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Spontaneous and explicit parity-time-symmetry breaking in drift-wave instabilities
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A method of parity-time- (PT) symmetry analysis is introduced to study the high-dimensional, complicated
parameter space of drift-wave instabilities. We show that spontaneous PT-symmetry breaking leads to the ion
temperature gradient instability of drift waves, and the collisional instability is the result of explicit PT-symmetry
breaking. A new unstable drift wave induced by finite collisionality is identified. It is also found that gradients
of ion temperature and density can destabilize the ion cyclotron waves when PT symmetry is explicitly broken
by a finite collisionality.
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Drift-wave instability driven by density gradient is an im-
portant research topic for plasma physics and magnetic fusion
[1–6]. The turbulence transport in tokamaks starts from the
seed of drift waves destabilized by various effects that nat-
urally exist in the devices. The drift-wave and associated
instabilities in tokamaks typically depend on seven or eight
dimensionless parameters, including the scale lengths of the
ions and electrons, as well as impurity levels and collisional-
ity. The complicated parameter dependency of the drift wave
results in many different paths to instabilities, which have
been extensively studied in the past. Well-known examples
include the ion temperature gradient (ITG) mode, or the ηi

mode [7,8], the universal mode driven by nonadiabatic elec-
tron response [9,10], the electron temperature gradient mode
[11–13], and the collisional drift instability [14–16], just to
name a few. The neoclassical effect in the toroidal geometry
can also destabilize the drift wave as in the trapped particle
modes [17,18]. Because of the complexity in parameter space
and destabilization mechanisms, recent studies of drift-wave
instabilities rely on numerical simulations [19] using the gy-
rokinetic [8,11,13,20–22] or gyrofluid methods [23–25].

In the present study, we introduce a new perspective to
understand the mechanism of drift-wave instabilities using the
tool of parity-time- (PT) symmetry analysis. PT symmetry is
a concept in non-Hermitian quantum physics [26–28] intro-
duced by Bender and collaborators [29–36]. It has found a
wide range of applications in many branches of physics. It was
recently applied to study instabilities in continuous media,
such as the classical Kelvin-Helmholtz instability and the
Rayleigh-Taylor instability [37,38]. Here, using a two-fluid
model in a slab geometry, we show that drift-wave instabilities
in magnetized plasmas can be divided into two classes that are
induced by spontaneous PT-symmetry breaking and explicit
PT-symmetry breaking, respectively. This finding provides a
new tool to navigate the complex parameter space [19] of the
drift-wave instabilities.

*hongqin@princeton.edu

Spontaneous PT-symmetry breaking happens in conser-
vative systems via Krein resonances [36,39–41] between
two eigenmodes with opposite signs of actions. Explicit PT-
symmetry breaking occurs in nonconservative systems, and it
is often associated with dissipative instabilities [42]. Because
the spectrum of a PT-symmetric system must be symmetric
with respect to the real axis, instabilities arise when and only
when an eigenmode violates PT symmetry, i.e., PT symme-
try is spontaneously broken. As a consequence, spontaneous
PT-symmetry breaking usually has a finite threshold in the
parameter space corresponding to the Krein resonance. If a
physical effect is introduced into the system such that it does
not admit PT symmetry anymore, we say that PT symmetry
is explicitly broken. For such a system, the constraints on the
distribution of the spectrum are removed, and instabilities are
easier to trigger. When explicit PT-symmetry breaking desta-
bilizes the system, in most cases, there is no finite threshold
for the onset of instabilities.

We will use the example of the ITG instability and the
collisional instability to demonstrate the physics of spon-
taneous and explicit PT-symmetry breaking in drift waves,
respectively. In particular, we show that the governing equa-
tion of the ITG mode is PT symmetric, and spontaneous
PT-symmetry breaking leads to the ITG instability. The finite
threshold of the ITG mode corresponds to the Krein resonance
for spontaneous PT-symmetry breaking. On the other hand,
the collisions between electrons and ions explicitly breaks
PT symmetry, and there is no threshold for the collisional
instability. When the gradient of temperature or density exists,
any small collisionality will induce a growth rate for the drift
waves. A finite collisionality also induces a new unstable
low-frequency drift wave, which will be temporarily called
collision-induced drift wave for lacking of a better terminol-
ogy.

In addition, within the model adopted, we found that tem-
perature gradient and density gradient are destabilizing for the
electrostatic cyclotron waves as well. Because of the strong
constraint of PT symmetry, the threshold for instability is
too high for the parameters of practical interest. However,
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when PT symmetry is explicitly broken by a small but finite
collisionality, the gradients of ion temperature and density can
drive the electrostatic cyclotron waves unstable without any
threshold.

We first demonstrate the mechanism of spontaneous PT-
symmetry breaking for the local ITG mode in a slab geometry
using a conservative two-fluid model. For each species, the
governing equations are

∂n j

∂t
+ ∇ · (n ju j ) = 0, (1)

mjn j

(
∂u j

∂t
+ u · ∇u

)
= Zjn je

(
E + v × B

c

)
− ∇p j, (2)

d

dt

[
p j

(mjn j )γ j

]
= 0, (3)

where Zj is charge number and γ j is the polytropic index for
the jth species.

The equilibrium consists of a constant magnetic field in
the z direction, B = Bez, and inhomogeneous density n j0(x)
and pressure p j0(x) = n j0(x)Tj0(x) of electrons and ions. The
gradients of densities and pressures are in the x direction.
Quasineutrality condition requires Zini0 = ne0. Because the
equilibrium is inhomogeneous, particles flow in the diamag-
netic direction. We assume that an equilibrium electrostatic
field in the x direction is established such that only electrons
flow in the diamagnetic direction, i.e.,

ui0 = 0, (4)

ue0 = −
[

cE0(x)

B
+ c

eBne0

d pe0(x)

dx

]
ey, (5)

E0(x) = E0(x)ex = 1

Zini0(x)e

d pi0(x)

dx
ex . (6)

For linear electrostatic perturbation, we consider a local
mode in the form of exp(ikyy + ikzz − iωt ). For the ITG
mode, electron density perturbation can be approximated by
the adiabatic response (see Appendix),

Zini1(x) = ne1(x) = ene0φ1

meTe0
, (7)

where the first equal sign is due to the quasineutrality condi-
tion. Ions’ response is governed by the linearized system of
Eqs. (1)–(3),

−iωni1 = −ikzni0uiz1 − ikyni0uiy1 − uix1
dni0

dx
, (8)

−iωuix1 = Zieuiy1B0

cmi
+ 1

min2
i0

d p0

dx
ni1, (9)

−iωuiy1 = − ikyZieφ1

mi
− Zieuix1B0

cmi
− iky pi1

mini0
, (10)

−iωuiz1 = − ikzZieφ1

mi
− ikz pi1

mini0
, (11)

−iωpi1 = −uix1
d pi0

dx
− γi pi0(ikyuiy1 + ikzuiz1) . (12)

We choose the following normalization and dimensionless
parameters:

t̄ = t�i, x̄ = x

a
, k̄y,z = ky,za, k̄n = 1

ni0

dni0

dx
a , (13)

ūix1,iy1,iz1 = uix1,iy1,iz1

a�i
, v̄2

thi ≡ Ti0

mia2�2
i

, v̄2
s ≡ ZiTe0

mia2�2
i

,

p̄i1 = pi1

ni0mi�
2
i a2

, (14)

ω̄
†
T ≡ 1

mia�2
i

dTi0

dx
, ω̄†

p ≡ 1

mini0a�2
i

d pi0

dx
= k̄nv̄

2
thi + ω̄

†
T .

(15)

Here �i = ZieB/mic is the ion gyrofrequency, and a is the
typical scale length of the system, which can be chosen to be
the minor radius of a tokamak. The dimensionless parameter
k̄n measures the density gradient, and ω̄

†
T measures the ion

temperature gradient. Substituting Eq. (7), we cast the linear
system Eqs. (8)–(12) into the form of Schrödinger’s equation,

Hψ = ωψ, (16)

H =

⎛
⎜⎜⎜⎜⎜⎝

0 −ikn ky kz 0

iω†
p 0 i 0 0

v2
s ky −i 0 0 ky

v2
s kz 0 0 0 kz

0 iω†
p γiv

2
thiky γiv

2
thikz 0

⎞
⎟⎟⎟⎟⎟⎠

, (17)

ψ = (ni1, uix1, uiy1, uiz1, pi1)T . (18)

All quantities in Eqs. (16)–(18) are normalized and dimen-
sionless. For easy notation, the over bars for normalized
quantities have been dropped. This convention will be adopted
hereafter unless explicitly stated otherwise.

The spectrum of the system is determined by the character-
istic polynomial of H ,

D(ω) = −ω5 + αω3 + βω2 + ξω = 0, (19)

α ≡ 1 + k2
nv

2
thi + (

k2
y + k2

z

)(
v2

s + γiv
2
thi

) + knω
†
T , (20)

β ≡ ky
[
2ω

†
T + kn

(
2v2

thi + v2
s

)]
, (21)

ξ ≡ −k2
n

(
k2

y + k2
z

)
v4

thi(γi − 1) − k2
z

(
v2

s + γiv
2
thi

)
(22)

− kn
(
k2

y + k2
z

)
v2

thi(γi − 2)ω†
T + (

k2
y + k2

z

)
ω

†2
T . (23)

The spectrum are determined by seven dimensionless param-
eters and consist of two high-frequency ion cyclotron modes
and two low-frequency drift modes. The zero frequency mode
is not physically significant unless other effects, such as the
collisions, are considered. We will come back to this mode
later.

In a homogeneous equilibrium, kn = 0, ω
†
T = 0, and we

can set kz = 0 to observe that the dispersion relation for the
two high-frequency waves reduces to (in un-normalized vari-
ables)

ω2 = �2
i + k2

y

(
v2

s + γiv
2
thi

)
, (24)

which is the dispersion relation of the electrostatic ion cy-
clotron waves in a homogeneous, magnetized plasma. The
dispersion relation for the two drift waves reduce to ω = 0,
since the equilibrium is homogeneous.

We would like to know when the drift waves, and the
electrostatic ion cyclotron waves, will become unstable.
Because the parameter space is seven dimensional, the bound-
ary between stability and instability in the parameter space
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FIG. 1. Forbidden path (a) and allowed path (b) for instabilities as system parameters varying for a PT-symmetric system, illustrated for
systems with four eigenmodes. A PT-symmetric system can be destabilized only by the spontaneous PT-symmetry breaking through the Krein
resonance (b).

might be complicated. It turns out that PT-symmetry analysis
can help us to understand how the instability is triggered in
the parameter space.

Even though Eq. (16) assumes the form of Schrödinger’s
equation, the Hamiltonian specified by H in Eq. (17) is not
Hermitian as in standard quantum mechanics. Otherwise, ω

would always be real and the system would be stable. As we
show now, H is PT symmetric instead, which allows instabil-
ities.

Note that when the background is homogeneous, kn = 0
and ω

†
T = 0, then H is similar to a Hermitian matrix via a

simple rescaling of variables. This is akin to the situation
of cold plasma waves in a homogeneous medium [43]. It is
the background inhomogeneity that breaks the Hermiticity
of the system, and transforms it into a more interesting PT-
symmetric system [44].

A non-Hermitian operator H is PT symmetric if H com-
mutes with an PT operator, i.e.,

PT H = HPT . (25)

Here P is a linear parity operator satisfying P2 = I and T is
the complex conjugate operation [31]. We briefly summarize
the properties of PT symmetry as follows. The spectrum of a
PT-symmetric operator must be symmetric with respect to the
real axis, which is a strong constraint on the distribution of the
eigenmodes. For a stable system to become unstable under the
variation of system parameters, two eigenmodes of the system
must resonate first, which is called Krein resonance [36,39–
41]. A stable eigenmode is forbidden to move away from
the real axis by itself without going through the Krein reso-
nance with another stable mode. This situation is illustrated in
Fig. 1. It is also known that only Krein resonances between
two stable eigenmodes with opposite signs of actions result
in destabilization [36,39–41,45,46]. After resonance between
two stable modes with the same sign of actions, the modes
remain stable. Furthermore, when the system is stable, any
eigenvector ψ admits PT symmetry, i.e., PT ψ = λψ for some
complex number λ. In this case, we say PT symmetry is
unbroken. When an eigenmode is destabilized after the Krein
resonance, it must also break PT symmetry, i.e., PT ψ �= λψ

for any complex number λ. This is known as spontaneous PT-
symmetry breaking. These eigenmode properties have been

identified for applications in plasma physics and beam physics
[37,38,45,47–50].

Returning to the Hamiltonian H for the coupled system of
drift waves and ion cyclotron waves specified by Eq. (17), we
verify that H is indeed PT symmetric for

P =

⎛
⎜⎜⎜⎜⎜⎝

1

−1

1

1

1

⎞
⎟⎟⎟⎟⎟⎠

. (26)

This confirms that the system can only be destabilized by
spontaneous PT-symmetry breaking through the Krein res-
onance. The point where the resonance occurs marks the
threshold of the instability. Such a process is displayed in
Fig. 2, where the real frequency ωR and the growth rate ωI

of the four eigenmodes are plotted against ω
†
T for a typical

set of parameters of tokamaks. The range of ω
†
T is between

10−5 and 10−4. Other dimensionless parameters are v2
thi =

4 × 10−6, v2
s = 4 × 10−6, kn = 5, ky = 400, kz = 1, and γi =

1. It is clear that the spectrum is symmetric with respect to the
real axis as required by PT symmetry. The spontaneous PT-
symmetry breaking for the low-frequency drift waves starts at
ω

†
T = 3.4 × 10−5, where two of stable drift waves resonate,

and above this threshold the drift wave is unstable. This is
the familiar ITG instability. It can be verified that the signs of
actions for the two stable modes are different at the threshold,
as required by the mechanism of the Krein resonance. For
brevity, the calculation of signs of actions for eigenmodes [45]
are omitted here.

PT-symmetry analysis also reveals certain polarization
property of the ITG mode. When the ITG mode is stable, i.e.,
when PT symmetry is unbroken, the eigenmode preserves PT
symmetry,

PT ψ = Pψ∗ = λψ, (27)

where ∗ denote complex conjugate. For the form of P spec-
ified in Eq. (26), we can conclude that the relative phase
between ni1 and uix1 needs to be locked at π/2 when the ITG
mode is stable. When the ITG instability is triggered, this
relative phase become undetermined. These characteristics
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FIG. 2. (a) ITG instability destabilized by spontaneous PT-symmetry breaking through the Krein resonance when the ITG increases.
(b) The electrostatic ion cyclotron waves are stable. The gradients of temperature and density are destabilizing factors for the electrostatic ion
cyclotron waves. However, the instability threshold imposed by PT symmetry is too high for parameters of practical interest.

might be useful for identifying and validating the stabilization
and destabilization processes of the ITG mode in experiments
[51,52].

The drift-wave frequency is much smaller than that of the
ion cyclotron frequency as shown in Fig. 2. For drift waves,
we can neglect the ω5 term in Eq. (19), and the condition
for the ITG instability or spontaneous PT-symmetry breaking
becomes

β2 � 4αξ, (28)

where the equal sign holds at the threshold or the Krein reso-
nance point.

In this region of parameter space, the electrostatic ion
cyclotron branch is stable without spontaneous PT-symmetry
breaking. The gradients of temperature and density are desta-
bilizing factors for the electrostatic ion cyclotron waves.
However, for parameters of practical interest, the threshold
imposed by PT symmetry is too high for the instability to
occur. It turns out that the gradients of ion temperature and
density can drive both the electrostatic ion cyclotron modes
and the drift waves unstable without threshold, when PT sym-
metry is explicitly broken by collisions between electrons and
ions, which we now investigate.

As mentioned above, explicit PT-symmetry breaking
means that the governing equations do not admit a PT symme-
try anymore due to some physical effects, which are usually
associated with nonconservative effects, such as dissipation.
For the drift-wave dynamics studied here, such situations arise
when the collisional effect [14–16] or nonadiabatic kinetic
response [9,10,17,18] are important. For the model adopted
in the present study, if we consider the collision between
electrons and ions in the parallel direction, electrons’ response
is not purely adiabatic anymore, and the relationship between
perturbed potential φ1 and ne1 = Zini1 is (in un-normalized
quantities)

φ1 =
[

Te0

e
+ i

νiekymi�u0

Ziek2
z

(ue0 − ui0)

]
ni1

ni0
, (29)

where νie is the collision frequency between ions and
electrons, and �u0 ≡ ue0 − ui0 is difference between the equi-
librium flows of electrons and ions specified by Eqs. (4) and
(5), respectively. The Hamiltonian of the system is modified as

Hν = H +

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0

0 0 0 0 0
iνie�u0k2

y

k2
z

0 0 0 0

0 0 0 0 0

0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (30)

where νie has been normalized by �i and �u0 by a�i,
following the scheme in Eqs. (13)–(15). The derivation of
Eqs. (29) and (30) are given in Appendix.

It can be verified that Hν is not PT symmetric, i.e., there
exists no parity operator P such that PT H = HT P. Thus, the
constraint on the spectrum associated with PT-symmetric sys-
tem are removed by the collisions between ions and electrons.
An eigenfrequency can move into the complex plane without
the necessity of going through the Krein resonance first. The
forbidden path for instabilities in Fig. 1(a) is allowed when
PT symmetry is explicitly broken. In this sense, the explicit
PT-symmetry breaking due to dissipation “loosens up” the
dynamics of the system, and makes the system more suscep-
tible to other instability driving factors. This explains why
the collision can drive the drift wave unstable, even though it
takes energy out of the system as a dissipative effect. In Fig. 3,
the destabilization of the drift waves and ion cyclotron waves
induced by the finite collisionality is shown. The instabilities
have no threshold. A finite collisionality, no matter how small,
will lead to a finite growth rate. The dimensionless parameters
for this case are v2

thi = 2 × 10−6, v2
s = 2 × 10−6, ω

†
T = 10−4,

kn = 5, ky = 100, kz = 1, and γi = 1.

As we see in Fig. 2 for the case without collisions, ion tem-
perature gradient can only destabilize the drift waves above
certain threshold and has no effect on the stable ion-cyclotron
waves. This can be attributed to the constraints imposed by
PT symmetry. But when PT symmetry is broken explicitly by
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FIG. 3. Drift waves (a) and electrostatic ion cyclotron waves (b) are destabilized by the temperature and density gradients without threshold
when PT symmetry is broken explicitly by a small but finite collisionality.

a small but finite collisionality, the temperature and density
gradients destabilize both the drift waves and the electrostatic
ion cyclotron waves without threshold.

It has been well known that the ITG mode [7,8] has an
instability threshold, whereas the collisional drift instabil-
ity [14–16], the universal mode [9,10], and trapped particle
modes [17,18] usually do not. However, the reason for this
difference has not been identified in the literature. The anal-
ysis from the PT-symmetry perspective provides an answer.
The knowledge on the difference between these two types
of instability mechanisms is valuable when design laboratory
experiments. For the instabilities driven by spontaneous PT-
symmetry breaking, such as the ITG mode, the system is
structurally stable in the sense that an infinitesimal perturba-
tion or uncertainty on the system parameters will not change
the stability property of the system, i.e., a stable system is
also stable if the system parameters vary by a small amount.
However, this not the case for the instabilities driven by ex-
plicit PT-symmetry breaking, e.g., the collisional instability
and the universal mode in the context of drift-wave instabili-
ties. Therefore, instabilities triggered by explicit PT-symmetry
breaking are relatively more difficult to suppress.

Another noteworthy result is that finite collisionality also
induces a new low frequency drift mode which is an almost
purely growing mode with an extremely small real frequency.
This mode, whose frequency is ω5R + iω5I as in Fig. 3(a),
corresponds to the zero frequency mode of the dispersion
relation (19) when νie = 0. Finite collisionality brings it to
life. Let’s call it collision-induced drift wave. We are not
aware of any previous study of this mode either theoretically
or experimentally.
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APPENDIX: NONADIABATIC RESPONSE OF ELECTRONS
DUE TO COLLISIONS

In this Appendix, we derive electrons’ nonadiabatic re-
sponse to the perturbed potential when the collisions between

electrons and ions are taken into account within the two-fluid
model. The derivation is given using un-normalized quanti-
ties.

From the fluid equations, the adiabatic electron response
can be obtained from the perturbed parallel momentum equa-
tion of electrons,

eikzφ1 − ikzTe0
ne1

ne0
= 0, (A1)

where the electron inertial and temperature perturbation have
been neglected. To model the nonadiabatic electron response
due to electron-ion collisions, we augment Eq. (A1) with
a term describing the momentum exchange induced by the
collisions,

eikzφ1 − ikzTe0
ne1

ne0
− meνei(ue1z − ui1z ) = 0. (A2)

Similarly, the perturbed parallel momentum equation for ions
(11) is modified to

−iωuiz1 = − ikzZieφ1

mi
− ikz pi1

mini0
− νie(uiz1 − uez1). (A3)

Momentum conservation requires that νie = νeiZime/mi. To
obtain a closed expression for the collision term meνei(ue1z −
ui1z ), we look at the continuity equation for both species,

−iωni1 = −ikyui0ni1 − ikzni0ui1z + icky

B

dni0

dx
φ1, (A4)

−iωne1 = −ikyue0ne1 − ikzne0ue1z + icky

B

dne0

dx
φ1, (A5)

where the perturbed perpendicular flows for both species have
been approximated by the E × B flow due to φ1. With the
quasineutrality condition, Eqs. (A4) and (A5) lead to

ue1z − ui1z = −ky

kz
(ue0 − ui0)

ni1

ni0
. (A6)

Substituting Eq. (A6) into Eq. (A2), we obtain the nonadia-
batic response of electrons,

φ1 =
[

Te0

e
+ i

νeikyme�u0

ek2
z

(ue0 − ui0)

]
ni1

ni0
, (A7)
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which is Eq. (29). This nonadiabatic response only modifies
one element of the Hamiltonian matrix H , i.e., the (3,1) el-
ement. For Eq. (A3), the nonadiabatic part of φ1, i.e., the
second term on the right-hand side of Eq. (A7) cancels with

the collision term, and the perturbed parallel momentum equa-
tion for ions remains the same as the collisionless case. After
normalization using the scheme listed in Eqs. (13)–(15), we
obtain the Hamiltonian matrix Hν given by Eq. (30).
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