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Connection between quasisymmetric magnetic fields and anisotropic
pressure equilibria in fusion plasmas
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The stellarator as a concept of magnetic confinement fusion requires careful design to confine particles
effectively. A design possibility is to equip the magnetic field with a property known as quasisymmetry. Though
it is generally believed that a steady-state quasisymmetric equilibrium can only be exact locally (unless the
system has a direction of continuous symmetry such as the tokamak), we suggest in this work that a change
in the equilibrium paradigm can ameliorate this limitation. We demonstrate that there exists a deep physical
connection between quasisymmetry and magnetostatic equilibria with anisotropic pressure, extending beyond
the isotropic pressure equilibria commonly considered.
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I. INTRODUCTION

Ever since Lyman-Spitzer invented the stellarator [1], this
inherently three-dimensional, steady-state concept for confin-
ing fusion plasmas magnetically has held the promise to be
an attractive alternative to tokamaks, which are prone to dis-
ruptive instabilities. Unlike tokamaks, for which axisymmetry
provides good confinement of particles and energy, stellara-
tors rely on symmetry breaking to realize the magnetic field.
Over the last few decades, the discovery of hidden symmetries
has led to a renaissance of the stellarator concept. A prominent
example of a hidden symmetry is quasisymmetry (QS) [2–6],
which has guided numerous designs and experiments [7–11].

We define quasisymmetry as the minimal property of a
magnetic field that provides the dynamics of charged par-
ticles with an approximately conserved momentum [5,6].
This conservation prevents (as Tamm’s theorem does in an
axisymmetric device) particles from drifting away from the
stellarator. By Noether’s theorem, this conservation should be
conjugate to a symmetry of the magnetic field. A quasisym-
metric configuration bears that symmetry on the magnitude of
the magnetic field, |B|, but does not in B.

The implications of such symmetry had long been recog-
nized [2–4] in the context of magnetohydrostatic equilibrium
with isotropic pressure, p (referred to hereafter as MS equi-
librium). Only recently [5,6] have we been able to formulate
the concept of QS based entirely on single-particle orbits.
separating it from assumptions regarding equilibria. Doing
so allows for a general and succinct definition of QS as a
magnetic field with well-defined flux surfaces (labelled by the
variable ψ) for which fT = ∇ψ · ∇B × ∇(B · ∇B) = 0 [4,5].
We call this the triple vector formulation of QS.

Liberated from the particular form of MS equilibria, we
ask what type of equilibrium is natural for QS. The traditional
approach is to think of MS equilibria as states of minimum
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energy to which toroidal plasmas relax when their evolution is
governed by ideal magnetohydrodynamic (MHD) laws (with
some measure of flow damping). This classical formulation is
due to Kruskal and Kulsrud [12], who elegantly presented the
problem through a variational (energy) principle. Define the
energy functional,

W0 =
∫
V

(
B2

2
+ p

γ − 1

)
dτ, (1)

where V is a fixed toroidal volume with boundary ∂V as a flux
surface, and γ is the adiabatic coefficient. The extrema of W0

are precisely MS equilibria j × B = ∇p, where j is the plasma
current density [13].

II. FINDING QS ENERGY-MINIMA

This energy perspective on equilibrium presents MS as a
natural state for a toroidal plasma. However, this does not
guarantee the resulting equilibrium to be quasisymmetric, and
it will generally not be so. Our challenge is to enforce the
constraint of QS in the formulation of Kruskal and Kulsrud to
understand what the equilibria for a QS field would be.

We draw here from intuition developed through a mechan-
ical analogy [14–16]. As a simple reference example take a
ball under the influence of gravity which is forced to rest on
the ground (see Fig. 1). To formulate constrained problems of
this and a more complex nature, we define i) an action func-
tional S[qi, q̇i] = ∫

L(t, qi, q̇i )dt , where L is the Lagrangian
and qi are generalized coordinates, and ii) the corresponding
holonomic constraints [15,17] f j (qi ) = 0 for j = 1, . . . , m.
These two pieces can be accommodated through the addition
of a Lagrange multiplier λ j (t ), to give a modified constrained
functional Sλ = ∫

(L + ∑
j λ j (t ) f j )dt . The resultant mod-

ified Euler-Lagrange equations, d/dt (∂L/∂ q̇i ) − ∂L/∂qi =
Qi, include generalized forces [17] Qi = ∑m

j=1 λ j (t )∂ f j/∂qi.
These additional forces are needed to guarantee that the dy-
namics of the system will not violate the imposed constraint.
In the falling ball problem, a normal force is necessary to
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FIG. 1. Classical falling ball analog. Schematic for a ball under
gravity which tries to minimise energy. (a) Falling ball under the effect
of gravity, �g, which will do so indefinitely. (b) For the ball to stand at
a certain height, the presence of a normal force, �N , is needed.

prevent the ball from continuing its fall. So if the ball is
wanted at a particular elevation, an external force is required.

We now extend this elementary picture to the problem of
imposing QS into the energy functional governing plasma
relaxation. The relevant equilibrium-independent constraint
to impose QS is fT = 0, a holonomic constraint in the con-
text of continuum mechanics [16]. Using a space dependant
Lagrange multiplier λ(r) [14–16], we define the constrained
form of the energy principle to be

Wλ =
∫ (

B2

2
+ p

γ − 1
+ λ(r) fT

)
dτ. (2)

As a result, we expect to find a new generalised force,
needed to prevent the system from falling to an unconstrained
minimum-energy state without QS. The extrema of Wλ can be
shown to give the following Euler-Lagrange equation:

j × B − ∇p= T1∇ψ + B × ∇ × [T2b − T3∇B + (B · ∇T3)b],

(3)

where T1 = ∇λ ·∇B ×∇(B · ∇B), T2 = ∇λ ·∇ψ × ∇(B ·∇B),
and T3 = ∇λ · ∇ψ × ∇B. The left-hand side of Eq. (3) has
the form of MS equilibrium, which leaves the right-hand
side as the generalized force. The presence of this force
is necessary to maintain QS and prevent the system from
relaxing to the minimum-energy MS equilibrium. The
Lagrange multiplier, determined by the triple vector constraint
fT = 0, is a local measure of the cost of enforcing QS.

The remarkable feature of Eq. (3), despite the seemingly
artificial form of the forcing term, is that it can be recast into
the form

(1 − �)j × B = ∇p⊥ + (B · ∇�)B + �∇
(

B2

2

)
, (4)

where p‖ = p − T3(B · ∇B), p⊥ = (p+ BT2) + B · ∇(T3/B)B2,
and � = (p‖ − p⊥)/B2. Equation (4) is precisely the equation
for the equilibrium of a plasma with a diagonal anisotropic
pressure tensor � = (p‖ − p⊥)bb + p⊥I, where I is the unit
dyad and b = B/|B|. The system does bring in, unexpectedly
but naturally, anisotropic pressure into the relaxed equilibrium
state, establishing a deep connection between QS and MHD
equilibria with anisotropic pressure.

III. FEATURES OF ANISOTROPY

The form of the anisotropy found through the variational
process is not arbitrary. In fact, taking λ to be a single-valued
function with no special symmetry property, the forms of
the pressure from the Euler-Lagrange equation must obey the
relations ∮

ψ,B
�dα = 0, (5)

and p(ψ ) = ∮
ψ,B p‖dα/2π (N − ι). Here, α is a field line label

(with integrals being taken along the symmetry direction of
|B|), ι is the rotational transform of the field, and N repre-
sents the pitch of the constant-B streamlines in generalized
Boozer coordinates [18,19]. Equation (5) represents a pres-
sure anisotropy close to the isotropic � = 0 form, but which
generally departs through a field line dependence because of
QS. On the other hand, the average of the perpendicular and
parallel pressure yield p(ψ ), the scalar pressure as introduced
in Eq. (2). These forms are consistent with MS, in the sense
that the latter is a subset of the former.

The appearance of this form of anisotropic pressure in
the equilibrium of the problem opens the door to two lines
of interpretation. The first one is to understand this form of
equilibrium, namely Eq. (4), as a truly physical equilibrium,
which can be realized in practice. The treatment given in this
paper suggests that MHD equilibria with anisotropic pressure
are more suited to configurations that are quasisymmetric
everywhere, and are thus of fundamental as well as practical
interest. For this equilibrium to be realistic, the macroscopic
results obtained here need to be reconciled with kinetic the-
ory. Pressure has a very specific meaning kinetically as the
centered second moment of the distribution function describ-
ing the plasma in phase space (which, for instance, requires
p‖, p⊥ � 0). Different forms of the distribution function at
different time scales and orderings will have different im-
plications on the allowable forms and sizes of (p‖, p⊥). A
kinetic study that analyses in what scenarios is the constrained
variational equilibrium a physically achievable solution is left
for a future publication.

The second perspective on the anisotropic equilibrium ob-
tained here is to view it as a formal tool by which we are able
to extend the space of quasisymmetric solutions. The form of
Eq. (4) is formally very different from the MS equilibrium
equations, and through its link to QS, opens up a more con-
venient space in which to examine the question of globally
quasisymmetric solutions. This space described by Eq. (4)
remains formally different from MS even as � → 0, possibly
including solutions close to isotropy, but which lie outside
the MS space of solutions. We do not attempt this here, but
remark that our proposition is qualitatively consistent with
the Constantin-Drivas-Ginsberg (CDG) theorem [20], which
proves the existence of quasisymmetric solutions under some
restrictive conditions in the presence of a residual forcing.

Thus, we conclude that quasisymmetric equilibrium so-
lutions with anisotropic pressure are of fundamental and
practical interest. One way to obtain such solutions, numer-
ically, would be to use Eq. (2) to formulate a numerical
variational or optimization problem. Such approaches to
equilibrium solutions have proved to be of great practical
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FIG. 2. Quasisymmetric stellarator solution with anisotropic pressure. Quasisymmetric stellarator equilibrium with anisotropic pressure of
the form obtained from the variational principle Eq. (5) by near-axis expansion through second order. The configuration is a modified version
of the stellarator in Sec. 5.3 in [25] to comply with the constrained variational equilibrium here. (a) Projections of the stellarator 3D shape at
three angles, with color map denoting magnetic field magnitude strength. (b) Parallel pressure on the toroidal angle, φ, and poloidal angle, θ

space on the shown surface in (a). (c) Perpendicular pressure on the (φ, θ ) plane. (φ, θ ) are magnetic flux angular coordinates. Pressures are
given in reference to magnetic pressure.

use [21–23], with representative codes such as VMEC [21]
and ANIMEC [23], which could be modified to incorporate
the QS constraint. However, we consider an alternative ap-
proach here, which involves the so-called near-axis expansion
[18,19,24].

At the heart of this method is to expand solutions and
governing equations in powers of the distance to the magnetic
axis (see Appendix and referenced work for more details), and
solve the resulting equations order by order. When MS equi-
libria are considered, this approach breaks down due to what is
now known as the Garren-Boozer overdetermination problem
[18]. In brief, Garren and Boozer showed that the process of
expansion for quasisymmetric solutions leads to an overdeter-
mined system of equations. This conundrum has been widely
interpreted to mean that global quasisymmetric solutions do
not exist but in cases of continuous symmetry such as ax-
isymmetry or helical symmetry. However, following [19], we
have demonstrated that the Garren-Boozer overdetermination
problem can be resolved when solutions to Eq. (4) are consid-
ered. In Fig. 2 we present, for the first time (previously only

done for circular axes [26]), a quasisymmetric equilibrium
solution exact through second order in the expansion. This
stellarator configuration was suggested in [25], where the MS
limitations prevented quasisymmetry from being achieved to
second order. These numerical solutions are further evidence
of the deep connection between anisotropic pressure and QS.

IV. CONCLUSIONS

In summary, we demonstrate that there exists a deep
connection between quasisymmetric fields in equilibria and
anisotropic pressure. We do so by presenting a variational
principle in which the energy is extremized subject to the
QS constraint, yielding a special realization of equilibria with
anisotropic pressure. These results prompt a change in the
equilibrium paradigm, pointing to the possibility of globally
quasisymmetric solutions. In this paper, we illustrate this by
constructing explicit numerical higher-order quasisymmetric
configurations through near-axis expansions.
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APPENDIX: CONSTRUCTING SOLUTIONS BY
NEAR-AXIS EXPANSION

The main idea behind the construction of solutions by
near-axis expansion is straightforward. Instead of attempting
to find global solutions to the set of governing equations
(here, a form of equilibrium and the QS condition), we instead
expand these perturbatively in powers of the distance from
the magnetic axis. This will generally lead to a hierarchy of
simpler equations that need to be solved order by order. The
details of such procedure had been provided for the case of
MS equilibria by [18,24,25,27] and only recently for more
general forms of equilibria by [19,26]. In the near-axis for-
mulation, different configurations are described by a different
set of constant parameters and magnetic axis shapes, some
of which are free and some of which need to be obtained
self-consistently [19,24].

To construct solutions such as those shown in Fig. 2 of
this paper, we follow the general scheme introduced in [19]
applied to an equilibrium of the form of Eqs. (4) and (5). No
prior such numerical solution exists, as numerical solutions
had previously only been provided for the simplest of shapes
in [26] or MS equilibria [25]. A set of equations analogous, al-
beit more complex, to those in [26] need to be solved here. To
obtain and solve such equations, we follow the methodology
and steps described in [19] and [26]. We shall not reproduce
those equations here.

Given that some of the parameters describing the solu-
tion are free, for Fig. 2 we have opted for the example

provided in Sec. 5.3 of [25] as a starting point. Note that
to find an appropriate quasisymmetric solution to second
order some of the parameters need to be modified in a self-
consistent way (example of which is parameter �̄20 in [26]).
In addition, in the present scenario Eq. (5) imposes an ad-
ditional constraint on parameters; in particular, it requires∮
ψ,B �nmdφ = 0 and similarly for pnm with m �= 0, where

the closed integrals are at constant ψ and |B|. The search
for a consistent set of parameters is run as an optimisation
problem. As a result of the approach, the parameters describ-
ing Fig. 2 are: σ (0) = 1.01 × 10−4, B̄θ20 = 2.8546, η/

√
2 =

0.95, p0 = 0.08, �0 = 0, BC
22 = 5.51, BS

22 = 0, B20 =
−3.69, BC

31 = 0.01, BS
31 = 0.01, Rax = 1 + 0.09 cos 2φ, Zax =

−0.09 sin 2φ, Bα0 = 1.02, Bα1 = 2.04, ε = 0.1414. To com-
pare these to [25], one must be careful, as here parameters
have been defined as in [19]. To go back and forth between
this form and that of [25] (which we denote by superscript L),
and taking B0 = 1 for simplicity, the main transformations are

ηL = η√
2
,

BL
20 = 3

8
η2 − B20

4
,

BL
22c = 3

8
η2 − BC

22

4
,

BL
22s = −B20

4
,

IL
2 = B̄θ20

2
,

pL
2 = p20

2
,

σ (0)L = σ (0).
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