimental data from Cayzac et al. [Nat. Commun.
8, 15693 (2017)] using our successful ion charge state theoretical model. We predict lower nitrogen charge
values, from 3.5+ to 5.0+, than the ones calculated by Cayzac et al., fitting better to their data. For energy loss
estimations, we use the same stopping model, so our predictions agree better with the experimental data only
due to our charge state model. Different projectile electron loss and capture processes are taken into account to
estimate the projectile charge state. The projectile electron loss, or ionization, with plasma ions and free electrons
are considered. On the other hand, the projectile electron capture, or recombination, with plasma free or bound
electrons are also considered. The projectile ionization with plasma ions is shown as the main factor that modifies
the mean charge of the projectile. Here, the new Kaganovich fitting formula for this projectile ionization is used
because it seems to be more accurate than Gryzinsky’s fitting in the low energy range. Our charge state model
fits better with experimental data than any other model in the bibliography. Thus, it should be considered in any
charge state and any energy loss estimation to obtain reliable results in future work.

DOI: 10.1103/PhysRevE.104.015217

I. INTRODUCTION

The aim of the work of Cayzac et al. [1] was the experimen-
tal discrimination of ion stopping models near the Bragg peak
in highly ionized carbon plasmas. The Bragg peak is where
it is supposed that the stopping reaches its maximum, which
makes it easier to discriminate these stopping models. For this
purpose, they chose as ions the lightest projectiles available
to them at that moment. Light ions simplify the beam charge
distribution in the stopping power calculation as stopping
depends approximately quadratically on the projectile charge.

The experiment was carried out at GSI-Darmstadt, Ger-
many, in which two high-energy lasers, PHELIX and
NHELIX [2], were used to create the plasma that was later
probed with the pulsed ion beam from the UNILAC accelera-
tor. The plasma was created by heating a 100 μg cm−2 carbon
foil from both sides by the two laser beams, leading to full
target ionization after 6–7 ns with free electron densities of
ne ≈ 5 × 1020 cm−3 and electron temperatures of T ≈ 150 eV
[3,4]. The plasma conditions were simulated with the two-
dimensional (2D) hydrodynamic code RALEF2D [5] for the
times t = 0–15 ns after the beginning of the target heating.
Then, the plasma ionization is deduced by postprocessing the
density [6] and temperature profiles with the FLYCHK code [7],
which determines the free electron density profile in nonlocal-
thermodynamic-equilibrium (NLTE) state, the common state
of a laser plasma [8].

The nitrogen ions passed through a degrader before in-
teracting with the carbon plasma to reduce the beam energy
to E0 = 0.586 MeV/u. The degraders had a density ρ =
1.84 g cm−3 and were produced by rolling carbon foils down
to a thickness close to 41 μm. Due to its thickness, the out-
going ion beam is in its mean charge state. The degrader was
positioned 15 mm in front of the target, which both ensures
a free path for the heating lasers and limits the transverse

broadening due to angular scattering of the ion beam when
probing the plasma. In addition, the degrader was systemat-
ically destroyed by the plasma emission and expansion from
the target and had to be changed after each shot.

The energy loss of the nitrogen ions was measured by a
time of flight (TOF) detector based on 10 identical polycrys-
talline chemical vapor deposition (CVD) diamond samples.
The total detection area of 166 mm2 was large enough to
collect about 20% of the ions at the beam focus position,
which guarantees sufficient signal amplitudes for a quan-
titative energy-loss analysis. Cayzac et al. compared this
experimental energy loss data with the predictions of the
Li-Petrasso (LP) stopping model [9], which represents a per-
turbative scheme, and with the predictions of the T-Matrix
(TM) stopping model by employing a velocity-dependent
screening length [10], which includes a detailed treatment of
close binary collisions as well as quantum diffraction effects.

To predict the projectile charge state, they used a Monte
Carlo code based on cross sections to calculate the mean
beam charge [3,4], as well as the mean charge state models by
Kreussler [11–13] and Gus’kov [14]. Finally, they combined
these three charge state models with the LP and TM stopping
models in order to simulate and compare the energy loss of
the beam with the data. They conclude that TM and Gus’kov
models enable their estimations to better suit the experimental
data.

Here in this work, we present our charge state model that
fits much better to their experimental data.

II. THE ENERGY LOSS MODEL

To estimate the energy loss of the nitrogen ions in these
plasma conditions, we use the T-Matrix framework [15],
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as it had already been checked and chosen before by the
experimental team.

A Boltzmann collision integral approximation is neces-
sary for the description of short-range interactions between
the projectile and the plasma electrons, including strong
collisions. This is achieved using a binary collision approxi-
mation in the general kinetic equation [16]. Then, the analytic
stopping power expression of the T-Matrix approximation
is [15,17]

∂E

∂x
= − n f eλ

3
ekBT

μ3(2π )2vp

∫ +∞

0
d pp3CT

bc(p)

×
[

p−exp

(
− v2

−
2kBT

)
− p+exp

(
− v2

+
2kBT

)]
, (1)

with p± = 1 ± μkBT
pvp

and v± = p
μ

± vp, where p is the pro-
jectile momentum, vp is the projectile velocity, kB is the
Boltzmann constant, T is the electron temperature, μ is the
chemical potential of the plasma, n f e is the free electron
density, and λe is electron thermal wavelength.

The calculation of the T-Matrix is limited to a spherically
screened projectile Coulomb potential, i.e., to the case of static
screening. Hence, the collective plasma motion is ignored.
The most important factor in the expression (1) is the transport
cross section CT

bc(p) of the scattering process of the projec-
tile ions on the target electrons. This transport cross section
depends approximately quadratically on projectile charge, Q,
and can be calculated by employing the scattering phase shift
method in the case of a nondegenerate plasma [15]. However,
if only the first Born approximation of the transport cross sec-
tion is considered, a perturbative stopping power expression
can be derived which covers binary collisions in the static
screening case [17].

Another possibility is to include dynamic screening and
thus collective plasma excitations. This can be obtained
by selecting an appropriate effective ion-electron interaction
potential [18]. Alternatively, a velocity-dependent screening
length can be introduced in the dynamic screening model
[10,19]. The inverse velocity-dependent screening length k is
defined as

k = kD

[
1 +

( vp

vth

)2]− 1
2

, (2)

where kD is the inverse Debye length and vth is the thermal ve-
locity of the plasma electrons. Using this velocity-dependent
screening length in the dynamic screening model, the trans-
port cross section in the equation (1) becomes CT

bc(p, λ(vp)).
Finally. the energy loss is calculated with Eq. (1):

�E = −
∫

∂E

[ρ(x)∂x]
[ρ(x)dx], (3)

where the stopping power is expressed as an energy loss per
unit of areal density.

III. OUR CHARGE STATE MODEL

To estimate the projectile mean charge, each projectile
charge state is simulated along the trajectory using our charge
model [20] based on cross sections that solve Eqs. (4) and (5):

dPq(t )

dt
= Cq+1Pq+1(t ) + Lq−1Pq−1(t ) − (Cq + Lq)Pq(t ),

(4)

Q(t ) = 〈q(t )〉 =
Zp∑

q=0

qPq(t ), (5)

where Zp is the projectile atomic number, Pq is the proportion
of ions with charge state q, Cq is the electron capture rate, and
Lq is the electron loss rate.

Lq ≡ α(q → q + 1), (6)

Cq ≡ α(q → q − 1). (7)

Loss and capture rates, α, represent all possible electron loss
and capture processes; however, due to the high predominance
of monoelectron processes, these will be the only ones consid-
ered in this work. Any rate is defined as

αi = σinivp, (8)

where σi is the cross section, ne is the electron, and ni is the
ion density (depending on the case).

IV. CROSS SECTIONS AND RATES

In this section, we will estimate different cross sections and
rates related to the considered more relevant electron loss and
capture processes.

A. Ionization due to plasma ions (BEM)

The Binary Encounter Model (BEM) corresponds to the
loss of a projectile electron X q+ due to the projectile collision
with a plasma ion Ap+. It is described as

X q+ + Ap+ −→ X (q+1)+ + Ap+ + e−. (9)

This model was originally proposed by Gryzinsky [21] and
has been quite successful due to its calculation simplicity;
however, the main disadvantage of this model is its lack of
precision for low projectile energies. For this reason, several
authors have proposed improvements on this model to solve
this inconvenience [22]. In this work, we use the model pro-
posed by Kaganovich [23] since it is valid for any velocity
range, which allows great simplicity in its calculation. Then,
the ionization cross section due to plasma ions is calculated as

σBEM = σ0,BEM

∑
nl

Nnl

Z∗
t + 1

(
Z∗

t

Unl

)2

K

(
vp

vnl

√
Z∗

t + 1

)
, (10)
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with

K (x) = exp(−1/x2)

x2
[1.26 + 0.283 ln(2x2 + 25)], (11)

vnl =
√

2
Unl

me
, (12)

σ0,BEM = 6.56 × 10−14 (cm2 eV2). (13)

In this equation Nnl indicates the projectile bound electron
number in shell nl . Unl is its binding energy, me is the electron
mass, Z∗

t is the effective plasma charge state, considering
possible shielding effects, and vnl is the bound electron orbital
velocity in the nl shell.

Finally, the ionization rate due to this process can be
obtained:

αBEM = σBEMvpni. (14)

B. Ionization due to plasma free electrons (FE)

Here we consider the loss of one projectile electron due to
the collision with a plasma free electron:

X q+ + e− −→ X (q+1)+ + 2e−. (15)

We use the theory developed by Lotz [24], described as

σFE = σ0,FE

∑
nl

Nnl
ln (Er/Unl )

ErUnl
θ (Er − Unl ), (16)

where

θ (x) = |x| + x

2x
, (17)

Er = mev
2
r

2
, vr =

√
v2

p + v2
th, vth =

√
kBT

me
, (18)

σ0,FE = 4 × 10−14 (cm2 eV2). (19)

The θ (x) is the step function which is equal to 1 if x > 0 and
0 if x � 0 and σ0,FE is a constant. Er and vr are the relative
kinetic energy and relative velocity of the projectile electrons
with respect to the plasma electrons. The relative velocity
is equivalent to the geometric mean between the projectile
velocity and the plasma electron thermal velocity.

It can be noticed that if the relative kinetic energy is less
than the binding energy of the projectile electrons, the ion-
ization cannot take place. Conversely, if the relative kinetic
energy is higher, ionization occurs.

Then, this ionization rate is

αFE = σFEvpn f e. (20)

C. Radiative electron capture (REC)

The radiative electron capture process consists on the cap-
ture of a plasma free electron by the projectile with higher
energy than the projectile energy level where is captured.
The difference in energy is released through a photon, h̄ω =
En − En′ , where En is the energy in the n shell, h̄ is the reduced
Planck constant, and ω is the photon frequency. This process
is described as follows:

X q+ + e− −→ X (q−1)+ + h̄ω. (21)

For the calculation of this capture rate, we have used the
model based on Ref. [25], which is described as

αREC = 26

3

(π

3

)1/2
a2

0α
4
Scn f eZt Q

2 0.78

vp

X 0.3
v

1 + X 2
v

, (22)

where

Xv = vp

vm

 vp

Q

(
3(Zp − Q)

2

)1/3

, (23)

αS is the fine structure constant, a0 is Bohr radius, c is the
speed of light in vacuum, Zt is the plasma atomic number, and
Xv is the correlation between the projectile velocity and the or-
bital velocity vm of the outermost bound electron, according to
Lamb-Bohr [26]. This expression does not come directly from
an analytical expression; it is the result of an approximation
of the model proposed by Seaton [27]. This approximation is
beneficial in view of its greater simplicity and its sufficient
accuracy.

D. Three-body recombination (3BR)

This recombination process can take place in plasmas with
high free electron density. It occurs when the projectile simul-
taneously interacts with two electrons, capturing one of them
and transmitting the excess energy to the other. The excess
energy comes from the energy state variation of the captured
electron. This process can be described as follows:

X q+ + e− + e− −→ X (q−1)+ + e−. (24)

To define this capture ratio, Zeldovich and Raizer devel-
oped the following expression from Thomsom’s classical
theory [28]:

r3BR = r0,3BR
Q3

(vr/αSc)9
, (25)

with

r0,3BR = 2.92 × 10−31 (cm3/s). (26)

From this ratio, the capture rate can be calculated simply
by multiplying by free electron density:

α3BR = r3BRn f e. (27)

E. Charge transfer (CT)

The charge transfer process consists of the capture of a
plasma bound electron by the projectile. To describe this
process, we start from the classical theory Oppenheimer-
Brinkman-Kramers (OBK) [29,30] in which, according to
Betz [31] and following the sum rules of May [32], resulting
the rate is

αCT = 218

5
πa2

0αScnbevp

∑
ni

∑
n f

Ni

(
1 − Nf

2n2
f

)

× aeik

Q2U (5/2)
i U (3/2)

f E4
k[

E2
k + 2Ek (Ui + Uf ) + (Ui − Uf )2

]5 , (28)

where nbe is the plasma bound electron density, ni and n f are
the principal quantum numbers of the transferred electron in
the initial and the final state, respectively, Ui and Uf are the

015217-3



BARRIGA-CARRASCO AND VÁZQUEZ-MOYANO PHYSICAL REVIEW E 104, 015217 (2021)

positive binding energies in these states, Ni and Nf are their
occupation numbers, Ek = v2

p, and aeik is a reduction factor.
In the classical OBK theory, aeik = 1; however, this value
ignores the possibility that the plasma recovers the electron
transferred to the projectile. To consider these cases, Eichler
developed an eikonal theory [33] where the aeik factor was
calculated as follows:

aeik = πηvi

sinh (πηvi )
exp

[
−2ηvi arctan

(
0.5vp − εη

vi

)]

×
[

23

48
+

(
1

6
v2

i + 5

6
ε

)
η2 + 5

12
ε2η4

]
, (29)

η = αSc/vp, ε = (Uf − Ui )/(1 Ry), vi = [Ui/(1 Ry)]1/2,

where Ry is the Rydberg constant. This new aeik has values
between 0.1 and 0.4, and thus the effective capture section is
reduced compared to the classical OBK theory.

Subsequently, Peter [25] developed a simplified model for
the charge transfer capture rate, chosen in this work due to its
simplicity:

αCT = 217

45
aeikπa2

0αScnbe
Q3

v9
p

ϕ(Zt , vp), (30)

with

ϕ(Zt , vp) =
∑

nl

Nnlv
5
nl

[1 + 0.5(vnl/vp)2]9
. (31)

Here ϕ(Zt , vp) is a function that depends on the plasma atomic
number and the projectile velocity. In this simplified model,
Peter takes the approximate constant value of 0.15 for aeik .

F. Dielectronic recombination (DR)

The dielectronic recombination consists in a process of two
phases. First, a free electron is captured by the projectile, and
the energy difference between the free state and the captured
state in the nlk shell is transferred to another bound electron in
a lower nli shell. This energy transmission causes the electron
of the nli shell to excite up to an upper nl j shell, such that

X q+ + e− −→ X ∗∗(q−1)+. (32)

The atom, in its excited state X ∗∗, will tend to stabilize by a
radiative decay of the excited electron X (nli → nl j ). In this
step, the energy excess is released by a photon h̄ω = Enli −
Enl j , returning to a ground state:

X ∗∗(q−1)+ −→ X ∗(q−1)+ + h̄ω; (33)

on the other hand, the electron captured in the nlk shell re-
mains in that excited state, although it will tend to decay to
lower shells over time.

For this recombination rate, a model developed by Peter
[34,35] has been used, which is defined as

αDR = h3n f e(
2πmev

2
th

)3/2

∑
nli

∑
nl j

∑
nlk

Nnli

2(2l j + 1) − Nnl j

2(2l j + 1)

× (2lk + 1)
A(1)

r A(1)
a

A(1)
r + A(1)

a

F (s, t ), (34)

where

F (s, t ) = exp[−(s − t )2] − exp[−(s + t )2]

4st
,

s =
√

Enl j − Enli + Enlk

kBT
, t =

√
mev2

p

2kBT
. (35)

Here h is the Planck constant, Nnli and Nnl j are the occupation
numbers of the Nnli and Nnl j shells, respectively, and Enli ,
Enl j , and Enlk are, respectively, the binding energy of the
electrons in the shells nli, nl j , and nlk . On the other hand, A(1)

r
and A(1)

a are radiative stabilization and self-ionization rates,
respectively, defined as

A(1)
r = 1 Ry

h̄
α3

S

(
Enl j − Enli

1 Ry

)2

f (1)( j → i), (36)

A(1)
a = 8√

3

1 Ry

h̄

Q2

n3

1 Ry

Enli − Enl j

f (1)( j → i)

2l + 1

× 0.4
√

d/π

2 − exp

(
−0.6

n
4
3

k d
1
2

) exp [−d (l − lp)2], (37)

with

d =
√

1 + y

2.5nk
, lp = n2/3

k

√
1 + y, y = n2

kmev
2
p

2Q2
. (38)

Furthermore, f (1)( j → i) is the oscillation strength between
nl j and nli shells.

It is important to note that these definitions do not consider
the self-ionization processes of the valence electrons. The rel-
evance of these processes within dielectronic recombination
is discussed in Ref. [34] as well as in more publications [36].
To consider this, a new valence self-ionization rate A(1)

v should
be introduced in Eq. (34),

A(1)
r A(1)

a

A(1)
r + A(1)

a

−→ A(1)
r A(1)

a

A(1)
r + A(1)

a + A(1)
v

. (39)

In general, the self-ionization processes of the valence elec-
trons are only of interest in cases with fast projectiles with
high Zp and low charge state q and which therefore have a high
number of electrons in their valence shell. In these cases, there
is a reduction in the electron capture rate of approximately
two orders of magnitude. However, in this work, we do not
use this self-ionization rate as it is not the case mentioned
before and the accuracy is already sufficient by using a sim-
pler model. This rate is relevant when we are working with
heavy projectiles at high kinetic energies (1–10 MeV/u) and
at medium-low charge states.

Finally, once the ionization and recombination rates have
been described, it is possible to calculate the total rates as

Lq = αBEM + αFE, (40)

Cq = αREC + α3BR + αCT + αDR. (41)

V. RESULTS

A. Charge state

Figures 1–3 show the average projectile charge state of a
nitrogen projectile along with the plasma parameters at three
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FIG. 1. Carbon plasma parameters at 3 ns and nitrogen charge
state

different times (3, 7, and 12 ns) to illustrate the effect of
the plasma conditions on the projectile charge state in both
partially and fully ionized plasma.

Initial nitrogen energy is E0 = 0.586 MeV/u, measured
after it passes through the degrader where it achieves an
average charge state of Q0 = 5.05+, according to ETACHA
calculations [37], which is the initial charge of the projectile
prior to its interaction with the laser-generated carbon plasma.

Figure 1 illustrates the average charge state at 3 ns from
the onset of the laser pulse. At this instant, the carbon plasma
generated by the laser is partially ionized, achieving an ion-
ization of about 3.5+ at the plasma center. This instant shows
the largest variation of the charge state across the areal density
due to the nonuniform ionization throughout the ion trajectory.
Here we plainly see that, for the plasma parameters consid-
ered, partial ionization of the target leads to a decrease in the
projectile charge state because bound electron capture is the
dominant process. This plasma profile across the areal density
results in a considerable variation in the charge state of the
projectile from 5.0+ to 3.6+ at the center. The reason is that a
higher bound electron density in the target yields an increase
in the recombination rate of the nonradiative process.

In contrast, Fig. 2 illustrates the average charge state at
7 ns from the onset of the laser pulse, when the carbon plasma
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FIG. 2. Carbon plasma parameters at 7 ns and nitrogen charge
state.
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FIG. 3. Carbon plasma parameters at 12 ns and nitrogen charge
state.

generated by laser is almost totally ionized. It reveals a slight
variation in the projectile charge state because of the slight
variation in the high ionization of the target. In this case, the
charge state is varied only from 5.003+ to 5.000+ across the
areal density because nonradiative recombination is signifi-
cantly decreased and radiative recombination is the dominant
capture process.

Lastly, Fig. 3 illustrates the equilibrium charge state at
12 ns from the onset of the laser pulse. At this instant, the
carbon laser-generated plasma is also almost totally ionized,
but with a small fraction of bound electrons (greater than in
the case at 7 ns). The projectile average charge state behavior
is also similar to the last case, exhibiting a higher variation
from 5.002+ to 4.994+. This reveals the influence of a small
portion of bound electrons in this experiment, resulting in a
charge state lower than the cold matter due to the so-called
density effect. This effect involves the reduction of radiative
capture since, at higher densities, the probability of the pro-
jectile interaction with a free electron is also higher, which
results in ionization of the captured electron [35].

B. Energy loss

The predictions of charge state models in the energy loss
are compared with energy loss data in Fig. 4 for the nitrogen
projectiles in the carbon laser-generated plasma. The energy
loss is shown as a function of time and normalized to the
energy loss in the solid target, which was measured being
0.85 MeV. This experiment is helpful to prove our charge state
model in the low energy range from energy loss calculations.
The nitrogen had an initially charged state of Q0 = 5.05+ and
an energy of E0 = 0.586 MeV/u. Our model combines the
predictions of our charge state model across the areal density
(check Figs. 1–3) with the T-Matrix energy loss model. The
T-Matrix model represents the nonperturbative energy loss
calculation.

Figure 4 compares our theoretical calculations with those
made by Cayzac et al. [1]. These authors utilized a Monte
Carlo (MC) code and the Kreussler and Gus’kov models to
determine the projectile’s state of charge. They contrasted the
three models and showed that only the Kreussler [11] and
Gus’kov [14] models (both very similar) were comparable
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with the measurements, so the Gus’kov model was chosen
for their final results, giving a projectile charge state in the
range of 5.1+ to 5.4+. Nevertheless, their predictions contrast
with ours, which here are between 3.500+ at the lowest target
ionization and 5.003+ at the highest target ionization.

Results shows that our theoretical predictions agree very
well with the data. Here, we have made used of the same
energy loss T-Matrix scheme used by the experimental team
and therefore the differences in the theoretical predictions
must come only from the charge state model.

VI. CONCLUSIONS

The average charge state, together with the energy loss
of slow nitrogen ions, has been computed theoretically and

checked against experimental data in a carbon laser-generated
plasma. It is supposed that the largest disagreements between
existing theories on ion stopping power arise around the
maximum of the stopping power, close to the Bragg peak.
For a plasma temperature around 100–200 eV, the maxi-
mum stopping power is achieved for projectile energies near
0.5–0.6 MeV/u.

Different projectile electron loss and capture processes
were taken into account to estimate the projectile charge
state. The electron loss, or ionization, with plasma ions and
free electrons have been considered. On the other hand, the
electron capture, or recombination, with plasma free or bound
electrons have been also considered. The projectile ionization
with plasma ions was shown as the main factor that modifies
the mean charge of the projectile. Here, the new Kaganovich
fitting formula for this projectile ionization was used because
it seems to be more accurate than Gryzinsky’s fitting in the
low energy range.

The energy loss has been also calculated by using the
projectile charge state profile obtained with the model de-
scribed before and compared with the estimations and data
of Cayzac et al. [1]. In view of the results, the calculation
agrees very well with the data because our projectile charge
model predicts a lower charge state than the one predicted by
the experimental team.

To conclude, we must say that our charge state model fits
better with experimental data than any other model in the
bibliography. Thus, it should be considered in any charge
state and any energy loss estimation, now and in the future,
to obtain reliable results [20].
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