
PHYSICAL REVIEW E 104, 015206 (2021)

Physics-constrained, low-dimensional models for magnetohydrodynamics: First-principles and
data-driven approaches

Alan A. Kaptanoglu
Department of Physics, University of Washington, Seattle, Washington 98195, USA

Kyle D. Morgan
Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195, USA

Chris J. Hansen
Department of Aeronautics and Astronautics, University of Washington, Seattle, Washington 98195, USA

and Department of Applied Physics & Applied Mathematics, Columbia University, New York, New York 10027, USA

Steven L. Brunton
Department of Mechanical Engineering, University of Washington, Seattle, Washington 98195, USA

(Received 16 January 2021; accepted 10 June 2021; published 13 July 2021)

Plasmas are highly nonlinear and multiscale, motivating a hierarchy of models to understand and describe their
behavior. However, there is a scarcity of plasma models of lower fidelity than magnetohydrodynamics (MHD),
although these reduced models hold promise for understanding key physical mechanisms, efficient computation,
and real-time optimization and control. Galerkin models, obtained by projection of the MHD equations onto a
truncated modal basis, and data-driven models, obtained by modern machine learning and system identification,
can furnish this gap in the lower levels of the model hierarchy. This work develops a reduced-order modeling
framework for compressible plasmas, leveraging decades of progress in projection-based and data-driven
modeling of fluids. We begin by formalizing projection-based model reduction for nonlinear MHD systems.
To avoid separate modal decompositions for the magnetic, velocity, and pressure fields, we introduce an energy
inner product to synthesize all of the fields into a dimensionally consistent, reduced-order basis. Next, we obtain
an analytic model by Galerkin projection of the Hall-MHD equations onto these modes. We illustrate how global
conservation laws constrain the model parameters, revealing symmetries that can be enforced in data-driven
models, directly connecting these models to the underlying physics. We demonstrate the effectiveness of this
approach on data from high-fidelity numerical simulations of a three-dimensional spheromak experiment. This
manuscript builds a bridge to the extensive Galerkin literature in fluid mechanics and facilitates future principled
development of projection-based and data-driven models for plasmas.
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I. INTRODUCTION

Plasmas and plasma-enabled technologies are pervasive
in everyday life [1], but their nonlinear, multiscale behav-
ior poses severe challenges for understanding, modeling, and
controlling these systems. There are a tremendous number
of known plasma models of varying model complexity, from
magnetohydrodynamics (MHD) to the Klimontovich equa-
tions, but a large gap exists in the lower levels of this hierarchy
between simple circuit models and the many MHD variants.
These low-level models are motivated because higher fidelity
models typically require computationally intensive and high-
dimensional simulations [2–4], obfuscating the dynamics and
precluding model-based real-time control. Moreover, many
high-dimensional nonlinear systems tend to evolve on low-
dimensional attractors [5]; plasmas across a large range of
parameter regimes, geometry, and degree of nonlinearity ex-
hibit this feature [6–13]. In these cases, the evolution of only
a few coherent structures, obtained from model-reduction

techniques [14,15], can closely approximate the evolution
of the high-dimensional physical system. Fortunately, recent
progress in theoretical, data-driven, and machine learning
methods are revolutionizing the analysis, modeling, and con-
trol of high-dimensional, nonlinear systems, especially in
the field of fluid mechanics [16]. Reduced-order modeling
is advancing particularly rapidly, enabling the modeling of
increasingly complex fluid flows [5,16–21], but many of these
advances have not yet been adopted in the plasma physics
community. In this manuscript, we provide a framework for
physics-constrained, low-dimensional plasma models which
address this important gap in the model hierarchy.

The applications of reduced-order models include un-
derstanding reduced physical mechanisms [22,23], compu-
tationally efficient simulations [24], digital twins (virtual
time-dependent models for a dynamic system, constantly up-
dating with sensor measurements) [25], and real-time control
[26–28]. For example, acceleration of inertial confinement
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fusion simulations and digital twins can facilitate an ex-
ploration of the implosion parameter space [24], surrogate
closure models can lead to more accurate and efficient fluid
simulations [29], surrogate gyrokinetic transport models can
speed up tokamak simulations by orders of magnitude [30,31],
and steady-state tokamak operation will require the active
avoidance or mitigation of disruptions, which can seriously
damage components of the device [32]. For these real-time
control challenges, there are a wealth of model-based control
techniques such as model predictive control [33] that can be
leveraged for plasma systems. However, existing models can
be either too high-dimensional and computationally expensive
to operate in real-time, or too low fidelity to be useful for
control.

In addition to being computational efficient, reduced-order
models can help uncover key mechanisms that govern the
evolution of the dominant coherent structures. This aspect of
reduced-order modeling has a rich history, from the famous
Lorenz model in 1963 [22], through the present era, including
the low-order mechanistic model of the cylinder wake in 2003
by Noack et al. [17]. Recently, data-driven algorithms, like the
algorithms used in this work, have shown potential to uncover
similarly interpretable and useful models. Examples include
related fluid systems [34,35] as well as recent work that
uncovers a Lorenz-like model of electroconvective chaos by
Guan et al. [23]. Moreover, increasingly reduced order models
are used to describe key mechanisms in plasma physics, in-
cluding “predator-prey” dynamics in gyrokinetic simulations
[36], direct data-driven discovery of reduced MHD or kinetic
equations from a plasma dataset [37], and data-driven fluid
models for the L-H mode transition in tokamaks [38]. These
models are often critical for providing insight into the physical
system, including energy transfers and other nonlinear inter-
actions.

Reduced-order models traditionally fall into two cate-
gories: projection-based model reduction and data-driven
system identification. Projection-based model reduction is
achieved by first computing the evolution of a governing
partial differential equation model, often by spatially dis-
cretizing the domain, resulting in a high-dimensional system
of ordinary differential equations (ODEs). In our case, we
consider a three-dimensional (3D) MHD simulation. Then
a low-dimensional orthogonal basis is computed, often via
the proper orthogonal decomposition (POD) [5,39]. Finally,
the high-dimensional model is “Galerkin-projected” onto this
basis [40,41], resulting in an efficient reduced system that
describes how the amplitudes of the POD modes evolve in
time. However, this projection is intrusive since it requires
knowledge of the governing physics and a working high-
fidelity solver.

In contrast, system identification techniques attempt to
identify data-driven models directly from measurement data,
often without knowledge of the governing equations. In-
creasingly, data-driven methods are producing effective bases
beyond POD for different experimental or computational
tasks [5]; modern methods include balanced POD [40,42],
spectral POD [43], DMD [44–46], the Koopman decom-
position [47–49], resolvent analysis [50,51], and neural-
network-based autoencoders [52–54]. Data-driven techniques,
including modern machine learning, are also being widely

applied to discover dynamical systems models of complex
physical systems [55–68], with a particular emphasis on hy-
brid physics-inspired or physics-informed machine learning
[34,59,69–73]. In fluid mechanics, sparse model discovery
has been used to develop interpretable nonlinear models that
enforce known physics by construction [34,57,74]. Particular
emphasis is put on understanding how these models alter or
retain the “direct energy cascade” coming from the interac-
tion of terms in the Navier-Stokes equations; in Hall-MHD
there are also inverse cascades and bidirectional cascades [75],
complicating the analysis of model stability and generalizabil-
ity.

In this work we develop theoretical foundations for prin-
cipled projection-based and data-driven plasma models. In
fluid mechanics, careful development of a dimensionalized
inner product enabled the extension of POD from incompress-
ible to compressible fluid flows [76]. It is also common in
fluid mechanics to obtain nonlinear reduced-order models by
Galerkin projection of the Navier-Stokes equations onto POD
modes, making it possible to enforce known symmetries and
conservation laws, such as conservation of energy [19,77–
79]. These symmetries have recently been utilized to con-
strain the identification of data-driven fluid models [34]. The
present work extends and unifies these three innovations for
compressible plasmas, enabling a wealth of advanced mod-
eling and control machinery. The culmination of this work
is illustrated by accurately forecasting the evolution of a 3D
isothermal Hall-MHD simulation of the HIT-SI experiment
[80], described in detail in Appendix A.

In Sec. II, we propose a formalism for reduced plasma
models, and in Sec. III we derive how global conserva-
tion laws in MHD manifest in the subsequent reduced-order
models. After establishing a framework for projection-based
model reduction in Hall-MHD, in Sec. IV we utilize physics-
constrained machine learning to discover low-dimensional
plasma models directly from data. Figure 1 summarizes the
steps for using plasma data with projection-based model re-
duction and data-driven system identification. As described in
detail in Secs. II and IV, data are collected, projected onto
a low-dimensional basis, constrained by any known physical
laws, and analyzed to find a descriptive model for its evolu-
tion. This last task may be achieved through projection-based,
data-driven, or hybrid methods.

II. PROJECTION-BASED REDUCED-ORDER
MODELS IN MHD

Despite the many ways to obtain low-dimensional models,
projection-based model reduction such as Galerkin methods
have seen significant use and remarkable success in fluid
mechanics. This success stems from the direct ties with the
first-principles physics, lending interpretability to Galerkin
models so that physical characteristics such as linear stability
can be investigated. When the low-dimensional basis is ob-
tained from the POD, the resulting models are referred to as
POD-Galerkin models. Since the 1990s, it has been common
in fluid mechanics to obtain these nonlinear reduced-order
models by Galerkin projection of the Navier-Stokes equations
onto POD modes. Further developments increased the utility
of these methods, including a dimensionalized inner product
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FIG. 1. Proposed approach for filling in lower rungs of the plasma model hierarchy: (a) Collect data, (b) perform projection-based model
reduction (c) discover data-driven models using physics-constrained system identification. Throughout this work, see the online version of this
manuscript for the color bars and other color coding.

which enabled the extension of POD-Galerkin models from
incompressible to compressible fluids [76]. Toward the goal
of extending these developments into plasma physics, we
first need to define a new inner product for MHD plasmas
in Sec. II A and then illustrate how the subsequent proper
orthogonal decomposition is performed for plasma datasets
in Sec. II B. This formalism facilitates our the derivation of a
POD-Galerkin model for Hall-MHD in Sec. II C.

The present work adapts and extends these innovations
for plasmas, enabling a wealth of advanced modeling and
control machinery. For clarity and robust connection with the
Galerkin literature in fluid mechanics, we primarily consider
models which are quadratic in nonlinearity. This includes
ideal MHD, incompressible Hall-MHD, and variants such as
compressible Hall-MHD with a slowly time-varying density,
which together describe a broad class of space and laboratory
plasmas [81–86].

A. An MHD energy inner product

Traditional use of the POD on the MHD fields (veloc-
ity, magnetic, and temperature) would either require separate
decompositions for u, B, and T , or an arbitrary choice of
dimensionalization. However, separate decompositions of the
fields obfuscates the interpretability and increases the com-
plexity of a low-dimensional model, and choosing the units of
the combined matrix of measurement data can have a signif-
icant impact on the performance and energy spectrum of the
resulting POD basis. Inspired by the inner product defined for

compressible fluids [76], we define an inner product for MHD
through

q(x, t ) =
⎡
⎣Bu

B
BT

⎤
⎦, Bu = √

ρμ0u, BT =
√

4ρμ0kbT

mi(γ − 1)
.

(1)

Here ρ is the mass density, kb is Boltzmann’s constant, μ0 is
the permeability, mi is the ion mass, γ is the adiabatic index,
p = 2ρT/mi is the plasma pressure, and the total plasma
energy is

W = 1

2μ0
〈q, q〉 =

∫ (
1

2
ρu2 + B2

2μ0
+ p

γ − 1

)
d3x. (2)

Normalizing the MHD fields to magnetic field units produces
a natural interpretation of inner products of the vector q as the
total plasma energy. This formulation is also useful because
reduced order models built for q can be constrained by con-
servation of energy via Eq. (2), as we illustrate in detail in
Sec. III.

B. Proper orthogonal decomposition for plasma datasets

The POD is already used extensively for interpreting
plasma physics data across a range of parameter regimes
[7,28,87–89], but some formalism is required to effectively
use it for modeling and forecasting. For POD, a set of point
measurements at time tk are arranged in a vector qk ∈ RD,
called a snapshot, where the dimension D is the product of
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the number of spatial locations and the number of variables
measured at each point. For instance, we could have obtained
the magnetic field data from D/3 magnetic probes that mea-
sure the magnetic field components at a fixed location and
sampling rate. Now we assume that the data are sampled at
some times t1, t2, . . . , tM , arranged in a matrix X ∈ RD×M ,
and the average in time q̄ is subtracted off. The singular value
decomposition (SVD) provides a low-rank approximation

X =

time−−−−−−−−−−−−−−−−−−−−−−−→⎡
⎢⎢⎣

q1(t1) q1(t2) · · · q1(tM )
q2(t1) q2(t2) · · · q2(tM )

...
...

. . .
...

qD(t1) qD(t2) · · · qD(tM )

⎤
⎥⎥⎦

⏐⏐⏐⏐⏐⏐⏐⏐⏐⏐

state = U�V ∗, (3)

where U ∈ RD×D and V ∈ RM×M are unitary matrices, and
� ∈ RD×M is a diagonal matrix containing non-negative and
decreasing entries s j j called the singular values of X . V ∗

denotes the complex-conjugate transpose of V . The singular
values indicate the relative importance of the corresponding
columns of U and V for describing the spatiotemporal struc-
ture of X .

It is often possible to discard small values of �, resulting in
a truncated matrix �r ∈ Rr×r . With the first r � min(D, M )
columns of U and V , denoted U r and V r , we have

X ≈ U r�rV ∗
r . (4)

The truncation rank r is typically chosen to balance accuracy
and complexity [21]. The computational complexity of the
SVD is O(DM2 + M3) [90], although there are randomized
singular value decompositions [91–93] for very large prob-
lems that can be as fast as O[DM log(r)]. Therefore, even for
r 
 1, the SVD typically produces significant computational
speedup over codes which evolve the full spatiotemporal dy-
namics. The computational speed [90,93] of the SVD also
enables online computations to update a model for real-time
control.

To proceed, a well-defined SVD requires that the mea-
surements in X have the same physical dimensions. With
a dimensionalized measurement vector q, the matrix X∗X
satisfies

X∗X ≈ 〈q(tk ), q(tm)〉, k, m ∈ {1, 2, . . . , M}. (5)

The equality is not exact because the inner product (an in-
tegral) is approximated by the discrete sum from the matrix
product of X∗X , but it is important that we can relate the
matrix X to the total plasma energy through Eq. (2). The
temporal SVD modes, or chronos, v j are the columns of V r .
The spatial modes, or topos, χ form the columns of U r . We
scale a j (tk ) = v j (tk )/

∑r
j=1 maxk |v j (tk )|. Finally,

q(xi, tk ) ≈ q̄(xi ) +
r∑

j=1

χ j (xi )a j (tk ). (6)

FIG. 2. The first seven POD modes for a 3D isothermal Hall-MHD simulation of the HIT-SI device detailed in Appendix A. The mean-
flow-subtracted chronos indicate that the primary dynamics are forcing at the driving injector frequency and its harmonics; (a) mode pair
trajectories evolved in time and the corresponding singular values; (b) 3D spatial modes in the Z = 0 midplane illustrate a complicated mix of
length scales; (c) normalized temporal modes and corresponding Fourier transforms exhibit harmonics of the driving frequency, labeled 1–5.
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We have absorbed the normalization of a j (tk ) and the sin-
gular values into the definition of χ j (xi ). By construction
〈χi,χ j〉 ∝ δi j . Note that, in principle, we could have expanded
q in any set of modes, although orthonormal modes are pre-
ferred because this property facilitates the analysis in Sec. III.
Nonorthogonal modes are also suitable, but introduce a com-
plication in the form of a mass matrix [94]. The advantage
of the POD basis is that the modes are ordered by energy
content; a truncation of the system still captures a majority
of the dynamics. A separate POD of each of the MHD fields
would lead to three sets of POD modes with independent time
dynamics and mixed orthogonality properties. In contrast, our
approach captures all the fields simultaneously, resulting in a
single set of modes ai(t ) in Eq. (6).

An example of this decomposition is illustrated in Fig. 2 for
a 3D isothermal Hall-MHD simulation, described in detail in
Appendix A and modeled in Sec. IV B; the dominant dynam-
ics are harmonics and subharmonics of a driving frequency
imposed by two actuating injectors on the top and bottom of
the device. In general, examining the structure and symmetry
in the spatial and temporal POD modes can inform physical

understanding. For instance, in Fig. 2, the short-wavelength
structures exhibited in the 3D spatial modes derive both from
dispersive whistler waves via the Hall term and the small char-
acteristic scale associated with the injectors (actuators). The
steep falloff in the singular values also indicates that models
of only the first few modes would be enough to accurately
forecast and control the dominant dynamics. While we show
stable and accurate r = 16 models in Sec. IV B to illustrate the
strengths of our methods for more complicated dynamics, in
our test case it is true that more modest models of three or four
modes can already achieve reasonable forecasting accuracies.

C. POD-Galerkin models

Now that we have an expansion of the fields in a low-
dimensional basis in Eq. (6), we can project the Hall-MHD
equations onto these POD modes in order to obtain a POD-
Galerkin model. Hall-MHD, using the definitions of the
electromagnetic current μ0J = ∇ × B, electron fluid velocity
ue = u − J/ne, electron and ion temperature Te = Ti = T ,
and the definitions in Eq. (1), can be written:

ρ̇ = −∇ ·
(√

ρ

μ0
Bu

)
, Ḃ = ∇ ×

(
1√
ρμ0

{Bu × B − di[(∇ × B) × B]}
)

+ η0ρ
3
2 B−3

T ∇2B + di√
ρμ0

(γ − 1)BT ∇BT × ∇ρ

2ρ
,

Ḃu = − 1√
ρμ0

[
1

2
Bu∇ · Bu + Bu · ∇Bu − 1

4ρ
Bu(∇ρ · Bu) − (∇ × B) × B + (γ − 1)B2

T

2

∇ρ

ρ
− (γ − 1)BT ∇BT

]

+ ν

[
∇2Bu − ∇2ρ

2ρ
Bu + 3Bu

4ρ2
(∇ρ)2 + 1

ρ
(∇ρ · ∇)Bu − 1

6ρ
∇(∇ρ · Bu)

+ 1

4ρ2
(∇ρ · Bu)∇ρ + 1

3
∇(∇ · Bu) − 1

6ρ
(∇ · Bu)∇ρ

]
,

ḂT = − 1√
ρμ0

[
Bu · ∇BT − γ BT

(
∇ · Bu − ∇ρ

2ρ
· Bu

)]
− 2

BT
[∇ · h + Qvisc] + 4η0ρ

3
2 B−4

T (∇ × B)2, (7)

where we have used that ∇ · B = 0 and the definitions of the heat flux h and viscous heating Qvisc,

h = − (γ − 1)BT

4
[χ‖b̂b̂ + χ⊥(I − b̂b̂)] ·

(
∇BT − BT

∇ρ

ρ

)
,

Qvisc = −ν̃

(
∇Bu − Bu

∇ρ

2ρ

)T

:
[(

∇Bu − Bu
∇ρ

2ρ

)
+

(
∇Bu − Bu

∇ρ

2ρ

)T

− 2

3
I
(

∇ · Bu − Bu · ∇ρ

2ρ

)]
. (8)

Here ν = ν̃/ρ is the dynamic viscosity, η = η0T − 3
2 ∝ ρ

3
2 B−3

T is the Spitzer resistivity [95], di = mi/(e
√

ρμ0) is the ion inertial
length, and χ⊥ and χ‖ are the anisotropic Braginskii thermal diffusivities with temperature and magnetic field dependencies [96].
Although many of the nonlinear terms are only quadratic in q, we consider the isothermal limit and limit of time-independent
density to restrict ourselves to the pure quadratic nonlinear case:

q̇ = C + L(q) + Q(q, q), C =

⎡
⎢⎣− (γ−1)B2

T
2

√
1

μ0ρ

∇ρ

ρ

0
0

⎤
⎥⎦, Q(q, q) =

⎛
⎜⎝

− 1√
ρμ0

[Bu(∇ · Bu) + Bu · ∇Bu − (∇ × B) × B]

∇ ×
{

1√
ρμ0

[Bu × B − di(∇ × B) × B]
}

0

⎞
⎟⎠,

L(q) =
⎧⎨
⎩

ν
[∇2Bu − · · · − 1

3ρ
(∇ · Bu)∇ρ

]
η

μ0
∇2B
0

⎫⎬
⎭. (9)

Increasingly sophisticated models may be tractable in future
work, since the data-driven approach that we adopt in Sec. IV

is not limited to quadratic nonlinearities. Other models, such
as those assuming incompressibility and finite temperature
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evolution, can also be derived straightforwardly from the re-
sults here. Substituting Eq. (6) into Eq. (9) and utilizing the
orthonormality of the χ j produces:

ȧi(t ) = C0
i +

r∑
j=1

L0
i ja j +

r∑
j,k=1

Q0
i jka jak,

C0
i = 〈C + L(q̄) + Q(q̄, q̄),χi〉,

L0
i j = 〈L(χ j ) + Q(q̄,χ j ) + Q(χ j, q̄),χi〉,

Q0
i jk = 〈Q(χ j,χk ),χi〉. (10)

The model is quadratic in the temporal POD modes ai(t ).
The zero superscript is meant to distinguish the coefficient
tensors C0

i , L0
i j , and Q0

i jk from the spatiotemporal operators
C, L, and Q. If q̄ satisfies the steady-state MHD equations,
then C0

i = 0 for all i. This is a reasonable assumption for
any approximately steady-state device, such as a tokamak,
which can be sustained for many characteristic timescales.
In contrast to Eq. (10), a Galerkin model based on sepa-
rate POD expansions for each field would involve significant
mixing and a lack of orthonormality 〈χu

i ,χ
B
j 〉 �= δi j between

the POD modes. Although Eq. (10) contains only quadratic
nonlinearities, the influence of truncated low-energy modes
can sometimes be modeled with cubic nonlinearities in the
Galerkin model [17,34].

D. Relation to Fourier-Galerkin methods

Similar analytic Fourier-Galerkin models (also called
MHD shell models) have been used for modeling incom-
pressible MHD turbulence [97]. Shell models in MHD have
primarily been used to describe the statistics of homoge-
neous and isotropic turbulence in spectral space, rather than
as reduced order models [98]. The differences in application
likely stem from shell models preserving the MHD invariants
within each triad of wave vectors but POD models provid-
ing a dataset-tailored and energy-optimal basis. However, in
various homogeneous and symmetric limits the POD reduces
to the Fourier basis [39,99]. In both Fourier-Galerkin and
POD-Galerkin models, truncation of the model at some rank
r can lead to under-resolving the dissipation rate or approx-
imately breaking the global conservation laws, and a closure
scheme may be required to reintroduce the full dissipation.
Additionally, if energy is not conserved, as in some dissipative
MHD models, the stability of the truncated system is no longer
guaranteed. Two advantages of the data-driven approach in
Sec. IV over either POD-Galerkin or Fourier-Galerkin is
that (1) we need not laboriously compute the coefficients in
Eq. (10) from full state knowledge, and (2) we can enforce
global energy or cross-helicity conservation directly into the
truncated model (even without energy conservation, we may
be able to enforce other generic stability properties [100]).
Last, preserving the features of the direct energy cascade in
truncated Galerkin and data-driven models for incompress-
ible fluid flows is a current field of research. Since even

this “simple case” is unsettled, there is much research to be
done regarding the preservation of direct, inverse, and even
bidirectional cascades [75] in truncated Galerkin models for
Hall-MHD beyond highly simplified cases such as isotropic,
incompressible, isothermal Hall-MHD turbulence on simple
geometries.

III. DERIVING CONSTRAINTS ON PROJECTION-BASED
MODELS

We have successfully obtained a POD-Galerkin model for
the dynamic fields in Hall-MHD. However, there is sub-
stantial additional structure in the coefficients in Eq. (10)
because local and global MHD conservation laws are in prin-
ciple retained in this low-dimensional basis. Vanishing ∇ · B
and the linear independence of the temporal POD modes
produce

∇ · χB
i = 0, ∀i. (11)

In other words, there is a local divergence constraint for
each of the χB

i , but this does not produce insight into the
coefficients defined in Eq. (10) In contrast, global energy
conservation produces substantial constraints on the structure
of the Galerkin model coefficients.

A. Global conservation of energy

For an examination of the global conservation laws, we
consider isothermal Hall-MHD with a very slowly time-
varying density. This model reduces to ideal MHD and
incompressible resistive or Hall MHD in the appropriate lim-
its, and produces (Galtier [101] Eq. 3.22)

∂W

∂t
= −

∫ [
ν̃(∇ × u)2 + η

μ0
(∇ × B)2 + 4

3
ν̃(∇ · u)2

]
d3x

−
∮ [(

1

2
ρu2 + p

)
u + P

−4

3
ν̃(∇ · u)u − ν̃u × (∇ × u)

]
· n̂dS. (12)

Here n̂ is a unit normal vector to the boundary, and

P = 1

μ0
E × B = ue

μ0
· (B2I − BB) − η

μ2
0

(∇ × B) × B,

(13)

is the Poynting vector (E is the electric field), which is
often an imposed and experimentally-known function of
space and time. Omission of the Hall term changes ue

to u in Eq. (13). Even with temperature evolution, the
electron diamagnetic term in P does not alter the energy
balance if Dirichlet conditions are used for ρ and T . To
simplify, we assume that u · n̂ = u × n̂ = 0, J · n̂ = 0, and
B · n̂ = 0 at the wall, consistent with the Hall-MHD HIT-
SI simulation described in Appendix A and modeled in
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Sec. IV B. Now assume steady-state, define a0(t ) = 1, and substitute Eq. (6) into Eq. (12),

0 ≈ ∂W

∂t
=

∮
η

μ2
0

[(∇ × B) × B] · n̂dS −
∫ [

ν

μ0

(
∇ × Bu − ∇ρ

2ρ
× Bu

)2

+ η

μ2
0

(∇ × B)2 + 4

3

ν

μ0

(
∇ · Bu − ∇ρ

2ρ
· Bu

)2]
d3x,

= W C +
r∑

i=1

W L
i ai +

r∑
i, j=1

W Q
i j aia j =

r∑
i, j=0

W Q
i j aia j, (14)

We have padded the matrix in the last step so that W Q
0i = 0, W Q

i0 = W L
i for i ∈ {1, . . . , r}, and W Q

00 = W C . Equation (14) is
generally satisfied for antisymmetric W Q

i j , from which it follows that

0 = W Q
00 = η

μ0

∮
[(∇ × B̄) × B̄] · n̂dS −

∫ [
ν

(
∇ × B̄u − ∇ρ

2ρ
× B̄u

)2

+ η

μ0
(∇ × B̄)2 + 4

3
ν

(
∇ · B̄u − ∇ρ

2ρ
· B̄u

)2]
d3x,

0 = W Q
i0 = η

μ0

∮ [
(∇ × B̄) × χB

i + (∇ × χB
i

) × B̄
] · n̂dS − 2

∫ [
ν

(
∇ × B̄u − ∇ρ

2ρ
× B̄u

)
·
(

∇ × χBu
i − ∇ρ

2ρ
× χBu

i

)

+ η

μ0
(∇ × B̄) · (∇ × χB

i

) + 4

3
ν

(
∇ · B̄u − ∇ρ

2ρ
· B̄u

)
·
(

∇ · χBu
i − ∇ρ

2ρ
· χBu

i

)]
d3x,

W Q
i j = −W Q

ji = η

μ0

∮ [(∇ × χB
i

) × χB
j

] · n̂dS −
∫ [

ν

(
∇ × χBu

i − ∇ρ

2ρ
× χBu

i

)
·
(

∇ × χBu
j − ∇ρ

2ρ
× χBu

j

)

+ η

μ0

(∇ × χB
i

) · (∇ × χB
j

) + 4

3
ν

(
∇ · χBu

i − ∇ρ

2ρ
· χBu

i

)
·
(

∇ · χBu
j − ∇ρ

2ρ
· χBu

j

)]
d3x. (15)

Evaluating Eq. (15) and the Galerkin coefficients in Eq. (10)
relies on the existence of all of the ∇ × χi. These spatial POD
modes are evaluated on a discrete set of spatial locations,
but in practice we can always choose an interpolation such
that the curl operator is well-defined. In such a case, ∇ × χB

i

and ∇ × χ
Bu
i have natural interpretations as the spatial POD

modes of the electromagnetic current and vorticity fields.
However, in the present work these computations only serve
as formal manipulations so we need not evaluate these curls;
our data-driven method in Sec. IV uses sparse regression to
determine these coefficients from data. Continuing on with
our analysis, we can compute aiȧi for i ∈ {1, . . . , r},

aiȧi =
r∑

i, j=1

ai
∂a j

∂t

∫
χiχ jd

3x =
∫

1

2

∂q2

∂t
d3x = ∂W

∂t
, (16)

aiȧi = aiC
0
i + aiL

0
i ja j + aiQ

0
i jka jak, i, j, k ∈ {1, . . . , r}.

(17)

First, note that W Q
i0 = 0 produces C0

i = 0 for all i ∈ {1, . . . , r}.
There are no constant terms in the Galerkin model. This is
a physical consequence of our assumption that q̄ is steady-
state; nonzero constant terms would imply the possibility of
unbounded growth in the energy norm. The antisymmetry of
W Q

i j for i, j ∈ {1, . . . , r} constrains the quadratic structure of
the energy aT a,

aT L0a ≈ 0. (18)

This physical interpretation is also clear; if the plasma is
steady state but has finite dissipation, then the input power,
here manifested through a purely quadratic Poynting flux
P ∝ ηJ × B, must be balancing these losses. Finally, there are
no cubic terms in the energy, implying

aT Q0aa = 0, (19)
or, equivalently,

Q0
i jk + Q0

jik + Q0
ki j = 0. (20)

In other words, the quadratic nonlinearities in the Galerkin
model of Eq. (10) are energy-preserving; this conclusion
did not rely on any assumption of steady-state and energy-
preserving structure in other quadratic nonlinearities is well
studied in fluid mechanics [74,79,100]. The lack of nonlinear
energy losses is a physical consequence coming from the
boundary conditions B · n̂ = 0, J · n̂ = 0, u · n̂ = u × n̂ = 0
(and constant temperature).

B. Global conservation of cross-helicity

An analogous derivation can be done to further constrain
the model building for systems which conserve cross-helicity,
although this is inappropriate for the Hall-MHD HIT-SI sim-
ulation in Sec. IV B. Consider the local form of cross-helicity
Hc = u · B. Using Galtier [101] Eq. (3.36),

∂Hc

∂t
= −∇ ·

{[
u2

2
+ γ p

(γ − 1)ρ

]
B + u × (u × B) − di√

ρμ0
u × [(∇ × B) × B] − ηu × (∇ × B)

}

+ ν∇ ·
[

B × (∇ × u) + 4

3
(∇ · u)B

]
− di√

ρμ0
(∇ × u) · [(∇ × B) × B] − (η + ν)(∇ × B) · (∇ × u). (21)

015206-7



KAPTANOGLU, MORGAN, HANSEN, AND BRUNTON PHYSICAL REVIEW E 104, 015206 (2021)

Consider again the simplifying case J · n̂ = 0, B · n̂ = 0, and u · n̂ = u × n̂ = 0. If global cross-helicity is conserved, then the
integral form is

0 ≈
∫

∂Hc

∂t
d3x =

∫ {
ν
∇ρ

ρ
·
[

B× (∇× u)+ 4

3
(∇ · u)B

]
− di√

ρμ0
(∇× u) · [(∇× B)× B]− (η+ ν)(∇× B) · (∇× u)

}
d3x.

(22)

Substituting in Eq. (6) produces terms up to cubic in the
temporal POD modes,

0 ≈
∫

∂Hc

∂t
d3x = ∂

∂t
(aia j )

∫
1√
ρμ0

χBu
i · χB

j d3x

= Ai j
∂

∂t
(aia j ) →

⎡
⎣ Ai jC0

j ai

Ai jL0
jkaiak

Ai jQ0
jkl aiakal

⎤
⎦ ≈

⎡
⎣0

0
0

⎤
⎦.

(23)

Note that if the system is energy preserving, C0
j = 0 for all j,

so the first equality is already satisfied. The second equality
determines that Ai jL0

jk is antisymmetric under swapping i and
k, and energy preservation in Eq. (18) produces antisymmetry
under swapping j and k. The most straightforward solution is
L0

jk = 0 for all j, k; this solution is precisely the ideal limit
corresponding to η = ν = 0. Since Ai j is not symmetric, this
constraint can also apply to systems which conserve cross-
helicity despite finite dissipation.

Last, Ai jQ0
jkl , containing only the contribution from the

Hall-term, exhibits the same structure as (and is compatible
with) our constraint on the energy-preserving nonlineari-
ties in Eq. (19). The simplest solution is Ai jQ0

jkl = 0 for
all i, k, l , since this corresponds to standard MHD without
the Hall term. Like the analysis of the linear terms, this
constraint indicates that it is possible that there are indices
for which Ai jQ0

jkl �= 0 but overall satisfy Ai jQ0
jkl aiakal = 0,

so that nonzero Hall contributions can still conserve cross-
helicity. Last, although inviscid Hall-MHD has two other time
invariants, enforcing the remaining invariants may require al-
ternative formulations to the one presented here, since derived
fields like the vector potential are involved.

C. Conservation laws with velocity units

The previous sections have illustrated that our choice of
magnetic field units in Eq. (1) allowed us to relate global
MHD conservation laws to the structure of the coefficients
in the POD-Galerkin model. It is worth exploring any alter-
ations in velocity units (in closer analogy to fluid dynamics)
q = [u, uA, us],

u2
s = 4T

mi(γ − 1)
, uA = B√

μ0ρ
, (24)

1

2
〈q, q〉 = 1

2

∫ (
u2 + u2

A + u2
s

)
d3x. (25)

We have defined a scaled plasma sound speed, us. If ρ

is uniform, then ρ〈q, q〉/2 = W . The isothermal and time-
independent density assumptions allow us to derive another
quadratic model in q, for which a POD-Galerkin model is
readily available [the form is identical to Eq. (10) but the POD

modes and coefficients have changed]. Once again, assume
u · n̂ = u × n̂ = 0, J · n̂ = 0, and B · n̂ = 0 on the boundary,
so that ∫

ρ

2

dq2

dt
d3x = ∂W

∂t
. (26)

This is equivalent to Eq. (16) in the particular case of time-
independent density. Without this assumption, an extra term
appears, proportional to

∫
u · ∇(u2 + u2

A)d3x. Although from
dimensional analysis this term is potentially very large, this
may not be the case for many laboratory devices with strong
anisotropy introduced by a large external magnetic field. For
instance, steady-state toroidal plasmas with large closed flux
surfaces would expect u · ∇u2

A and u · ∇u2 to be small, as
the fluid velocity is primarily along field lines and gradients
in both the magnetic and velocity fields are primarily across
field lines. For this reason, in certain devices the use of q =
[u, uA, us] could be a useful alternative to the formulation
used in the main body of this work. It is possible that, in
these units, the structure of the nonlinearities in the associated
POD-Galerkin model may prove more amenable to analysis
or computation.

D. Hyper-reduction techniques

Now that we have illustrated how global conservation laws
manifest as structure in Galerkin models, we could com-
pute the coefficients in Eq. (10) and evolve the subsequent
model. However, in order to calculate the model coefficients,
spatial derivatives for ρ, Bu, and B (and BT if tempera-
ture is evolved) must be well approximated in the region
of experimental interest. In some cases, high-resolution di-
agnostics can resolve these quantities in a particular plasma
region. Even if the high-quality data are available, for in-
stance through simulations, computing these inner products
and evaluating the nonlinear terms is expensive, because the
fields have the original spatial dimension D. This somewhat
reduces the usefulness of projection-based model reduction.
Fortunately, there are hyper-reduction techniques from fluid
dynamics [41], such as the discrete empirical interpolation
method [102], QDEIM [103], missing-point estimation [104]
and gappy POD [105,106], which can enable efficient com-
putations. Instead of using hyper-reduction, we will turn to
emerging and increasingly sophisticated machine learning
methods in Sec. IV to discover Galerkin models from data.
There are two primary reasons we have derived the POD-
Galerkin model structure here anyways: (1) it indicates that
we can search plasma datasets for systems of ODEs con-
sisting only up to quadratic polynomials and (2) it provides
a theoretical basis for projection-based model reduction and
hyper-reduction techniques in future MHD work.
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IV. CONSTRAINED IDENTIFICATION OF
DATA-DRIVEN MODELS

In projection-based modeling, the expansion in the POD
basis is data driven, but the projection step is intrusive,
requiring access to a numerical solver of the known gov-
erning equations. Purely data-driven techniques are useful
because they are nonintrusive and in principle do not require
high-resolution simulations or knowledge of the governing
equations. From the projection-based analysis in Secs. II and
III, we are now able to define physical constraints for im-
proved data-driven models.

This is an opportune time to discover data-driven mod-
els; throughout the scientific community, emerging techniques
in system identification and optimization are increasingly
facilitating the discovery of physical models directly from
data [21,56]. We use the sparse identification of nonlin-
ear dynamics (SINDy) algorithm [57] to identify nonlinear
reduced-order models for plasmas because SINDy models are
parsimonious, having as few terms as are required to explain
the dynamics. This feature of the SINDy algorithm promotes
models that are interpretable and generalizable.

A. The constrained SINDy method

In our case, we compute a set of POD modes from a plasma
dataset and then use SINDy to search for low-dimensional
models for a(t ) as a sparse linear combination of elements
from a library of candidate terms �,

Θ(a)= 1 a a⊗a ··· . (27)

Here a ⊗ a is all combinations of aia j without duplicates and
similarly for the other candidate terms. We now assume that
the evolution of a can be approximated as

ȧ = f (a) ≈ �(a)�. (28)

The optimization problem solves for a sparse matrix of coef-
ficients �, which represents the coefficients (strengths) of the
candidate terms in �. To address this combinatorically hard
problem, it leverages sparse regression techniques, optimizing
for the sparsest set of equations that produces an accurate fit
of the data. To incorporate known physical laws, a constrained
SINDy formulation was first introduced to conserve energy in
incompressible fluids [34]. The constrained SINDy optimiza-
tion problem can be written

min�||ȧ − �(a)�||22 + λR(�), subject to D�[:] = d,

(29)

where R(�) is a regularizer such as the L0 or L1 norm, which
promotes sparsity in the coefficients �. D is a constraint
matrix that allows us to impose that affine combinations of
the coefficients in � have the fixed values in d. The original
unconstrained SINDy algorithm solves Eq. (29) without using
the constraint D�[:] = d. Here a, ȧ ∈ RM×r , �(a) ∈ RM×N ,
� ∈ RN×r , D ∈ RNc×rN , �[:] ∈ RrN , d ∈ RNc , where N is
the number of candidate terms, Nc is the number of con-
straints, and �[:] = [ξ a1

1 · · · ξ
ar
1 · · · ξ

a1
N · · · ξ

ar
N ]

denotes the flattened or “vectorized” set of model coefficients.
Motivated by the Galerkin model we have derived, we re-
strict the library of candidate terms � to first and second
order polynomials in a(t ), although this is not a requirement
of the SINDy algorithm; more complicated nonlinear terms
may also be included for modeling the effect of truncated
POD modes [34] or capturing POD-Galerkin models which
exhibit higher order nonlinearities. � is typically identified
via sparse regression, for example by sequentially thresholded
least-squares [57,107], LASSO [108], or sparse regularized
relaxed regression [109]. In Appendix B, we explicitly derive
the SINDy constraints required for the identified models to
satisfy the global conservation laws discussed in Sec. III.

To summarize, we use a physics-informed sparse regres-
sion method that requires only ȧ to discover data-driven
models for the evolution of a. In the next section, we com-
pute the POD for an example 3D MHD simulation and feed
the chronos into the SINDy algorithm to identify data-driven
models that we can use for forecasting future data.

B. Initial results

The theoretical structure of this reduced-order modeling
framework is appealing, but its value to the community ulti-
mately depends on the quality of the analysis when applied to
plasma systems. Guided by the theory, we construct a non-
linear, physics-constrained SINDy model for an isothermal
Hall-MHD simulation of this device, described in detail in
Appendix A. The density, velocity, and magnetic field are
sampled at a set of equally-spaced 3D points in the volume
and sampling intervals �φ = π/16, �R ≈ �Z ≈ 2 cm. The
result is that each component of u and B has 47 712 samples.
This high resolution is ideal for visualization but substantial
size reduction can be done with little or no change to the
spatial or temporal POD modes. For instance, in Figs. 2 and
3(a), the Z = 0 visualizations of the 3D spatial POD modes
are constructed from the 1440 sample locations at Z = 0;
with a nonuniform set of 50 points in the midplane, the only
change to the visualization is a smoothing out of the shortest
wavelengths. The temporal resolution of the measurements is
�tk = 1 μs. The analysis is essentially unchanged for time
steps as large as 10 μs, but smaller time steps are required
in HIT-SI to resolve harmonics of the injector frequency that
appear in the temporal POD modes. For instance, at �tk =
10 μs, the fourth injector harmonic is sampled, on average,
less than twice per period.

From these measurements of the density, velocity, and
magnetic field, we compute the topos and chronos via the
SVD in Eq. (4), obtaining a Galerkin expansion for the veloc-
ity and magnetic fields in magnetic field units, as in Eq. (6).
Now a constrained SINDy model is identified for the first 16
chronos ai(t ) and the forecasting is illustrated in Fig. 3(a).
The SINDy model accurately captures most of the aj (t ) dy-
namics, with larger errors for the less energetic modes. Some
of the low-frequency content in the aj (t ) is not captured by
this particular constrained SINDy model, but this is largely
because the low frequencies are not well-resolved in the time
range used for training. Despite this deficiency in the data,
the SINDy model illustrates strong prediction performance
in the Z = 0 midplane reconstructions of the simulation data
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FIG. 3. Summary of the constrained SINDy performance on a
3D Hall-MHD simulation of the HIT-SI device described in Ap-
pendix A. (a) Constrained SINDy prediction of a1, . . . , a16. The true
evolution is in gray, the training data used for the model-finding is
in blue, and the SINDy prediction is in red (see online version for
color). (b) Constrained SINDy predictions of uz (Test) in the Z = 0
midplane are compared with the true uz evolution at three snapshots
in time, indicating strong algorithm performance.

in Fig. 3(b) and forecasts much of the time evolution for a
high-dimensional simulation that used 589 824 grid points,
a tremendous efficiency gain of O(105). Furthermore, this

model was obtained by training on a dataset representing a
single discharge. Further improvements are likely accessible
by training on a dataset of many discharges of varying trajec-
tories.

We have found a quality forecasting model from the SINDy
system identification method, but it is interesting to see how
the model quality varies with the algorithm hyperparameters
like the model sparsity λ and model rank r. In Fig. 4, we
illustrate how the normalized reconstruction errors of X and Ẋ
vary in the “Pareto-space” of (r, λ) for both the unconstrained
and constrained SINDy algorithms, with the goal to explore
the space of possible models obtained from this system iden-
tification technique. Although the exact reconstruction error
values are unique to the simulation examined here, there are
some interesting qualitative features that we expect to be
quite general. The unconstrained SINDy algorithm indicates a
significant region of (r, λ) where numerically unstable models
are found. For r � 10, the models are typically either unsta-
ble or too sparse to be effective for forecasting. In contrast,
by construction the constrained SINDy algorithm conserves
the energy and therefore exhibits no unstable models. This
is promising for discovering models on historically chal-
lenging systems for machine learning methods—multiscale
or turbulent systems that require r 
 1 to properly capture
the dynamics. At first glance, it may appear that the con-
strained SINDy errors in Ẋ are worse than the unconstrained
errors, but the low-error values in the unconstrained case are
precisely the unstable models. These nonsparse models are
overfitting, leading to instability in the numerical integration.
Finally, we can see that at λ ≈ 0.091, all the SINDy models
are rendered ineffective. This value is precisely at the driving
frequency of the HIT-SI injectors in this simulation; if λ is
larger than this frequency, SINDy thresholds off the primary
dynamics in the system.

V. CONCLUSIONS

A hierarchy of models with varying fidelity is essential for
understanding and controlling plasmas, and our work provides
a principled lower level on this hierarchy—low-dimensional
and interpretable plasma models which can be used for phys-
ical discovery, forecasting, stability analysis, and real-time
control. We have discussed how these models are obtained
from either projection-based or data-driven methods. Further-
more, we illustrated how Galerkin plasma models retain the
global conservation laws of MHD, and machine learning or
system identification methods like SINDy can use these con-
straints directly in an optimization procedure for discovering
such models from data. We demonstrated the effectiveness of
this approach for a 3D isothermal Hall-MHD simulation of
a self-organized plasma. This framework may be used more
broadly for discovering low-dimensional models, forecast-
ing, or real-time control of complex plasmas. This principled
enforcement of global conservation laws is critical for the sta-
bility and success of future low-dimensional plasma models.

There are a number of potential numerical limitations to
the methodology presented here, including stability issues,
the curse of dimensionality, addressing turbulent or stochas-
tic systems, and extrapolation beyond the training dataset.
Fortunately, all of these potential caveats are currently the
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FIG. 4. Summary of the (r, λ) space of unconstrained and constrained SINDy models from the HIT-SI simulation. The unconstrained
models approximately separate into three distinct classes. Class I illustrates nonsparse and typically unstable models. Class II consists of
sparse and accurate solutions. Class III denotes solutions which are too sparse to accurately capture the dynamics. Computed errors are for
the testing part of the dataset; the colorbar (see online version for color) is limited to 101 as unstable model errors grow arbitrarily large.
Constrained SINDy guarantees the energy norm is preserved and thus class I vanishes. Algorithmic advances [100,110–116] may help further
expand the size of class II.

subjects of intense ongoing research efforts. Generally, the
systems of nonlinear ODEs identified by the unconstrained
SINDy algorithm tend to have depreciating stability prop-
erties as the number of modes increases; unless steps to
constrain the model structure are taken, as in the present work
and other recent work in provably stable data-driven models
[100,117,118], this may prove a difficult obstacle. Fortunately,
there are also several alternative formulations of the SINDy
algorithm that may be more robust in some circumstances and
are worth exploring on plasma systems [110–116,119].

In regards to the curse of dimensionality, the SINDy library
grows combinatorially with the number of state variables and
the optimization problem can become very ill conditioned
and computationally intensive. Even for the relatively mod-
est candidate library used in the present work, limited to
quadratic polynomials, the size scales as O(r3) because Q0

i jk
is a three index tensor. However, there is recent work utiliz-
ing low-rank tensor decompositions to significantly reduce
memory usage and computational latency [110]. There has
also been considerable recent progress in the modeling of
turbulent systems that exhibit broadband turbulence, which
generally require a prohibitive number of modes to faithfully
reconstruct the field. New approaches bypass this require-
ment by using stochastic techniques [111,115,119] or finding
new data-driven closures for the Navier-Stokes equations
[116,120]. Finally, extrapolation beyond the training set is a
central challenge for all machine learning techniques and this
issue is primarily addressed in system identification methods
by additional steps to mitigate overfitting, such as the addi-
tional of a sparsity-promoting regularizer in the optimization
problem.

Last, to promote reproducible research, the python code
used for this analysis is provided [121]. The results presented
below have also been incorporated into an advanced example
of the PYSINDY software package [107].
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APPENDIX A: THE HIT-SI EXPERIMENT AND
SIMULATIONS

HIT-SI was a laboratory plasma device that formed and
sustained spheromak plasmas for the study of plasma self-
organization and steady inductive helicity injection [80]. It
consisted of an axisymmetric flux conserver and two inductive
injectors (actuators) mounted on each end as illustrated in
the top left panel of Fig. 1. Magnetic coils on each injector,
generating helical fields linking through the flux conserver,
were oscillated in phase at a frequency with values between
10 and 70 kHz. The magnetic fields generated by the two
injectors were spatially and temporally 90◦ out of phase,
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resulting in approximately constant power and helicity injec-
tion. The fields from these injectors provided the power and
magnetic helicity to both form and sustain a spheromak during
experimental discharges, with a quasi-steady-state period of
roughly constant spheromak amplitude lasting <1 ms. Addi-
tional details of the experiment and its operation can be found
in references [80,122,123].

Simulations of HIT-SI were performed using the Hall-
MHD equations and solved by the NIMROD code [124].
NIMROD discretizes equations in cylindrical coordinates
(R, Z, φ); the R-Z plane is composed of finite elements and
the φ component is expanded in a finite Fourier series. Mesh
convergence was obtained previously by Akcay [125] on a
grid with 28 × 28 finite elements of polynomial degree 4
and 22 Fourier components, so we use the same grid for
the simulation here. Due to the 2D grid, the HIT-SI injec-
tors cannot be directly modeled in the simulation. Rather,
the injectors are implemented as B⊥ and E‖ boundary con-
ditions at the top and bottom device surfaces to match the
experimental waveforms. A detailed description of the imple-
mentation of these boundary conditions can be found in Akcay
[126]. Dirichlet boundary conditions are used for all other
variables; the plasma density satisfies ne = 2 × 1019 m−3 and
the temperatures satisfy Ti = Te = 14 eV. Isotropic viscosity
ν = 550 m2/s and Spitzer resistivity [95] is used. The remain-
ing boundary conditions are u × n̂ = u · n̂ = 0, J · n̂ = 0, and
B · n̂ = 0. For more information on the numerical model used
in this simulation, see Morgan et al. [127]. The data for
training and testing are obtained during the approximately
steady-state phase of the simulation so that the energy con-
straints derived in Sec. III A are applicable.

APPENDIX B: DERIVATION OF THE SINDy
CONSTRAINTS

In Sec. III, we derived constraints for the POD-Galerkin
model coefficients from global conservation laws; our goal
here is to rewrite these constraints to be compatible with the
formulation of the SINDy system identification method. The
conclusions for the global conservation of energy were as
follows: (1) no constant terms, (2) an antisymmetry constraint
on the linear part of the coefficient matrix �, and (3) a more
complicated energy-preserving structure in the quadratic co-
efficients. Consider a quadratic library in a set of r modes,
ordered as �(a) = [a1, . . . , ar, a1a2, . . . , ar−1ar, a2

1, . . . , a2
r ].

Note that this arrangement of the polynomials in � differs
from Loiseau et al. [74], so the indexing and subscripts are
also different here. First, we will consider the constraint on
the linear part of the Galerkin model in Eq. (10), aT L0a ≈ 0.
We can rewrite this in the SINDy notation as

0 = [a1 · · · ar]

⎡
⎣ξ

a1
1 · · · ξ a1

r
...

. . .
...

ξ ar
r · · · ξ ar

r

⎤
⎦
⎡
⎣a1

...

ar

⎤
⎦. (B1)

We conclude ξ
a j

i = −ξ
ai
j for i, j ∈ {1, . . . , r} and identify ξ

a j

i
by accessing the (i − 1)r + j index in the vector of model
coefficients �[:]. Note we are only accessing the first r2

elements of �[:]. For models of linear and quadratic polyno-
mials, N = (r2 + 3r)/2 and the number of constraints from

antisymmetry of the linear coefficients is NL = (r2 + r)/2.
Thus there are now only rN − NL = r(r2 + 2r − 1)/2 free
parameters. Since the constrained SINDy algorithm solves
linear equality constraints of the form D�[:] = d, we can
write this out explicitly for r = 3,⎡

⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 1 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 1 0 · · ·
0 1 0 1 0 0 0 0 0 0 · · ·
0 0 1 0 0 0 1 0 0 0 · · ·
0 0 0 0 0 1 0 1 0 0 · · ·

⎤
⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

ξ
a1
1

ξ
a2
1

ξ
a3
1

ξ
a1
2
...

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎦. (B2)

The boundary conditions u · n̂ = 0, J · n̂ = 0, B · n̂ = 0
guaranteed that the quadratic nonlinearities were energy-
preserving, and thus that cubic terms in Eq. (12) vanish,

r∑
i, j,k=0

Q0
i jkaia jak ≈ 0. (B3)

This constraint is significantly more involved to reformat.
Written in SINDy notation, this is equivalent to

0 = [a1 · · · ar]

⎡
⎣ξ

a1
r+1 ξ

a1
r+2 · · · ξ

a1
N

...
...

...
...

ξ
ar
r+1 ξ

ar
r+2 · · · ξ

ar
N

⎤
⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a1a2
...

ar−1ar

a2
1
...

a2
r

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(B4)

Expand this all out and group the like terms, i.e. terms which
look like a3

i , aia2
j or aia jak , i, j, k ∈ {1, . . . , r}, i �= j �= k.

All of the like terms can be straightforwardly shown to be
linearly independent, so we can consider three constraints
separately for the three types of terms. The number of each
of these respective terms is

(r
1

) = r, 2
(r

2

) = r(r − 1), and(r
3

) = r(r − 1)(r − 2)/6, for a total of r(r + 1)(r + 2)/6 =
NQ constraints. With both constraints, we have rN − NL −
NQ = r(r − 1)(2r + 5)/6 free parameters, and Nc = NL + NQ

constraints. Further considering the quadratic case, we find
that coefficients which adorn a3

i must vanish, ξ
ai
N−r+i = 0.

Now define

ξ̃i jk = ξ
ai

r+ j
2 (2r− j−3)+k−1

. (B5)

The second type of constraint, with i �= j, produces

ξ
ai
N−r+ j =

{
ξ̃ ji j i < j
ξ̃ j ji i > j

, (B6)

while the third type of constraint produces

ξ̃i jk + ξ̃ jik + ξ̃ki j = 0. (B7)

This relation is equivalent to the energy-preserving con-
ditions in Schlegel et al. [79], but the indexing is not
straightforward, even after fully expanding Eq. (B4). This
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equation is an arbitrary r generalization to the r = 3 con-
straint used in Loiseau et al. [34]. For the specific case
where the plasma system is Hamiltonian (for instance in
ideal [128], Hall [129], and extended [130] MHD without
dissipation) and the measurements are assumed to be suf-
ficient to represent the Hamiltonian, one could alternatively

use formulations of SINDy to directly discover the Hamilto-
nian [131] and subsequently derive the equations of motion.
Last, if the global energy conservation constraint on the
quadratic terms in the SINDy coefficient matrix � is written
Djk�k = 0, then the quadratic cross-helicity constraint can be
written DjkAkl�l = 0.
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[45] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D.
Henningson, Spectral analysis of nonlinear flows, J. Fluid
Mech. 641, 115 (2009).

[46] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton,
and J. N. Kutz, On dynamic mode decomposition: Theory and
applications, J. Comput. Dynam. 1, 391 (2014).

[47] B. O. Koopman, Hamiltonian systems and transformation
in Hilbert space, Proc. Natl. Acad. Sci. USA 17, 315
(1931).

[48] I. Mezic, Analysis of fluid flows via spectral properties of the
Koopman operator, Annu. Rev. Fluid Mech. 45, 357 (2013).

[49] S. L. Brunton, M. Budišić, E. Kaiser, and J. N. Kutz, Modern
Koopman theory for dynamical systems, arXiv:2102.12086
(2021).

[50] B. McKeon and A. Sharma, A critical-layer framework for
turbulent pipe flow, J. Fluid Mech. 658, 336 (2010).

[51] M. Luhar, A. S. Sharma, and B. J. McKeon, Opposition control
within the resolvent analysis framework, J. Fluid Mech. 749,
597 (2014).

[52] B. Lusch, J. N. Kutz, and S. L. Brunton, Deep learning
for universal linear embeddings of nonlinear dynamics, Nat.
Commun. 9, 4950 (2018).

[53] K. Champion, B. Lusch, J. N. Kutz, and S. L. Brunton,
Data-driven discovery of coordinates and governing equations,
Proc. Natl. Acad. Sci. USA 116, 22445 (2019).

[54] K. Lee and K. T. Carlberg, Model reduction of dynamical
systems on nonlinear manifolds using deep convolutional au-
toencoders, J. Comput. Phys. 404, 108973 (2020).

[55] J. Bongard and H. Lipson, Automated reverse engineering of
nonlinear dynamical systems, Proc. Natl. Acad. Sci. USA 104,
9943 (2007).

[56] M. Schmidt and H. Lipson, Distilling free-form natural laws
from experimental data, Science 324, 81 (2009).

[57] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering
governing equations from data by sparse identification of non-
linear dynamical systems, Proc. Natl. Acad. Sci. USA 113,
3932 (2016).

[58] M. Raissi and G. E. Karniadakis, Hidden physics models:
Machine learning of nonlinear partial differential equations,
arXiv:1708.00588 (2017).

[59] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics
informed deep learning (part i): Data-driven solutions of non-
linear partial differential equations, arXiv:1711.10561 (2017).

[60] O. Yair, R. Talmon, R. R. Coifman, and I. G. Kevrekidis,
Reconstruction of normal forms by learning informed obser-
vation geometries from data, Proc. Natl. Acad. Sci. USA 114,
E7865 (2017).

[61] S. Klus, F. Nüske, P. Koltai, H. Wu, I. Kevrekidis, C. Schütte,
and F. Noé, Data-driven model reduction and transfer operator
approximation, J. Nonlinear Sci. 28, 985 (2018).

[62] C. Wehmeyer and F. Noé, Time-lagged autoencoders: Deep
learning of slow collective variables for molecular kinetics, J.
Chem. Phys. 148, 241703 (2018).

[63] A. Mardt, L. Pasquali, H. Wu, and F. Noé, VAMPnets:
Deep learning of molecular kinetics, Nat. Commun. 9, 5
(2018).

[64] K. Duraisamy, G. Iaccarino, and H. Xiao, Turbulence mod-
eling in the age of data, Ann. Rev. Fluid Mech. 51, 357
(2019).

[65] J. Pathak, B. Hunt, M. Girvan, Z. Lu, and E. Ott, Model-Free
Prediction of Large Spatiotemporally Chaotic Systems from
Data: A Reservoir Computing Approach, Phys. Rev. Lett. 120,
024102 (2018).

[66] F. Noé, S. Olsson, J. Köhler, and H. Wu, Boltzmann genera-
tors: Sampling equilibrium states of many-body systems with
deep learning, Science 365, eaaw1147 (2019).

[67] Y. Bar-Sinai, S. Hoyer, J. Hickey, and M. P. Brenner, Learning
data-driven discretizations for partial differential equations,
Proc. Natl. Acad. Sci. USA 116, 15344 (2019).

[68] D. Kochkov, J. A. Smith, A. Alieva, Q. Wang, M. P. Brenner,
and S. Hoyer, Machine learning–accelerated computational
fluid dynamics, Proc. Natl. Acad. Sci. USA 118, e2101784118
(2021).

[69] M. Raissi, P. Perdikaris, and G. E. Karniadakis, Physics
informed deep learning (part ii): Data-driven discovery of non-
linear partial differential equations, arXiv:1711.10566 (2017).

015206-14

https://doi.org/10.1063/1.5134126
https://doi.org/10.1088/0029-5515/47/6/S04
https://doi.org/10.1017/jfm.2017.823
https://doi.org/10.1007/s00162-020-00536-w
https://doi.org/10.1063/1.4930127
http://arxiv.org/abs/arXiv:2011.01927
https://doi.org/10.1063/1.4977057
https://doi.org/10.2514/2.1570
https://doi.org/10.1137/130932715
https://doi.org/10.1142/S0218127405012429
https://doi.org/10.1017/jfm.2018.283
https://doi.org/10.1017/S0022112010001217
https://doi.org/10.1017/S0022112009992059
https://doi.org/10.3934/jcd.2014.1.391
https://doi.org/10.1073/pnas.17.5.315
https://doi.org/10.1146/annurev-fluid-011212-140652
http://arxiv.org/abs/arXiv:2102.12086
https://doi.org/10.1017/S002211201000176X
https://doi.org/10.1017/jfm.2014.209
https://doi.org/10.1038/s41467-018-07210-0
https://doi.org/10.1073/pnas.1906995116
https://doi.org/10.1016/j.jcp.2019.108973
https://doi.org/10.1073/pnas.0609476104
https://doi.org/10.1126/science.1165893
https://doi.org/10.1073/pnas.1517384113
http://arxiv.org/abs/arXiv:1708.00588
http://arxiv.org/abs/arXiv:1711.10561
https://doi.org/10.1073/pnas.1620045114
https://doi.org/10.1007/s00332-017-9437-7
https://doi.org/10.1063/1.5011399
https://doi.org/10.1038/s41467-017-02388-1
https://doi.org/10.1146/annurev-fluid-010518-040547
https://doi.org/10.1103/PhysRevLett.120.024102
https://doi.org/10.1126/science.aaw1147
https://doi.org/10.1073/pnas.1814058116
https://doi.org/10.1073/pnas.2101784118
http://arxiv.org/abs/arXiv:1711.10566


PHYSICS-CONSTRAINED, LOW-DIMENSIONAL MODELS … PHYSICAL REVIEW E 104, 015206 (2021)

[70] P. W. Battaglia, J. B. Hamrick, V. Bapst, A. Sanchez-Gonzalez,
V. Zambaldi, M. Malinowski, A. Tacchetti, D. Raposo,
A. Santoro, R. Faulkner et al., Relational inductive biases,
deep learning, and graph networks, arXiv:1806.01261 (2018).

[71] M. D. Cranmer, R. Xu, P. Battaglia, and S. Ho, Learning sym-
bolic physics with graph networks, arXiv:1909.05862 (2019).

[72] M. Mohebujjaman, L. G. Rebholz, and T. Iliescu, Physically
constrained data-driven correction for reduced-order model-
ing of fluid flows, Int. J. Numer. Methods Fluids 89, 103
(2019).

[73] M. Cranmer, S. Greydanus, S. Hoyer, P. Battaglia, D. Spergel,
and S. Ho, Lagrangian neural networks, arXiv:2003.04630
(2020).

[74] J.-C. Loiseau, B. R. Noack, and S. L. Brunton, Sparse
reduced-order modeling: sensor-based dynamics to full-state
estimation, J. Fluid Mech. 844, 459 (2018).

[75] A. Pouquet, D. Rosenberg, J. E. Stawarz, and R. Marino,
Helicity dynamics, inverse, and bidirectional cascades in fluid
and magnetohydrodynamic turbulence: A brief review, Earth
Space Sci. 6, 351 (2019).

[76] C. W. Rowley, T. Colonius, and R. M. Murray, Model re-
duction for compressible flows using POD and Galerkin
projection, Physica D 189, 115 (2004).

[77] B. R. Noack, M. Schlegel, M. Morzynski, and G. Tadmor,
Galerkin Method for Nonlinear Dynamics (Springer, Berlin,
2011).

[78] M. J. Balajewicz, E. H. Dowell, and B. R. Noack, Low-
dimensional modelling of high-Reynolds-number shear flows
incorporating constraints from the Navier–Stokes equation, J.
Fluid Mech. 729, 285 (2013).

[79] M. Schlegel and B. R. Noack, On long-term boundedness of
Galerkin models, J. Fluid Mech. 765, 325 (2015).

[80] T. R. Jarboe, W. T. Hamp, G. J. Marklin, B. A. Nelson, R. G.
O’Neill, A. J. Redd, P. E. Sieck, R. J. Smith, and J. S. Wrobel,
Spheromak Formation by Steady Inductive Helicity Injection,
Phys. Rev. Lett. 97, 115003 (2006).

[81] D. D. Schnack, D. C. Barnes, D. P. Brennan, C. C. Hegna,
E. Held, C. C. Kim, S. E. Kruger, A. Y. Pankin, and C. R.
Sovinec, Computational modeling of fully ionized magnetized
plasmas using the fluid approximation, Phys. Plasmas 13,
058103 (2006).

[82] Z. Ma and A. Bhattacharjee, Hall magnetohydrodynamic re-
connection: The geospace environment modeling challenge,
J. Geophys. Res.: Space Phys. 106, 3773 (2001).

[83] V. Krishan and S. Mahajan, Magnetic fluctuations and
Hall magnetohydrodynamic turbulence in the solar wind,
J. Geophys. Res.: Space Phys. 109, A11105 (2004).

[84] F. Ebrahimi, B. Lefebvre, C. B. Forest, and A. Bhattacharjee,
Global Hall-MHD simulations of magnetorotational instabil-
ity in a plasma Couette flow experiment, Phys. Plasmas 18,
062904 (2011).

[85] N. M. Ferraro, Calculations of two-fluid linear response
to non-axisymmetric fields in tokamaks, Phys. Plasmas 19,
056105 (2012).

[86] A. A. Kaptanoglu, T. E. Benedett, K. D. Morgan, C. J. Hansen,
and T. R. Jarboe, Two-temperature effects in Hall-MHD sim-
ulations of the HIT-SI experiment, Phys. Plasmas 27, 072505
(2020).

[87] T. Dudok de Wit, A.-L. Pecquet, J.-C. Vallet, and R.
Lima, The biorthogonal decomposition as a tool for

investigating fluctuations in plasmas, Phys. Plasmas 1, 3288
(1994).

[88] C. Galperti, C. Marchetto, E. Alessi, D. Minelli, M. Mosconi,
F. Belli, L. Boncagni, A. Botrugno, P. Buratti, B. Esposito
et al., Development of real-time MHD markers based on
biorthogonal decomposition of signals from Mirnov coils,
Plasma Phys. Control. Fus. 56, 114012 (2014).

[89] C. Hansen, B. Victor, K. Morgan, T. Jarboe, A. Hossack, G.
Marklin, B. Nelson, and D. Sutherland, Numerical studies and
metric development for validation of magnetohydrodynamic
models on the HIT-SI experiment, Phys. Plasmas 22, 056105
(2015).

[90] G. H. Golub and C. F. Van Loan, Matrix Computations, 3rd
ed. (The Johns Hopkins University Press, 1996).

[91] A. Frieze, R. Kannan, and S. Vempala, Fast Monte-Carlo algo-
rithms for finding low-rank approximations, J. ACM 51, 1025
(2004).

[92] E. Liberty, F. Woolfe, P.-G. Martinsson, V. Rokhlin, and M.
Tygert, Randomized algorithms for the low-rank approxima-
tion of matrices, Proc. Natl. Acad. Sci. USA 104, 20167
(2007).

[93] F. Woolfe, E. Liberty, V. Rokhlin, and M. Tygert, A fast ran-
domized algorithm for the approximation of matrices, Appl.
Comput. Harmon. Anal. 25, 335 (2008).

[94] D. Rempfer and H. F. Fasel, Dynamics of three-dimensional
coherent structures in a flat-plate boundary layer, J. Fluid
Mech. 275, 257 (1994).

[95] L. Spitzer, Physics of Fully Ionized Gases (Courier Corpora-
tion, New York, 2006).

[96] S. Braginskii, in Reviews of Plasma Physics, edited by M.
Leontovich (Consultants Bureau, New York, 1965), Vol. 1,
p. 205.

[97] F. Plunian, R. Stepanov, and P. Frick, Shell models
of magnetohydrodynamic turbulence, Phys. Rep. 523, 1
(2013).

[98] D. Biskamp, Cascade models for magnetohydrodynamic tur-
bulence, Phys. Rev. E 50, 2702 (1994).

[99] M. Couplet, P. Sagaut, and C. Basdevant, Intermodal energy
transfers in a proper orthogonal decomposition-Galerkin rep-
resentation of a turbulent separated flow, J. Fluid Mech. 491,
275 (2003).

[100] A. A. Kaptanoglu, J. L. Callaham, C. J. Hansen, A. Aravkin,
and S. L. Brunton, Promoting global stability in data-driven
models of quadratic nonlinear dynamics, arXiv:2105.01843
(2021).

[101] S. Galtier, Introduction to Modern Magnetohydrodynamics
(Cambridge University Press, Cambridge, UK, 2016).

[102] S. Chaturantabut and D. C. Sorensen, Discrete empirical inter-
polation for nonlinear model reduction, in Proceedings of the
48th IEEE Conference on Decision and Control (CDC) held
jointly with 2009 28th Chinese Control Conference (IEEE, Los
Alamitos, CA, 2009), pp. 4316–4321.

[103] Z. Drmac and S. Gugercin, A new selection operator for the
discrete empirical interpolation method—improved a priori
error bound and extensions, SIAM J. Sci. Comput. 38, A631
(2016).

[104] P. Astrid, S. Weiland, K. Willcox, and T. Backx, Missing
point estimation in models described by proper orthogo-
nal decomposition, IEEE Trans. Autom. Contr. 53, 2237
(2008).

015206-15

http://arxiv.org/abs/arXiv:1806.01261
http://arxiv.org/abs/arXiv:1909.05862
https://doi.org/10.1002/fld.4684
http://arxiv.org/abs/arXiv:2003.04630
https://doi.org/10.1017/jfm.2018.147
https://doi.org/10.1029/2018EA000432
https://doi.org/10.1016/j.physd.2003.03.001
https://doi.org/10.1017/jfm.2013.278
https://doi.org/10.1017/jfm.2014.736
https://doi.org/10.1103/PhysRevLett.97.115003
https://doi.org/10.1063/1.2183738
https://doi.org/10.1029/1999JA001004
https://doi.org/10.1029/2004JA010496
https://doi.org/10.1063/1.3598481
https://doi.org/10.1063/1.3694657
https://doi.org/10.1063/5.0006311
https://doi.org/10.1063/1.870481
https://doi.org/10.1088/0741-3335/56/11/114012
https://doi.org/10.1063/1.4919277
https://doi.org/10.1145/1039488.1039494
https://doi.org/10.1073/pnas.0709640104
https://doi.org/10.1016/j.acha.2007.12.002
https://doi.org/10.1017/S0022112094002351
https://doi.org/10.1016/j.physrep.2012.09.001
https://doi.org/10.1103/PhysRevE.50.2702
https://doi.org/10.1017/S0022112003005615
http://arxiv.org/abs/arXiv:2105.01843
https://doi.org/10.1137/15M1019271
https://doi.org/10.1109/TAC.2008.2006102


KAPTANOGLU, MORGAN, HANSEN, AND BRUNTON PHYSICAL REVIEW E 104, 015206 (2021)

[105] K. Willcox, Unsteady flow sensing and estimation via the
gappy proper orthogonal decomposition, Comput. Fluids 35,
208 (2006).

[106] K. Carlberg, C. Farhat, J. Cortial, and D. Amsallem, The
GNAT method for nonlinear model reduction: effective im-
plementation and application to computational fluid dynamics
and turbulent flows, J. Comput. Phys. 242, 623 (2013).

[107] B. M. de Silva, K. Champion, M. Quade, J.-C. Loiseau, J. N.
Kutz, and S. L. Brunton, PySINDy: A python package for
the sparse identification of nonlinear dynamics from data,
arXiv:2004.08424 (2020).

[108] R. Tibshirani, Regression shrinkage and selection via the lasso,
J. R. Stat. Soc.: Ser, B (Methodol.) 58, 267 (1996).

[109] P. Zheng, T. Askham, S. L. Brunton, J. N. Kutz, and A. Y.
Aravkin, A unified framework for sparse relaxed regularized
regression: SR3, IEEE Access 7, 1404 (2018).

[110] P. Gelß, S. Klus, J. Eisert, and C. Schütte, Multidimensional
approximation of nonlinear dynamical systems, J. Comput.
Nonlin. Dynam. 14, 061006 (2019).

[111] J. L. Callaham, J.-C. Loiseau, G. Rigas, and S. L.
Brunton, Nonlinear stochastic modeling with Langevin re-
gression, Proceedings of the Royal Society A 477, 2250
(2021).

[112] J. J. Bramburger, D. Dylewsky, and J. N. Kutz, Sparse identifi-
cation of slow timescale dynamics, Phys. Rev. E 102, 022204
(2020).

[113] K. Kaheman, J. N. Kutz, and S. L. Brunton, SINDy-PI: A
robust algorithm for parallel implicit sparse identification of
nonlinear dynamics, Proc. R. Soc. A 476, 20200279 (2020).

[114] A. Cortiella, K.-C. Park, and A. Doostan, Sparse identification
of nonlinear dynamical systems via reweighted l1-regularized
least squares, Comput. Methods Appl. Mech. Eng. 376,
113620 (2021).

[115] D. B. Brückner, P. Ronceray, and C. P. Broedersz, Inferring
the Dynamics of Underdamped Stochastic Systems, Phys. Rev.
Lett. 125, 058103 (2020).

[116] S. Beetham and J. Capecelatro, Formulating turbulence clo-
sures using sparse regression with embedded form invariance,
Phys. Rev. Fluids 5, 084611 (2020).

[117] G. Manek and J. Z. Kolter, Learning stable deep dynamics
models, arXiv:2001.06116 (2020).

[118] S. Pan and K. Duraisamy, Physics-informed probabilistic
learning of linear embeddings of nonlinear dynamics with
guaranteed stability, SIAM J. Appl. Dynam. Syst. 19, 480
(2020).

[119] L. Boninsegna, F. Nüske, and C. Clementi, Sparse learning of
stochastic dynamical equations, J. Chem. Phys. 148, 241723
(2018).

[120] V. Zucatti and W. Wolf, Data-driven closure of projection-
based reduced order models for unsteady compressible flows,
arXiv:2103.12727 (2021).

[121] The python code used for this analysis can be found at
https://github.com/akaptano/POD-Galerkin_MHD.

[122] J. S. Wrobel, A study of HIT-SI plasma dynamics using
surface magnetic field measurements, Thesis, University of
Washington, Seattle, WA, 2011.

[123] B. Victor, T. Jarboe, C. Hansen, C. Akcay, K. Morgan, A.
Hossack, and B. Nelson, Sustained spheromaks with ideal n=1
kink stability and pressure confinement, Phys. Plasmas 21,
082504 (2014).

[124] C. Sovinec, A. Glasser, T. Gianakon, D. Barnes, R. Nebel,
S. Kruger, D. Schnack, S. Plimpton, A. Tarditi, M.-S. Chu
et al., Nonlinear magnetohydrodynamics simulation using
high-order finite elements, J. Comput. Phys. 195, 355 (2004).

[125] C. Akcay, Extended magnetohydrodynamic simulations of the
helicity injected torus (HIT-SI) spheromak experiment with
the NIMROD code, Ph.D. thesis, University of Washington,
Seattle, 2013.

[126] C. Akcay, C. C. Kim, B. S. Victor, and T. R. Jarboe, Val-
idation of single-fluid and two-fluid magnetohydrodynamic
models of the helicity injected torus spheromak experi-
ment with the NIMROD code, Phys. Plasmas 20, 082512
(2013).

[127] K. Morgan, T. Jarboe, A. Hossack, R. Chandra, and C.
Everson, Validation of extended magnetohydrodynamic sim-
ulations of the HIT-SI3 experiment using the NIMROD code,
Phys. Plasmas 24, 122510 (2017).

[128] P. J. Morrison and J. M. Greene, Noncanonical Hamiltonian
Density Formulation of Hydrodynamics and Ideal Magneto-
hydrodynamics, Phys. Rev. Lett. 45, 790 (1980).

[129] Z. Yoshida and E. Hameiri, Canonical Hamiltonian mechanics
of Hall magnetohydrodynamics and its limit to ideal mag-
netohydrodynamics, J. Phys. A: Math. Theor. 46, 335502
(2013).

[130] H. M. Abdelhamid, Y. Kawazura, and Z. Yoshida, Hamiltonian
formalism of extended magnetohydrodynamics, J. Phys. A:
Math. Theor. 48, 235502 (2015).

[131] H. K. Chu and M. Hayashibe, Discovering interpretable dy-
namics by sparsity promotion on energy and the Lagrangian,
IEEE Robot. Autom. Lett. 5, 2154 (2020).

015206-16

https://doi.org/10.1016/j.compfluid.2004.11.006
https://doi.org/10.1016/j.jcp.2013.02.028
http://arxiv.org/abs/arXiv:2004.08424
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1109/ACCESS.2018.2886528
https://doi.org/10.1115/1.4043148
https://doi.org/10.1098/rspa.2021.0092
https://doi.org/10.1103/PhysRevE.102.022204
https://doi.org/10.1098/rspa.2020.0279
https://doi.org/10.1016/j.cma.2020.113620
https://doi.org/10.1103/PhysRevLett.125.058103
https://doi.org/10.1103/PhysRevFluids.5.084611
http://arxiv.org/abs/arXiv:2001.06116
https://doi.org/10.1137/19M1267246
https://doi.org/10.1063/1.5018409
http://arxiv.org/abs/arXiv:2103.12727
https://github.com/akaptano/POD-Galerkin_MHD
https://doi.org/10.1063/1.4892261
https://doi.org/10.1016/j.jcp.2003.10.004
https://doi.org/10.1063/1.4817951
https://doi.org/10.1063/1.4997944
https://doi.org/10.1103/PhysRevLett.45.790
https://doi.org/10.1088/1751-8113/46/33/335502
https://doi.org/10.1088/1751-8113/48/23/235502
https://doi.org/10.1109/LRA.2020.2970626

