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How can slow plasma electron holes exist?
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One-dimensional analysis is presented of solitary positive potential plasma structures whose velocity lies
within the range of ion distribution velocities that are strongly populated: “slow” electron holes. It is shown that to
avoid the self-acceleration of the hole velocity away from ion velocities it must lie within a local minimum in the
ion velocity distribution. Quantitative criteria for the existence of stable equilibria are obtained. The background
ion distributions required are generally stable to ion-ion modes unless the electron temperature is much higher
than the ion temperature. Since slow positive potential solitons are shown not to be possible without a significant
contribution from trapped electrons, it seems highly likely that such observed slow potential structures are indeed
electron holes.
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I. INTRODUCTION

Solitary positive potential structures are observed by satel-
lites in some space plasmas to have speeds comparable to
the typical ion thermal speed, even lying within the strongly
populated velocities of the ion distribution [1–3]; that is what
is meant here by calling the structures “slow.” A candidate
explanation of these structures is that they are “slow elec-
tron holes,” in which the positive potential is sustained by a
deficit of trapped electrons. However, until now it has been
unclear theoretically whether, or under what circumstances,
slow electron holes can exist. The purpose of the present study
is to discover the theoretical conditions for the existence of
plasma-sustained steady slow solitary positive potential struc-
tures, including electron holes, and identify the mechanisms
that control them. Figure 1 shows contours of electron and ion
velocity distribution functions f (v), for a presumed steady
slow potential peak, in their respective x, v phase spaces
(using conveniently normalized units). For trapped electron
orbits, fe(v) is determined by conditions during the structure’s
formation and has lower value than the nearby passing orbits
which are determined by the boundary conditions. This results
in a more negative central electron density than ion density
and causes the potential peak. (Electron contour values are not
important to this illustrative discussion and not shown.) The
ion distribution is everywhere determined by the distant distri-
bution function and the fact (arising from Vlasov’s equation)
that f is constant along orbits. Orbits have constant energy for
a steady potential. Ions are reflected by the hole if their speed
in the hole frame is small enough. The illustrative case shown
corresponds to Maxwellian ion distribution at large |x|, with
zero average velocity in the hole frame. That is, this hole has
zero velocity in the ion frame.

The reasons to question whether slow electron holes can
exist are to do with the interaction of their positive potential
peak with the ions. Classic electron holes move at speeds,
relative to ions, up to of order the electron thermal speed vte

[4,5]. And when they are at more than a very small fraction

of vte, the ion perturbation is small because the duration of
any moving electron hole’s interaction with an ion is much
smaller than the typical response time of the (far heavier) ions.
Ion response can then often be completely ignored. As has
been extensively discussed, for example in the original paper
on BGK modes [6] and the electron hole review literature
[5] the detailed shape of the hole has considerable latitude
to adjust itself to the details of the trapped electron velocity
distribution, and is only a minor consideration here, limiting
the discussion to potentials with a single maximum.

For slower holes, ion interaction gradually becomes im-
portant. When hole speed is less than a few [up to about
(mi/me)1/4] times the ion acoustic speed (cs = √

Te/mi), the
ion interaction is significant, and the electron hole speed re-
sists approaching the ion speed [7,8], maintaining a velocity
(difference) greater than a minimum that increases with hole
potential. If the hole speed is less than that minimum, then
an oscillatory instability in the hole speed arises [9] and there
is therefore a forbidden region of hole speed. This forbidden
velocity region has a lower limit that is at approximately
the ion-acoustic soliton speed, which is just above cs (de-
pending on peak potential [10]). At that specific speed, an
entity usually called a coupled hole-soliton (CHS) is known
from simulations [11–13] to exist. In effect the electron hole
is trapped in, and enhances, the positive potential produced
at that speed by the positive ion density perturbation of the
ion-acoustic soliton. A CHS generally moves faster than the
ion thermal speed, provided the electron temperature is greater
than ion temperature, so there are few ions in the distribution
at the CHS speed, and Landau damping can be small.

It is emphasized that none these known types of the-
oretical holes qualifies for the present meaning of “slow.”
Neither do holes produced by the Bunemann instability when
there is substantial drift between ion and electron popula-
tions, invoked by Norgren et al. [14,15] to explain their
space observations. Holes produced [13,16,17] by Bunemann
instability usually have speeds (relative to ions) � vte but not
< cs � √

me/mi vte let alone ∼vt i. Instead, the present paper
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FIG. 1. Schematic of a slow electron hole and the corresponding
electron and ion phase-space density contours.

addresses the “Group 3” electron holes observed by Steinvall
et al. [2] (“on the magnetospheric side of the magnetopause”)
that have speeds relative to ions below cs (Group 1 speeds
exceed the oscillatory instability threshold, and Group 2 are
consistent with being CHS type). A fraction of the observa-
tions of Graham et al. [1] (“near the magnetopause”) and of
the blue points in Fig. 4 of Lotekar et al. [3] (magnetotail) also
are slow in the present sense.

Simulations that initialize an electron hole at speeds
of order the ion thermal speed vt i or less in an initially
uniform ion background, observe a remarkable and rapid
“self-acceleration” of the hole [8,11,18–20]. The growing
negative ion density (and hence charge) perturbation caused
by the repulsion of ions from the positive potential of the hole
repells the electron hole, because an electron hole’s dynamics
as a composite entity are such that it has an effective charge
to mass ratio equal to that of the electron [7,21]. A short
time after initialization, it moves away at speeds much larger
than vt i. Thus, past simulation attempts have failed to produce
steady slow electron holes.

The novelty and complexity of the present analysis in
comparison with the prior treatments of ion-acoustic solitons
and electron holes is that it requires a kinetic (rather than
fluid, e.g., Ref. [22]) treatment of the ions in equilibrium.
Concerning past kinetic electron hole analysis (e.g., Ref. [23])
and simulations (e.g., Ref. [19]), the key difference is that
the present analysis shows that for slow positive structures to
exist stably, the background ion velocity distribution generally
cannot be “single-humped.” It must instead possess at least
two maxima. Indeed, it is shown that slow positive solitary po-
tentials sustained by trapped electron deficit (1) cannot persist
in single-humped ion distributions, (2) can persist only when
the velocity of the electron hole lies within a local minimum
of the ion distribution function, but (3) do not require back-
ground distributions that are ion-ion unstable, provided the
electron temperature is not very high. All the discussion here
is one-dimensional, and multidimensional stability is beyond

the present scope. The conclusion therefore is that, from a
one-dimensional perspective, slow electron holes can exist,
requiring distinctively nonthermal external ion distributions;
but those distributions are not themselves unstable and can
therefore persist for substantial time durations.

These theoretical characteristics are valuable for identify-
ing the nature of slow solitary potential peaks observed in
plasmas, and for indicating the presence of double-humped
ion distributions. Recent analysis reported elsewhere Ref. [24]
of satellite measurements confirm the characteristics for slow
electron holes observed in the plasma sheet boundary layer.

Section II addresses ion distribution functions that have
reflectional symmetry in some reference frame. The simplifi-
cations of symmetry make it easier to understand the concepts
introduced and permit straightforward proofs concerning sta-
bility and equilibrium. Section III generalizes these results
to asymmetric ion distributions, and Sec. IV addresses the
question of the linear stability of the uniform background ion
distributions found to be necessary for the existence of slow
electron holes.

II. SYMMETRIC DISTRIBUTION FUNCTIONS

Consider a steady solitary positive potential structure in
one dimension: φ(x), possessing a single maximum φ = ψ at
position x = 0, and tending to the same potential φ = φ∞ = 0
at distant positions x → ±∞. For motion in this single dimen-
sion, suppose the distribution function of ions approaching
the potential structure from the distant plasma to be given
as f∞(v∞), in a frame of reference in which the structure is
stationary.

A collisionless ion equilibrium satisfies the steady Vlasov
equation, giving conservation of distribution function and en-
ergy on orbits, leading to

f (x, v) = f∞(∞, v∞) where v2/2+φ(x) = v2
∞/2 + φ∞.

(1)

In this paper, to abbreviate the equations we mostly work
in conveniently scaled units: energy normalized to thermal
energy for a reference temperature T0, length normalized to
Debye length λD =

√
ε0T0/e2n, and velocity to ion thermal

speed
√

T0/mi. In these units, the ion mass and charge are
unity. Where numerical values of quantities like distribution
function, density, or force-density, etc., are presented, they are
for unit background density n∞.

When the ion distribution function in the rest frame of the
structure is not symmetric, very substantial analytic complica-
tions nevertheless arise from ion reflections. We shall address
these in a subsequent section, but initially it is simpler to
exclude those complications by assuming the distribution to
be reflectionally symmetric in ion velocity v.

A. Single-humped distributions: Density in equilibrium

Since f∞(v∞) is symmetric in the sign of v∞, using vdv =
v∞dv∞ one can simply write the (ion) density as

n = 2
∫ ∞

|vφ |
f∞

v∞dv∞√
v2∞ − v2

φ

= −2
∫ ∞

|vφ |
f ′
∞

√
v2∞ − v2

φ dv∞,

(2)
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where |vφ| = √
2(φ − φ∞) is the speed at infinity of ions

that are reflected at the position x and potential φ and prime
denotes differentiation with respect to argument (v∞). This
density is then simply a function of φ. Express the density far
from the potential structure as

n∞ = 2
∫ ∞

0
f∞dv∞ = −2

∫ ∞

0
f ′
∞v∞dv∞, (3)

and so deduce the density change introduced by the presence
of the potential structure:

n − n∞ = 2
∫ |vφ |

0
f ′
∞v∞dv∞

+ 2
∫ ∞

|vφ |
f ′
∞

[
v∞ −

√
v2∞ − v2

φ

]
dv∞. (4)

When f∞ has only a single maximum (at v = 0) f ′
∞ is neg-

ative throughout the integrals. The functions multiplying f ′
∞

in the integrands are everywhere positive; so for symmetric
single-humped f∞, we have n < n∞: The ion density change
arising from a positive potential is always negative. This is
one indication that a positive potential soliton sustained by
ions cannot exist at low speed relative to the ion thermal
(or acoustic) speed. The density perturbation has the wrong
polarity for self sustainment. What is more, as we shall see in
the next section, this observation has important consequences
for the possibility of slow electron holes. For single-humped
f∞ they will have negative ion charge relative to the external
plasma. This negative ion charge repells the electron hole that
causes them. The result is rapid acceleration of the electron
hole until it has speed higher than typical ion thermal speeds.
Such unstable acceleration has been well documented in sim-
ulations [8,19,25]. Thus the slow electron hole equilibrium in
a single-humped ion distribution is unstable to hole accelera-
tion.

B. Force and acceleration of the potential structure

To make a more quantitative assessment of slow hole dy-
namics, it is simplest to find the total force exerted on the ions
by the entire potential profile φ(x) (per unit area perpendicu-
lar to x). Evidently, it is F = ∫

ρEdx = − ∫ ∞
−∞ n(x) dφ

dx dx =
− ∫

n(φ)dφ. When f∞ is symmetric, n(φ) is independent
of the sign of x, denoted σx, while dφ/dx has sign −σx.
Therefore, in steady state regardless of the shape of φ(x), the
total force on the ions is zero, as a consequence of symmetry.
Perhaps more significantly, the reaction force exerted by the
ions on the potential structure (−F ) is also zero. It is in
equilibrium.

Suppose, however, that the potential structure is station-
ary φ0(x) (in the equilibrium frame) and remains in steady
equilibrium long enough for the ion density to reach the
value given by Eq. (2); but then some perturbative uniform
displacement δx of the potential structure (in the equilibrium
frame) begins, which is rapid relative to the timescale of ad-
justment of the ion density to the movement. This presumption
is a good approximation for an electron hole experiencing
unstable acceleration as has been shown analytically [7], and
by simulation [8] elsewhere. Also, the timescale for elec-
tron motion and hence structure motion is much shorter (by

∼√
me/mi) than for ion motion. After a short time, the density

of the slowly responding ions, n(x), will to lowest order be
unchanged, it remains a function of the steady potential φ0,
but will no longer be a function of the instantaneous potential
φ = φ0 + δφ. Consequently the symmetry is broken, and total
force on the ions will be nonzero. The linearized perturbation
for a small rigid shift δx of the potential structure [27] is δφ �
− dφ0

dx δx which is antisymmetric. The ion force increment is

δF = −
∫

n(x)
dδφ

dx
dx = δx

∫
n(x)

d2φ0

dx2
dx

= − δx
∫

dn

dx

dφ0

dx
dx = −δx

∫
dn

dφ0

(
dφ0

dx

)2

dx. (5)

Now the potential structure has been displaced from equi-
librium and experiences a force −δF = −Cδx, where the

coefficient is C = δF/δx = − ∫
dn

dφ0
( dφ0

dx )
2
dx. Incidentally,

this force is related to imbalanced reflection of the ions from
the potential structure and ion jetting. Imbalanced reflection
of electrons from small negative-potential ion holes is pro-
portional to the slope of the electron distribution function at
the hole speed [28]. But for positive structures it is better to
express the force in terms of these instantaneous integrals,
since full reflection of ions takes much longer to transfer their
momentum to the structure than the timescale of hole motion.
Whether or not the structure regarded as a rigid composite
object continues to be displaced or returns to its equilibrium
position depends on the sign of its acceleration, and hence on
the sign of C, which is evidently minus the sign of dn/dφ0

(averaged over the hole with positive definite weight); but it
also depends on the structure’s response to force, that is, its
effective mass M.

Supposing the potential structure to be an electron hole,
one can deduce the acceleration of the hole by requiring the
total of electron (Ṗe) and ion (Ṗi) momentum rates of change
to be zero (since the electric field momentum is negligible):
0 = Ṗi + Ṗe = δF + Ṗe. Thus the effective mass of the hole,
its force divided by acceleration, is M = −δF/δ̈x = Ṗe/δ̈x.
The electron momentum change arises from jetting by the
accelerating potential structure, and is given by Eq. (34) of
Ref. [7] in dimensional units

Ṗe = −δ̈x neme

∫
h(χ )dx, (6)

where h(χ ) is a non-negative function [29] of argument χ ≡√|eφ|/Te. For negligibly shifted Maxwellian electrons h can
be written in closed form as

h(χ ) = − 2

π
χ + [(2χ2 − 1)eχ2

erfc(χ ) + 1]. (7)

The effective electron hole mass (per unit transverse area)
M = −neme

∫
h(χ )dx is thus negative.

Within the present lumped approximation, the equation
of motion of the potential structure is δ̈x = −(C/M )δx, giv-
ing eigenfrequency ω = ±√

C/M. The stability of the initial
symmetric equilibrium depends on the sign of C/M. Stable
oscillation is expected for C/M positive, exponential growth
for C/M negative. When ion density is decreased by positive
potential, dn/dφ0 < 0, C is positive. Therefore C/M is nega-
tive and the hole is unstable to displacements relative to the
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equilibrium position and velocity when ion density change
caused by positive potential is negative, as it is for symmetric
single-humped ion distribution function.

The mass of a hole of small ψ can be calculated using the
approximation h(χ ) → χ2 = φT0/Te so in dimensional units
M = −(neme/Te)

∫
eφdx, and

C

M
=

−e
∫

dn
dφ0

( dφ0

dx

)2
dx

−(nemee/Te)
∫

φdx
. (8)

Now we convert φ, ψ , x, and C/M into dimensionless units
dividing them by T0/e, λD, and ω2

pi respectively, and defining
an effective dimensionless hole length L ≡ ∫

φdx/ψ . This
yields the dimensionless form

C

M
=

−e
∫

dn
dφ0

( dφ0

dx

)2
dx

−(nemee/Te)
∫

φdx

1

λ2
Dω2

pi

� −2
Te

T0

mi

me

ψ

L2
, (9)

where, anticipating a result to be shown in Sec. II C, the
dimensionless magnitude of the numerator for hole form
ψ sech4(x/�) and unit density Maxwellian ions is found
to be approximately C = 2ψ2/L. A self-consistent small-
amplitude electron hole of the sech4 form has length
L = (16/3)λDe = (16/3)

√
Te/T0 (dimensionless). Therefore

C/M = −(3/16)22ψ (mi/me) and the growth rate is γ =√
2ψmi/me(3/16) in ωpi units. It is perhaps more intuitive to

write dimensionally

γ � 3

16

√
2eψ

T0
ωpe. (10)

This confirms that the instability is fast because it is on the
electron timescale ω−1

pe rather than the ion timescale, hence
justifying the model taking stationary ions during the motion
of the potential structure. But if ψ is very small, then the gap
between the reduced γ and the ion response time will eventu-
ally disappear, and the approximation become inadequate.

C. Non-single-humped distribution function hole stability

For a stable electron hole or other positive potential struc-
ture attributable to the plasma itself to exist, we require the
ion density perturbation that it produces to be non-negative.
This is achieved in classic ion-acoustic solitons by the relative
speed of the soliton and the ions being substantially larger
than the ion thermal speed. A classic soliton is not slow in
the current sense; and also the ion velocity distribution is not
symmetric (in the structure frame) but consists of a single
Maxwellian shifted by velocity vb. Pursuing in this section
only symmetric distributions, one can clearly make the dis-
tribution symmetric by introducing a symmetric second ion
population of shift −vb. In that case a soliton can exist, but
physically it is still not “slow” in the sense of the structure
velocity coinciding with the dominant part of the ion distribu-
tion.

This two-beam soliton situation shows qualitatively how
to obtain positive ion density perturbation. Ions that are
not reflected, because their energy exceeds the peak po-
tential, contribute positively to the ion density perturbation
because their speed |v| at positive potential is lower than
at φ∞ (conserving energy) yet their flux (nv) must be in-

dependent of position; so n must increase to compensate.
A passing monoenergetic beam of ions has density n(φ) =
n∞v∞/

√
v2∞ + 2(φ − φ∞), which increases without bound

near the potential φ = φ∞ + v2
∞/2 needed for reflection.

Therefore, if the unreflected (passing) ion population is suf-
ficiently dominant, then the ion density change is positive.
What the previous subsection showed is that for single-
humped symmetric distributions the passing population is
never sufficiently dominant. A sufficiently widely spaced two-
beam distribution can, however, achieve sufficient dominance.
If the spacing 2|vb| is reduced, then eventually that dominance
will be lost and the unstable negative ion density change
[n − n∞] will reappear. The intuitive question therefore is
quantitatively how small can the beam spacing be and still
avoid instability. We already know from the previous subsec-
tion that part of the answer is that the distribution must be
non-single-humped; in other words that it must have a local
minimum. But how deep must the minimum be?

The stability threshold is determined, on the basis of the
lumped treatment of electron-sustained structure motion, by
the change of sign of the force coefficient, C = δF/δx =
− ∫

dn
dx

dφ0

dx dx = − ∫
dn

dφ0
( dφ0

dx )
2
dx. Instability arises if δF/δx

is positive. Its value is determined by both the distribution
function [giving n(φ0)] and potential profile φ0(x) (giving
dφ0

dx ). However, its sign depends only on the relative shape
of φ0(x), not on its extent, because expanding or contracting
the profile in x by a uniform (positive) scale factor � simply
divides δF/δx by �. Thus, for example, a Gaussian potential
φ = ψe−x2/�2

will give a very slightly different threshold than
φ(x) = ψ sech4(x/�), but neither threshold depends on the
value of �. We choose � conveniently so as to make L ≡∫

φdx/ψ = 1, requiring � = 3/4 for the sech4(x/�) shape, in
the following plots. Using instead a Gaussian with � = 1/

√
π

gives plots that appear so similar they are not worth including.
To an excellent approximation only the overall width L and
height ψ of the hole control the quantitative values.

To evaluate δF/δx (numerically) for a specified distribu-
tion and potential shape, we must obtain n(φ) by integrating
Eq. (2) with respect to v∞ and then integrate

∫
dn
dx

dφ0

dx dx with
respect to x, for the chosen shape φ(x). A code has been
written to perform these integrations for arbitrary (input) f∞
or for distributions consisting of multiple shifted Maxwellian
components where their separation (and hence the depth of
the local minimum) is scanned. For distributions consisting
of two symmetric Maxwellian components of temperature
T = T0 = 1, shifted from v = 0 by ±vb, Fig. 2(a) shows ion
distribution shapes as vb is varied, with the marginally stable
cases for ψ = 0.02 and ψ = 0.5 emphasized in bold black
and red. Figure 2(b) shows the force coefficients δF/δx/ψ2

(using L = 1) as a function of beam shift vb for a range of
potential heights ψ . The magnitude of δF/δx scales approxi-
mately like ψ2 but because of nonlinearities in n(φ) there is a
small variation in the force and threshold with potential peak
height.

As shown in Fig. 2(b), over a wide range of potential
heights ψ the threshold vb, where δF/δx crosses zero, varies a
modest amount (between 1.3 and 1.5), and the corresponding
depth of the minimum ( fmax − fmin)/ fmax is a fraction of
the f -maximum that lies between 0.20 and 0.36. Greater ψ

requires deeper minimum.
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(a) (b)

FIG. 2. (a) The ion distribution functions arising for the sum of two symmetric Maxwellians displaced by ±vb for 0 < vb < 2. The
threshold case is marked in thick black for ψ = 0.5 and thick red for ψ = 0.02. (b) The force coefficient δF/δx/ψ2 as a function of the
beam velocity for an equally spaced range of (sech4 shape) electron hole potential heights ψ .

Figure 3(a) shows for reference the used sech4 potential
profile including the small shift δx used for calculating δF .
Figure 3(b) shows the (unshifted) corresponding first stable
density profile (blue) and the adjacent last unstable density
profile (green) in which the vb is smaller by 0.02. The precise
threshold lies between these two n(x) profiles, corresponding
to a density that is nearly flat (but not exactly because of
profile and nonlinear effects). Figure 3(c) shows the same
thing for a much larger potential peak ψ = 0.5. One can
see that near threshold dn(φ)/dφ actually reverses its sign at
large φ.

D. Positive potential structures sustained by ions?

Since within a local f∞(v) minimum a positive potential
gives positive ion charge, one might wonder whether such an
effect can by itself be responsible for sustaining the structure.
In multiple-humped ion distributions is there such a thing as
a slow positive ion soliton? The answer appears to be no.
The reason is not stability, but equilibrium. To generate a
solitary positive potential peak requires the electric charge
to be positive near the peak but negative in the wings. Yes,
ion charge perturbation can be positive for positive potential
whose velocity lies within a local minimum of the distribu-
tion function; but if so, then it is never negative, because
actually dn/dφ decreases with increasing φ. That rules out
the required transition from negative to positive ion charge
perturbation as φ rises moving from the hole wing to the
potential peak. Therefore certainly ions alone cannot sustain
a slow positive soliton. This contrasts with negative potential
ion holes, which can be sustained by a deficit of trapped ions.

A Maxwellian electron distribution with no trapped deficit
gives a negative charge density perturbation approximately
linear with potential (∼ − φ) (see, e.g., Ref. [5]). Electrons
therefore can give the required negative charge density in the

wings of the hypothesized solitary structure, and do so for
a classic ion-acoustic soliton. But to obtain positive charge
density near the potential peak, the rise in ion density (in a
soliton) has to overwhelm the rise in electron density in the
center but not in the wings. That requires the ion density
to have substantial positive curvature d2n/dφ2. It has for a
passing ion beam, but it generally does not for a slow struc-
ture, because of ion reflection. In fact [compare Fig. 3(c)] at
potentials comparable to the width of the f (v) minimum, n(φ)
has substantial negative curvature (with dn/dφ eventually
becoming negative). This appears to be a general rule arising
from the reflection of progressively higher f∞(v) values as
the reflection velocity range expands from a zero lying in a
distribution minimum, as required for velocity stability.

Therefore essentially any positive solitary structure that
is slow in the sense of having velocity coinciding with the
dominant parts of the ion distribution cannot be sustained by
ions alone, and cannot be sustained at all unless the electron
distribution changes make major contributions to the central
positive charge. This restriction is not exactly a watertight
proof that positive slow solitary structures are electron holes,
but it closes off most plausible alternative possibilities.

III. ASYMMETRIC DISTRIBUTION FUNCTIONS

Now we must tackle asymmetric ion velocity distributions
and their complications.

A. Calculation of density

First, if f∞ is asymmetric in the incoming sign (σv∞ say)
of v∞, then the ion density will be a function of both the
magnitude of the potential and the side of potential peak at
which the potential occurs. That is because slow ions will be
reflected and hence contribute only on one side or the other
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FIG. 3. (a) Slightly shifted sech4 potential profile to calculate δF .
(b) Ion density as a function of position for the first stable (dark blue)
and last unstable (green) velocity shift vb, for peak potential ψ = 0.5,
together with cases more stable (black greater vb) and more unstable
(light blue smaller vb). (c) Ion density threshold cases like (b) but for
greater ψ .

of the peak (positions x having sign σx = −σv∞). We should
therefore refer to the potential in a way that indicates the sign;
one convenient way to do so is to express it as the distant
incoming velocity that reflects at φ: vφ ≡ −σx

√
2(φ − φ∞) =

σv∞
√

2(φ − φ∞).
But, second, even with this clarification, the density is

actually a function of the local potential (and hence vφ) and

also the height of the potential peak ψ ; because although in a
collisionless situation f and energy are constant, whether the
distribution of particles f (x, v) moving away from the peak is
representative of v∞ positive or negative depends on whether
those particles have been reflected or have passed over the
peak.

So at potential φ whose position sign is given by
−vφ , the exiting particles (v and x having the same
sign) have f∞(v∞) corresponding to a sign of v∞
equal to ∓σx, depending on whether they have been
reflected or not. That is, for v2/2 + φ > ψ (passing
particles), f (x, σx|v|) = f∞(−σx∞, σx

√
v2 + 2[φ − φ∞] ),

while for v2/2 + φ < ψ (reflected particles), f (x, σx|v|) =
f∞(σx∞,−σx

√
v2 + 2[φ − φ∞] ). Since I find this distinction

requires considerable care, I illustrate it graphically in Fig. 4,
denoting vψ = √

2(ψ − φ∞) (positive value). The v∞
ranges that contribute to the density locally at φ(x) = φ for
the two signs σv∞ = +1 (σx = −1) blue, and σv∞ = −1
(σx = +1) red are shown as horizontal dash-dot lines. A
purely illustrative Maxwellian f∞ is shown emphasizing that
even a shift of a symmetric Maxwellian from the structure
velocity (zero) gives rise to asymmetry, and hence dependence
of density on ψ .

The density is given as before by∫
f (v)|dv| =

∫
f∞

|v∞|
|v| |dv∞| =

∫
f∞

|v∞|√
v2∞ − v2

φ

|dv∞|,

(11)
using vdv = v∞dv∞ and v2

φ ≡ 2(φ − φ∞), but the tricky part
is the three subranges of integration. They give density con-
tributions we may denote nr from particles that will be or
have been reflected giving two contributions from velocity in
[vφ, σv∞vψ ] = [vφ,−σxvψ ], nt from particles that have been
transmitted [σxvψ, σx∞], and nu (unreflected) from particles
that will not be reflected [−σxvψ,−σx∞]:

n = nr + nt + nu =
[

2
∫ −σxvψ

vφ

+
∫ σx∞

σxvψ

+
∫ −σx∞

−σxvψ

]

× f∞
|v∞|√

v2∞ − v2
φ

|dv∞|. (12)

FIG. 4. Distant velocity ranges (v∞, horizontal dash-dot lines) that contribute to the integrals of f∞(v∞) giving density, at the two sides of
a potential peak: σv∞ = +1 (x negative) blue, and σv∞ = −1 (x positive) red. Vertical lines at vφ indicate the v∞ that reflects at potential φ

and vψ that reflects at ψ .
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Since each integration range is increasing in absolute value,
the sign of dv∞ is the same as the sign of v∞; so |v∞||dv∞| =
v∞dv∞ and we need not take moduli. For numerical evalua-
tion it is advantageous as before [Eq. (2)] to integrate by parts
to remove the singularity at v2

∞ = v2
φ , giving

n = [ f∞(−σxvψ ) − f∞(σxvψ )]
√

v2
ψ − v2

φ

−
[

2
∫ −σxvψ

vφ

+
∫ σx∞

σxvψ

+
∫ −σx∞

−σxvψ

]
f ′
∞

√
v2∞ − v2

φ dv∞,

(13)

in which the integrated parts no longer cancel.
This expression allows us to calculate the density aris-

ing everywhere on a potential structure stationary in some
inertial frame and the resulting force on the ions F =
− ∫ ∞

−∞ n(x) dφ

dx dx = ∑
σx=±1

∫ ψ

φ∞
n(φ, σx )σxdφ. However, un-

like the symmetric case, no symmetry now tells us what the
equilibrium velocity of that frame relative to the ion distribu-
tion should be. And for an arbitrary frame velocity vh relative
to the ion distribution, there will generally be a nonzero ion
force F (vh). Then the configuration will not be in equilibrium
because the structure potential will be subject to a net force
−F . Only for the particular structure velocity that makes
F (vh) = 0 will there be an equilibrium. (This is true also for a
distribution like a sum of two similar but shifted Maxwellians,
that has velocity symmetry in some other frame of reference;
but we previously tacitly adopted that particular frame of
reference as our equilibrium structure frame.)

B. Velocity equilibrium and stability

For f∞ intrinsically asymmetric we need to find both the
equilibrium electron hole velocity (potential structure veloc-
ity), vh0, and the derivative of the force with respect to a shift
of the structure relative to its equilibrium position, δF/δx,
to determine the equilibrium’s stability to rapid motion of
the potential structure leaving behind a fixed ion density.
However before we do that, a second factor concerning sta-
bility arises in respect of dF/dvh. If we find an equilibrium
hole velocity, which has F = 0, then how does F vary when
we consider a neighboring hole velocity (not position)? This
question governs the stability of the situation for slow hole
acceleration in the opposite limit where the ion density per-
turbation accelerates with the potential structure. If F changes
in such a direction as to oppose the acceleration, then the
equilibrium is stable to such acceleration; but if not, then the
equilibrium is unstable. Of course, in reality the two types of
hole motion, having stationary ion density, or having perfectly
tracking ion density, are approximate extreme limits of a
continuous response dependent on frequency. Full frequency
analysis proves to be mathematically challenging even for an
ion stream that is well separated from the hole velocity, but
has been completed showing oscillatory instability for hole
speed down to a few ion sound speeds [9]. In the present
work we content ourselves instead with the combination of
a more heuristic pair of approximations: the extreme limits
of fast and slow. This renders stability criteria but not precise
eigenvalues.

We can formulate a lumped parameter treatment by sup-
posing that we can combine the two different perturbations
of the ion force arising from the coefficients δF/δx and
dF/dvh = dF/dẋ into a second order system: Mv̇h = Mẍ =
−(δF/δx)x − (dF/dẋ)ẋ, (recalling that F is the force on the
particles, which is minus the force on the hole). It has the
form

ẍ + dF

Mdẋ
ẋ + δF

Mδx
x = ẍ + bẋ + cx = 0. (14)

The solutions of this linear second-order equation are stable
if and only if both c and b are non-negative. In that case, it
is a damped harmonic oscillator equation. When instead c is
negative, then an exponentially growing solution dominates
the long-time behavior. If c is positive but b is negative,
then a growing oscillation is the instability. Stability of the
electron hole requires both c = C/M = δF

Mδx and b = dF
Mdvh

to
be positive. And since M is negative that means the two ion
force derivatives must be negative.

Finding a stable equilibrium is carried out as follows. For
a given distribution, the structure velocity vh is scanned in
small steps relative to the ion distribution to find the first (and
usually the only) value at which the force F changes from
positive to negative (dF/dvh < 0, making b positive) and also
the value of δF/δx is negative so c is positive (i.e., stable).
If no such vh is found, then the distribution does not permit
stable slow electron holes.

The other major approximation we make here is that we
do not calculate self-consistently the form of the electron hole
potential φ(x). For symmetric distributions, in principle we
could choose it to be whatever we like and find the required
self-consistent trapped electron distribution through the inte-
gral equation analysis of Bernstein, Greene, and Kruskal [5,6].
Since here we are calculating the effects on a known potential
of the interaction with the ions, it is sufficient just to prescribe
the potential, especially since as noted in Sec. II C the detailed
shape of the potential has only a rather weak effect. However,
for asymmetric ion distributions and finite hole peak potential
ψ , it is no longer the case that the ion density is the same
on the two sides of the electron hole. Therefore it is far
from obvious that the potential need be the same on the two
sides either. When it is not and φ∞ is different for ±σx, the
potential structure has the form of a nonmonotonic double
layer [30] and many additional complexities arise, which it
is not the purpose to address here. Therefore we continue
by setting aside these complications, assuming a symmetric
potential form φ(x) ∝ sech4x and limiting the applicability of
the present result to electron holes or other structures that have
negligible net potential drop across them. Detailed analysis, in
preparation for a future publication, shows that this is a good
approximation.

The specific distribution shapes considered here are
adequately represented by the sum of two Maxwellian compo-
nents shifted from each other by 2vb. The widths and relative
densities of the two components can be prescribed so as to
represent different generic shapes. The shift parameter vb

determines how deep any local minimum in the distribution
is. The threshold value of vb, at which stable electron holes
become permitted, is found by the following outer iteration
of the above described structure velocity vh scan. A relatively
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(a) (b)

FIG. 5. Distribution function (i) f (v), force (ii) F (vh ), and stability coefficient (iii) δF/δx, as a function of velocity (v and vh), for a range
(different colors) of distribution beam shift parameter vb. Thick black line is the threshold case for stable electron hole existence. (a) ψ = 0.02;
(b) ψ = 0.5.

coarse vb scan is carried out over a range sufficient to cover
all desired distributions, and the smallest vb that permits a
stable equilibrium is found. An example scan is shown by
the different colored lines in Fig. 5. The threshold vb is then
refined by setting the last vb that did not permit an equilibrium
and the first that did permit it as the lower and upper limits of
a new scan of vb with the same number of steps (hence much
smaller steps). Refined scans are not plotted. This process of
decreasing the step size by a factor equal to the number of
steps in the scan is iterated; when 10 steps are taken, two
more iterations are enough to converge within other uncer-
tainties. The stable case of the final vb scan is interpolated for
the threshold, and is plotted in thick black. The vertical line
indicates the stable structure velocity vh0.

It is observed in this and all other cases explored that the
stable vh0 lies within a distribution function local depression
but not necessarily exactly at the velocity of minimum f (v).
A stable electron hole equilibrium is found only if there exist
three stationary points (two maxima and one minimum be-
tween them) of f (v), and vh0 always lies between the locations
of the maxima. It is also found that the required fractional
depth of the minimum increases as ψ is increased, as the
comparison between Fig. 5(a) and Fig. 5(b) illustrates.

A wider-ranging graphical impression of the range of
marginal distribution shapes is given by Fig. 6. Each frame
shows marginally stable distributions for ψ = 0.05 (green)
and ψ = 0.5 (blue), for different temperature T2 and fractional
density n2 of the second Maxwellian component (toward
negative v). The first component has T1 = 1 and n1 = 1 −
n2. The equilibrium hole velocity vh0 is shown by the
cross.

An estimate of the size of the damping coefficient b can be
obtained by the observation that the typical value of dF/dvh

in plots like Fig. 5 is of order −0.5ψ2 or smaller. Since
the dimensionless hole mass is M = −(meT0/miTe)

∫
φdx =

−(meT0/miTe)Lψ and typically L = (16/3)
√

Te/T0 we have

|b| =
∣∣∣∣ dF

Mdvh

∣∣∣∣ � 0.1
mi

me

√
Te

T0
ψ. (15)

This is rather comparable to the maximum absolute value of c
in ion dimensionless units,

|c| =
∣∣∣∣ δF

Mδx

∣∣∣∣ �
(

3

16

)2 mi

me
ψ, (16)

for
√

Te/T0 not much different from unity. The large values
of both would mean that harmonic solutions would in fact
be more than critically damped. However, since the resulting
timescales are very short compared with 1/ωpi, the mecha-
nism of the ion density perturbation perfectly changing with
hole motion as if in steady state, giving rise to (b), is liable
to be a very poor quantitative approximation, unlike the sta-
tionary ion mechanism (c) which is the opposite extreme.
Nevertheless, the fact of b’s sign being that of damping is
an important indication that slow hole motions with c near
zero will in fact be stable. A proper treatment for arbitrary
frequency, of course, requires solution of the time-dependent
Vlasov equation for ions, which is not attempted here.

IV. ION DISTRIBUTION LINEAR STABILITY

The background one-dimensional warm two-beam ion
distributions might experience sinusoidal linear electrostatic
instability not caused by solitary structures, depending on the
spacing, relative density, and velocity-width of the beams, and
on the electron temperature [31,32]. Generally this ion-ion
instability requires a local minimum in the ion distribution
of a certain depth. It is conceivable that such an instability
might contribute to the mechanism that forms an electron hole,
but that is not the focus here. However, the question arises
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FIG. 6. A range of marginal ion distribution shapes for two-Maxwellian distributions.

as to whether the non-single-humped background plasma ion
distribution required for persistence of slow electron holes is
stable to ion-ion modes. If not, then perhaps electron hole ex-
istence would be prevented because the required background
distribution minimum is unstable. The ion-ion instability can
be explained in outline, with reference to Fig. 7, obtained by
a numerical method of analyzing and visualizing these and
other kinetic ion instabilities for arbitrary ion distributions de-
veloped by the present author, mostly for pedagogic purposes
(see Ref. [33]).

The one-dimensional ion velocity distribution being anal-
ysed is shown in the upper panel. The small middle panel
shows the peak of the electron distribution function with tem-
perature Te = T0, to indicate its very different velocity scale
and the limited extent to which its gradient is significant.

For a wave of complex frequency ω, real wave number
k, and thus phase velocity vp = ω/k the lower panel shows
contours on the complex phase velocity plane (scaled to an
ion speed

√
T0/mi where T0 is a reference temperature) of

the complex quantity (kλD)2χi; the Debye length is λD =√
ε0T0/e2ne, and χi is the ion susceptibility. For species j, the

quantity

k2λ2
Dχ j = −(λDωp j )

2
∫

∂ f j

∂v

1

v − vp
dv, (17)

(integrating along the Landau contour) is a function only of
the ion distribution shape and (complex) vp, not of ω and
k separately. The dispersion relation for electrostatic waves
is χ = χe + χi = −1. Therefore any solution must have the

imaginary part of χ equal to zero. Contours of zero imaginary
part of χi and of χ are shown in black and blue respectively.
The electron susceptibility (for Maxwellian electron temper-
ature Te) gives to an excellent approximation (kλD)2χe =
(T0/Te)(1 + ivp

√
πme/2Te), and contributes an adjustment to

the imaginary part of χ at large |Re(vp)|, which is electron
Landau damping of ion-acoustic waves. But for the low ve-
locity instability this contribution is negligible and the black
and blue contours coincide.

The electron contribution to the real part of (kλD)2χ is
to an excellent approximation simply (T0/Te). And the real
part of the dispersion relation is then k2λ2

D = −Re(k2λ2
Dχi ) −

T0/Te; so the intersection of the zero imaginary contour with
a green contour indicates the value of dispersion solution’s
wave number. If k is regarded as a free choice, then the
dispersion relation can be satisfied for some k if Re(k2λ2

Dχi ) +
T0/Te is negative. Therefore the limiting solution of the dis-
persion relation as k → 0 lies at Re(k2λ2

Dχi ) = −T0/Te, and
when Te/T0 → ∞ it is at Re(k2λ2

Dχi ) = 0. Where the ap-
propriate contour of Re(k2λ2

Dχi ) crosses the zero contour of
Im(χ ) is the dispersion solution for vp. If the intersection
lies below the real axis, then the mode is damped; if above,
then it is growing (unstable). In regions where Re(k2λ2

Dχi )
is positive, no solutions exist (regardless of non-negative
electron temperature) and the plane is shaded dark gray. In
regions where Re(k2λ2

Dχi ) > −1 no solution exists for Te �
T0, and the regions where it lies between −1 and 0 are
shaded light gray. The green contours for different negative
values −(0,.2,.5,1,2,5,10) of Re(k2λ2

Dχi ) therefore correspond
to boundaries of solution regions for Te = −T0/Re(k2λ2

Dχi ).
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FIG. 7. Contours of scaled susceptibility on the complex phase velocity plane. Dispersion relation solutions lie at intersections of the black
or blue contours with the green contours. No solutions exist in dark shaded regions. Solutions exist in light shaded regions only for Te � T0.

Two-beam distributions like Fig. 7 have three unshaded
regions where solutions exist. Those on the right and left are
the positively and negatively propagating ion-acoustic waves,
lying below the real axis when electron Landau damping is
included. The central region coinciding with the distribution
local minimum is where ion-ion instability solutions lie. The
stability of this ion-ion mode is not significantly influenced by
electron Landau damping. Changing the electron temperature
changes the stability not by changing the local electron distri-
bution gradient but by changing its height (inversely with its
overall width).

There is therefore a threshold electron temperature above
which a (sufficiently) double-humped ion distribution func-
tion becomes unstable. This temperature is a convenient way
to parametrize the ion-ion stability of the distribution, and it
can be found simply by examining k2λ2

Dχi along the real vp

axis, and finding its real value at the velocity where its imag-
inary part is zero, giving Tthreshold = −T0/Re(k2λ2

Dχi ). This is
equivalent to the standard Nyquist stability analysis used in
this context by Penrose [34] but expressed in a different way.

Figure 8 shows contours of Tthreshold as a function of the
distribution parameters. Those parameters are ordered like
Fig. 6, which therefore shows qualitatively how the distribu-
tion shape changes over the contour plane. Higher Tthreshold

are more stable cases. The first component of the two-
Maxwellian distribution has temperature T0 = 1, and density
1 − n2, where n2 is the total density of the second component,
whose temperature is T2. Thus n2 and T2 together determine
the shape of the distribution, because the component velocity
separation 2|vb| is found by the process described in Sec. III B.
In other words |vb| is taken to be the minimum that allows the

persistence of an electron hole. That beam separation is never
large enough that the purely one-dimensional ion-ion mode
is more stable than the obliquely propagating mode (which
can happen for large |vb| [35]); so if the ion distribution is
stable by the one-dimensional analysis, then it is stable to all
unmagnetized electrostatic ion-ion modes.

Figure 8(a) is for a large amplitude hole ψ = 0.5 which
requires substantially deeper minimum in the distribution
(larger |vb| and hence less stable) than Fig. 8(b). The value
ψ = 0.1 (b) is representative of small ψ . The uncertainty
level of perhaps a few percent in the threshold away from the
sharp cliff probably arises from the discrete velocity meshes
and from the relatively coarse parameter mesh 20 × 20. Since
large Tthreshold occurs for some regions, contours are not shown
above Tthreshold = 10 (a) or 20 (b).

At the rather large (and hence more unstable) amplitude
ψ = 0.5 (a), even for unusually small T2 no ion-ion insta-
bility occurs until Te � T0 or in fact Te � 6Tmin, where Tmin

is the smaller of the two components’ ion temperatures, no
matter what n2 is. For small amplitude holes (ψ = 0.1) (b),
Tthreshold � 20Tmin over the great majority of the plane, show-
ing that the marginal distribution for the existence of small
amplitude holes is highly stable to the ion-ion mode.

V. CONCLUSIONS

Long-lived one-dimensionally stable slow electron hole
equilibria can exist only when the background ion velocity
distribution has a sufficiently deep local minimum and the
electron hole speed lies within it. If the electron tempera-
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(a) (b)

FIG. 8. Contours of the electron temperature Tthreshold above which ion-ion instability occurs in two-Maxwellian distributions for which
the first component has unit temperature and the second component temperature T2 and fractional density n2, and the shift between them is
minimal for the existence of electron holes having (a) ψ = 0.5 and (b) ψ = 0.1.

ture is less than ∼6 to 20 times the effective temperature of
the colder ion component, then the required background ion
distribution will be linearly stable; so there is no (linear elec-
trostatic, one-dimensional) stability reason it should not exist.
The ion density change caused by a solitary positive potential
peak whose velocity lies in the local minimum, is positive,
avoiding the self-acceleration of the hole that otherwise oc-
curs. However, ion charge perturbations alone cannot create
the conditions for a slow positive soliton, and the electron
charge perturbation of a distribution without phase-space-
density deficit in the trapped region cannot permit a total
charge density positive at the potential peak and negative in
the wings, as is required for a soliton. Therefore is seems that
persistent, slow, positive, solitary potential structures must be
sustained primarily by trapped electron deficit. That is, they
must be electron holes. And their velocity must lie within
a local minimum in the ion velocity distribution. It is not
impossible that slow electron holes might be observed as they
form, or shortly afterwards, in ion distributions that do not
possess the local minimum found here. But they would be

expected to be unstable, and so rapidly be self-accelerated to
speeds that are no longer slow.

All of the analysis presented here is purely one-
dimensional. However, it seems possible that the ion coupling
effects explored might also have a significant effect on the
multidimensional transverse stability of electron holes, by
altering the force-balance that determines it [36]. If so, which
is a possible topic for future analysis, then they might have
different typical transverse sizes than fast electron holes or
even persist at lower magnetic field strengths.
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