
PHYSICAL REVIEW E 104, 015201 (2021)

Ionization of carbon at 10–100 times the diamond density and in the 106 K temperature range
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The behavior of partially ionized hot compressed matter is critical to the study of planetary interiors as well
as nuclear fusion studies. A recent quantum study of carbon in the 10–70 Gbar range and at a temperature of
100 eV used N-atom density functional theory (DFT) with N ∼ 32–64 and molecular dynamics (MD). This
involves band-structure-type electronic calculations and averaging over many MD-generated ion configurations.
The calculated average number of free electrons per ion, viz., Z̄ , was systematically higher than from a standard
average-atom quantum calculation. To clarify this offset, we examine the effect of the self-interaction error in
such estimates and the possibility of carbon being in a granular plasma state containing Coulomb crystals with
a magic number. The electrical conductivity, pressure, and compressibility of the carbon system are examined.
The very low conductivity and the high-Z̄ results of DFT MD point to the existence of carbon in a complex,
nonuniform, low-conducting dispersed phase, possibly containing magic-number Coulomb crystals. The neutral
pseudoatom estimate of Z̄ , conductivity, compressibility, and pressure reported here pertain to the uniform liquid.
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I. INTRODUCTION

Astrophysics, planetary science, and high-energy-density
physics rely heavily on theoretical predictions of the equation
of state, transport, and radiative properties as the information
is not usually available experimentally [1]. The advent of
short-pulse laser technology has also opened up new regimes
of interest, where theoretical results are needed to interpret
new experiments. Computational implementations of N-atom
density functional theory (DFT) for electrons moving in the
field of N ∼ 100–500 ions, coupled to molecular dynam-
ics (MD) simulations for the ions, have provided a reliable
computational approach to these types of warm dense matter
(WDM) [2,3]. This DFT MD approach will be referred to as
the quantum molecular dynamics (QMD) method for brevity.

Quantum MD provides the properties of the cluster of N
atoms modeled in the simulation cell as a periodic solid, but
does not provide individual atomic properties unless addi-
tional steps are taken [4–6]. Such additional steps usually
focus on decomposing density matrices, charge densities,
N-atom energies, x-ray Thomson scattering (XRTS), atomic
phase shifts, N-atom potentials, and such properties into
one-atom properties or pair-atom properties, e.g., the pair
potential [7]. However, Bethkenhagen et al. [8] recently dis-
cussed the decomposition of a transport property, namely, the
electrical conductivity of highly compressed hot carbon, to
determine the mean ionization state of the carbon atoms from
a QMD N-atom calculation.

However, the application of the band-structure-based ap-
proach to materials like carbon is subject to the well-known
band-gap error (BGE) which should affect any determination
of the number Z̄ of free electrons per ion that has been pro-
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moted over the band gap into the conduction band [9,10]. Thus
the fundamental gap of diamond, 5.48 eV, is underestimated
by some 30% by typical DFT codes, while germanium in its
insulator state (Z̄ = 0) is predicted to be a metal with Z̄ = 4.
Similarly, the BGE can be expected for the 1s valance to
conduction band energy gap in carbon relevant to the results
of Ref. [8]. These errors can be corrected using, say, solutions
to the Dyson equation rather than the Kohn-Sham equation.
Here a commonly used approximation to the self-energy is
known as the GW approximation, where G refers to the one-
electron Green’s function and W is the dynamically screened
electron-electron (Coulomb) interaction. However, rectifying
such errors using the GW method [10], applied in the 100-eV
range for densities ρ at approximately 100 times the normal
density, would be computationally prohibitive. Alternative
methods, e.g., average-atom (AA) methods, also use DFT
functionals that are subject to a similar self-interaction (SI)
error and it is easier to study SI errors using such one-atom
DFT calculations.

The QMD method uses an electron exchange-correlation
(xc) functional F xc

ee [n, T = 0] to reduce the many-electron
quantum problem to a theory of noninteracting electrons, but
explicitly deals with N ions without reducing the N-atom
problem further. Besides the N-atom DFT approach of QMD,
the one-atom DFT, i.e., average-atom methods, directly yield
one-atom properties while taking into account the embedding
medium in various approximations. Most AA models use a
finite-T xc functional F xc

ee [n, T ], while QMD uses the T = 0
functional. In most cases the effect of the finite-T corrections
is quite small.

The metallic nature of typical WDMs has been exploited
to construct a theory of these systems which is computa-
tionally very simple and yet provides accurate results for
astrophysically important low-Zn materials such as C, N, and
Si as well as for more general applications. The method uses
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a complete density functional theory of matter where both
the electron subsystem and the ion subsystem are treated by
DFT [11–15]. This approach uses a finite-T xc functional
F xc

ee [n, T ] to reduce the electron many-body problem to an
effective one-electron problem. In addition, it reduces the
many-ion problem to a one-ion problem using an ion-ion
exchange-correlation functional F xc

ii [ρ, T ], dependent on the
one-body ion density ρ(r) and the temperature T . Here the
exchange component is negligible in typical situations since
ions can be regarded as classical particles. The Hohenberg-
Kohn DFT for classical particles, needed in this approach for
electron-ion systems, is analogous to that for electrons and
was discussed [11,16,17] soon after the development of the
DFT treatment of electrons. The treatment of effects beyond
the Born-Oppenheimer approximation requires an additional
xc functional F xc

ei [n, ρ, T ]. This is usually neglected but can
be important in special circumstances and for light ions [18].

In this full DFT approach the many-electron many-ion
problem of many-body interactions is reduced to that of con-
structing an object consisting of an average single ion of
charge Z̄ plus Z̄ independent electrons, known as the neutral
pseudoatom (NPA). The NPA uses xc functionals to deal with
three-body and such higher-order interparticle effects. Thus
the NPA is a one-atom DFT approach which greatly simplifies
the N-atom band-structure model that is implemented in the
VASP, ABINIT, and similar codes.

The NPA provides a calculation of the Z̄ , but it too is
subject to a self-interaction correction (SIC) which is also
the cause of the BGE in the band-structure approach. How-
ever, the simplified atomic physics model used in the NPA
makes it easier to implement a SIC based on the Dyson equa-
tion [19,20] or the method of Perdew and Zunger [9]. The xc
functionals for ions and the assumption of radial symmetry
in the computational implementation of the NPA used here
restrict the method to uniform systems.

Bethkenhagen et al. [8] complemented their QMD results
for the Z̄ of carbon with results from the PURGATORIO AA
code [21]. Intriguingly, the QMD results when decomposed
to give the average degree of ionization of a single carbon
atom showed a systematic overestimate of approximately 0.5
in the value of Z̄ compared to the AA estimate of Z̄ . We
have calculated Z̄ using a Thomas-Fermi (TF) model and our
NPA method. The TF result is almost parallel to that of QMD,
with a 0.5 offset. The NPA finds a somewhat similar but more
structured offset.

The objective of this study is to understand the magnitude
of the likely SIC and consider other possible reasons for the
differences in the two types of estimates for Z̄ . Given the
higher Z̄ found in the QMD, the reported extremely low con-
ductivity from QMD using a Kubo-Greenwood calculation is
intriguing. This prompts us to consider that the QMD simula-
tions, using N = 32 and 64, have converged on a region of the
phase space where the plasma is granular and possibly made
up of Coulomb crystals. Alternatively, the N-atom simulation
method may favor such nonuniform phases and fail to model
the uniform system unless N is very large. We suggest that
various carbon clusters, each contributing about 0.5 electrons,
may form weak n, l, m bound states of a Coulomb crystal; the
principle quantum number n is large enough to envelope the
cluster. Electrons in such states do not belong to any atom and

add to the Z̄ but conduct only by hopping between Coulomb
crystals. Filled shells are energetically favorable and Z̄ may
increase to achieve this. These electronic magic-number states
are further stabilized when clusters with N corresponding to
a structural magic number (e.g., N = 13) become possible si-
multaneously. This hypothesis fits in with the available results
of the QMD and NPA calculations. In the following we give
the calculations that support these considerations.

II. THE NPA CALCULATION OF Z̄

Detailed discussions of the NPA may be found in several
recent publications (see, e.g., [7,22]). In this study, the density
ρ̄ and temperature T (in energy units) are such that the carbon
atom is found to carry only the 1s shell of bound electrons,
providing a very simple model of an atom in a plasma. Hence,
for simplicity of discussion, we develop two coupled DFT
equations, i.e., for electrons and for the ions that are solved
in the NPA, in a simplified form where Hartree atomic units
(|e| = h̄ = me = 1) are employed.

In our one-atom DFT model, coupled equations resulting
from the stationary condition of the grand potential �[n, ρ],
considered as a functional of the one-body electron and ion
densities n(r) and ρ(r), are solved. A bare carbon nucleus of
charge Zn is the origin of coordinates of the uniform system
of electrons and ions. Spherical symmetry is applicable, as we
consider a uniform fluid. The inhomogeneous densities n(r)
and ρ(r) around the carbon nucleus become the bulk densities
n̄ and ρ̄ at large distances r → Rc, where Rc is the radius of
the correlation sphere. This is usually about ten Wigner-Seitz
radii. A shorter Rc ∼ 5rWS can be used at higher temperatures.
Here rWS is given by rWS = (3/4πρ̄ )1/3. The pair distribution
functions (PDFs) gab(r), a = e, i, refer to electrons or ions and
describe the structure of the environment where the carbon
atom is placed. Then

ρ(r) = ρ̄gii(r), n(r) = n̄gei(r). (1)

The PDF gii(r) will be referred to as g(r) for brevity. The
grand potential can be written as

� = T [N, ρ] + �e + �ei + �i. (2)

Here T [n, ρ] is the kinetic energy functional of a nonin-
teracting system having the exact interacting densities. A
simplified form for �a is given below, assuming a point-ion
model Uei(r) = −Z̄/r for the electron-ion interaction. The
more complete model, applicable even to ion mixtures, is
found in Refs. [12,14] and used in the computations

�e = −
∫

dr
Zn

r
n(r) + 1

2

∫
dr dr′ n(r)n(r′)

|r − r′|
+

∫
dr F xc

ee [n] − μe

∫
dr n(r), (3)

�ei = −
∫

dr dr′ Z̄ρ(r)n(r′)
|r − r′| +

∫
dr F xc

ei [n, ρ]. (4)

Note that three-body and higher contributions beyond pair
interactions are all contained in the xc functionals and are
not neglected in the theory. That is, this one-atom DFT (viz.,
the NPA) does not use an external N-center potential energy
surface due to the ions for the Kohn-Sham electrons, as is the
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case with the N-atom DFT deployed in the VASP and ABINIT

codes. What we have is the appropriate one-atom mapping of
the N-atom DFT calculation.

We have used in Eq. (3) a point-ion model −Z̄/r for the
electron-ion interaction of the field ions only for simplicity
of presentation. In actual calculations a local pseudopoten-
tial Uei(q) = −Z̄VqMq, where Vq = 4π/q2 and a form factor
Mq are used. The form factor and the corresponding ion-ion
pair potential are also determined self-consistently from the
NPA, as discussed elsewhere [7,12,14]. Nonlocal forms of the
pseudopotential have not been found necessary for NPA cal-
culations for uniform-density warm dense fluids or for cubic
solids.

The ion contribution �i can be obtained from the above
equations by appropriately replacing n(r) by Z̄ρ(r) if the
ion-electron interaction is modeled by point ions while also
replacing F xc contributions appropriately. The electron-ion xc
functional F xc

ei is usually neglected in most NPA calculations,
being largely equivalent to making the Born-Oppenheimer
approximation and neglecting certain correlation corrections
of the form 〈n(r)ρ(r′)〉 − 〈n(r)〉〈ρ(r′)〉. This is equivalent
to using a random-phase approximation for the electron-ion
response function. This is appropriate for highly compressed
uniform fluids of carbon studied here. However, such corre-
lations may be important in dealing with composite carbon
grains that form Coulomb crystals.

The stationary condition on � under functional variation
δn leads to the usual Kohn-Sham (KS) equation for electrons
moving in an effective potential Ue(r). Functional differen-
tiation with respect to δρ leads to an equation identifiable
with the modified hypernetted-chain (MHNC) equation if the
ion-ion xc functional is identified with the hypernetted-chain
(HNC) diagrams and bridge diagrams used for classical sys-
tems. The ions are classical in the regime of study and there
is no exchange contribution. Then the effective classical KS
potential for the ions can be identified with the potential
of mean force Uii(r) (see Ref. [11]) of classical statistical
mechanics.

In actual numerical work, the field ion distribution ρ(r) =
ρ̄g(r) occurring in �e(r) and �ei(r) as well as in the corre-
sponding KS equation δ�/δn is replaced by ρ̄gcav(r), where
gcav(r) is a model ion-ion PDF which is just a spherical cavity
of radius rWS. Hence solving the electron KS equation cou-
pled to the ion KS equation is much simplified and the only
parameter associated with the ion distribution that has to be
varied self-consistently is the ion Wigner-Seitz radius rWS ap-
propriate to a given free-electron density n̄ given as the input.
Thus the primary input variable is the free-electron density for
a given temperature and nuclear charge. The equilibrium ion
density ρ̄ is determined for each given n̄ in this manner, while
solving the electron KS equation self-consistently, starting
from a trial n(r) and Z̄ .

The self-consistent solution for the continuum- and bound-
state solutions is constrained to satisfy the Friedel sum rule
and verified for satisfying the f -sum rule. The xc functional
used for the electron KS equation is the finite-T xc functional
of Perrot and Dharma-wardana [23] within the local density
approximation. The xc functional depends on T/EF , where
EF is the Fermi energy of the free electrons. The electron
system moves from a virtually classical (T/EF ∼ 2) electron

gas to a strongly degenerate quantum gas (T/EF ∼ 0.13) in
the system under study. A comparison of the finite-T xc func-
tional used here with the parametrization due to Dornheim
et al. [24] fitted to quantum Monte Carlo data showed good
agreement [25]. The Perdew-Burke-Ernzerhof (PBE) electron
xc functional, i.e., at T = 0, has been used in the QMD calcu-
lations.

This partial decoupling of the electron Kohn-Sham equa-
tion and the ion Kohn-Sham equation used in the NPA
implementation is possible because the electron Kohn-Sham
equation is found to be only weakly dependent on the details
of gii(r) for r > rWS. Furthermore, we use the free-electron
part of n(r), viz., n f (r) = n̄ + �n f (r), obtained from the
KS equation to construct the �n f (r) that would be obtained
if there were no gcav(r), using linear response theory. The
corrected � f n(r) is the response of a uniform electron fluid
(in the presence of a nonresponding neutralizing uniform ion
background) to the carbon ion of charge Z̄ . Hence this cor-
rected �n f (r) may be regarded as being independent of the
assumed form of g(r) in solving the electron KS equation, as
long as it satisfied basic criteria in regard to charge neutrality
and the perfect screening sum rule.

Once the electron Kohn-Sham equation is solved using
gcav(r), we already have the three quantities n̄, Z̄ , and hence
ρ̄. We also have the KS eigenfunctions φν (r) and eigenvalues
εν , with ν = n, l for bound states and ν = k, l for contin-
uum states, with εk = k2/2, together with the phase shifts
δkl . These satisfy the Friedel sum rule and the simple charge
neutrality condition n̄ = Z̄ρ̄. The DFT calculations used in the
NPA also have the usual self-interaction error. Applying the
SIC will make the NPA estimate of Z̄ differ even more from
the QMD, unless the QMD SIC is of the same magnitude.
Nevertheless, we examine these corrections before attempting
to discuss other reasons for the offset between our one-atom
DFT results and those of Ref. [8].

III. RESULTS FOR Z̄ WITHOUT SELF-INTERACTION
CORRECTIONS

The NPA model described in the preceding section does not
include self-interaction corrections. For instance, if the carbon
atom has only the 1s bound state with one electron, with an
energy ε1s, its energy has been calculated with a KS potential
and a Coulomb repulsion inclusive of its own density. While
the effect of this is correctly canceled out in the Hartree-Fock
model of independent electrons or in exact-exchange models,
the simpler exchange-correlation functionals do not contain
the necessary xc discontinuity needed to correct for the self-
interaction. Hence new functionals that attempt to correct
for the SIC exist [26], although their success is not as well
established as for methods based on the Dyson equation [10].
In this section we first examine the standard results from DFT
MD, the PURGATORIO AA model, and the NPA model, where
no SIC has been used.

In Fig. 1(a) we display several calculations of Z̄ in the ρ̄

range of interest, at 100 eV. No self-interaction corrections
have been included. The Thomas-Fermi Z̄ used in the quotid-
ian equation of state [27] is also displayed. The other models
are discussed in more detail below.
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FIG. 1. (a) Plot of Z̄ from several models. The results for the
AA and for DFT MD are extracted from Ref. [8]. The Z̄ from
the Thomas-Fermi model of More et al. [27] are denoted by TF.
The dashed vertical line labeled 341 g indicates the density (g/cm3)
where the mean radius of the 1s orbital becomes equal to the ion
Wigner-Seitz radius. (b) Effective cooling of the system in terms of
T/EF , and the extension of the 1s orbital as the density is increased.

A. DFT MD band-structure model

In the N-atom DFT MD model (QMD) the 1s electrons
form a narrow valance band, while the continuum electrons
form the conduction band for each periodically repeated solid,
i.e., the solid constructed via the MD evolution of the atomic
positions in the simulation cell. Then an average over an en-
semble of band configurations generated by MD is carried out
and the average ionization can in principle be calculated from
the number of electrons per ion in the conduction band. The
Z̄ can also be calculated from the one-atom decomposition of
DFT MD densities given by Plagemann et al. [6]. Other meth-
ods of increasing sophistication for decomposing a molecular
property into one-atom contributions are available [5].

A method based on the f -sum rule and the Kubo-
Greenwood (KG) conductivity formula was used in Ref. [8].
The method is applicable when there is a clear separation of
the conduction band and the valance band, without continuum
resonances obscuring the band gap. It would be worth exam-
ining alternative decompositions of the N-atom properties that
depend on Z̄ as well, unless a case can be made for the con-
ductivity being the most satisfactory property for estimating
Z̄ , even though DFT would require it to be estimated as a
functional of the density.

The band gap separating the top of the 1s band and the bot-
tom of the conduction band as well as the chemical potential
of the electrons enter the KG calculation of the conductivity
that Bethkenhagen et al. [8] used for extracting the number
of free electrons per ion, i.e., Z̄ in their system. The band-gap
error arises partly from the use of the KS eigenfunctions and
eigenvalues, whereas the solutions of the Dyson equation have
to be used [10,19] in the KG calculation. The band-gap error
in the regime of densities and at 100 eV is unknown.

Encouragingly, consistent results have been obtained using
the PBE [28] functional as well as the strongly constrained

and appropriately normed (SCAN) functional [29] in the work
of Ref. [8]. Interestingly, the Z̄ from QMD is almost identical
to that obtained from the Thomas-Fermi model, except for an
increment �Z̄ = 0.5.

However, it should be noted that the KG formula when
applied to the determination of the electrical conductivity of
liquid Si near and above its melting point using DFT MD
with the PBE functional or the SCAN functional does not
lead to agreement with experiment. In the case of Si, there
are excellent experimental data for the conductivity of liquid
Si in a small but technologically important range of densities
and hence a meaningful comparison is possible [22]. Many
physical properties of liquid Si predicted using DFT MD seem
to be sensitive to the xc functional used [30]. Unfortunately,
there are no experimental conductivities for carbon in this
range of densities at 100 eV or even for normal densities near
the melting point to test these methods against experiment.

Hence calculations using other methods and other codes
are useful to determine the origin of the spread in the Z̄ found
between the KG estimate and other theoretical approaches for
Z̄ . Here we look at the results from the PURGATORIO model
and from the NPA model.

B. The PURGATORIO AA model

In contrast to the NPA, the PURGATORIO model confines all
six electrons of the carbon atom within the Wigner-Seitz cell
(ion sphere) and hence uses a μ different from the noninteract-
ing μ0. The electron-ion interaction in the PURGATORIO code
is set to zero for r > rWS. The self-interaction corrections
should affect AA models in much the same way as for the
NPA. According to [21], PURGATORIO can be used to yield
three estimates of Z̄ that converge towards the same value at
sufficiently high T . The Z̄ given in Fig. 3 of Ref. [8] is stated
to be obtained from the effective charge at r = rWS. The Z̄
data, extracted from Ref. [8], are displayed in Fig. 1(a). It can
be seen that the results from the PURGATORIO model converge
towards the Thomas-Fermi model as the density is increased.

C. The NPA model

The NPA model has been used successfully for materials
like Al, Si, Li, etc., near their melting points and at much
higher temperatures, unlike many AA models that seem to
be designed mainly with high-T applications in mind. The
NPA bound states, as well as continuum states, extend in the
full volume of the correlation sphere Rc ∼ 10rWS. The NPA
differs from many AA models in that the electron-ion poten-
tial for r > rWS is not set to zero. The electron-ion potential
becomes zero only outside the correlation sphere r → Rc. The
corrections to μ0 that are taken into account in elementary
non-DFT theories of continuum lowering, etc., are included in
the KS potentials that become zero only for r > Rc, when all
the PDFs gab(r), a = e, i, have attained the asymptotic value
of unity.

The carbon NPA has only the single bound state, i.e., 1s,
under the conditions of the study. Hence the atomic potential
is hard and almost pointlike. Initially, at ρ̄ = 20 g/cm3 the
electron chemical potential μ0 is approximately −18 a.u.,
that is, the continuum electrons are classical and hot, with
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FIG. 2. (a) Structure factors of liquid-carbon at 10, 50, 200, and
400 g/cm3. Unlike for normal densities (e.g., approximately 3.5
g/cm3 of diamond), the first peak is not split and shows no structure
near 2kF . The inset shows the variation of the value of S(k) at
k = 2kF which is determinative of the conductivity for T/EF < 1.
(b) The C-C pair distribution function has no subpeaks or structure
due to bonding effects. The position of the first peak is typical of a
densely packed uniform fluid.

T/EF ∼ 1.7 at 10 g/cm3. At lower densities, given the neg-
ative μ, electrons ionize easily and Z̄ is high; however, as ρ̄

increases, μ increases and becomes positive. The ionization is
increasingly reduced until about 100 g/cm3. By then the mean
radius of the 1s eigenstate of the carbon atom has reached 42%
of the Wigner-Seitz radius and reaches 61% by 200 g/cm3.
Then the 1s state in the Wigner-Seitz sphere begins to leak to
the region outside the ion sphere; strong pressure ionization
sets in, due to the potential of the ion subsystem modeled by
ρ̄gcav(r). Figure 1 displays the density of 341 g/cm3 when the
1s orbital radius becomes equal to rWS.

In fact, one may consider that the effect of treating nearest-
neighbor interactions more explicitly, not only for this density,
but from about ρ̄60 = 200 g/cm3, may be important. If such
nearest-neighbor 1s-1s interactions are included, we obtain a
narrow 1s valance band averaged over the first peak of the
ion-ion PDF. These would appear as transient bonding in MD
simulations. This valance band uses up electrons in the 1s
states, but does not significantly change the estimate of Z̄ for
the range of ρ̄ and T studied here.

Nearest-neighbor interactions mediated via the continuum
electrons are treated explicitly in the construction of the pair
potential that is employed to generate the actual g(r). The
resulting g(r) differs significantly from gcav(r) outside the ion
sphere. The actual g(r) and the S(k) are shown in Fig. 2.

The g(r) and S(k) are determined from a hypernetted-chain
calculation (or from MD if desired) using the ion-ion pair
potential defined via the NPA pseudopotential. The pseudopo-
tential and the pair potential used here are given by

Uei(k) = �n f (k)/χ (k, n̄, T ), (5)

Vii(k) = Z̄2Vk + |Uei(k)|2χ (k), Vk = 4π/k2. (6)

Here �n f (k) is the Fourier transform of the free-electron
density displacement around the nucleus of the carbon atom
placed in the medium with the average ion density ρ̄ at T .
The fully interacting response function of the electron fluid
is denoted by χ (k, n̄, T ) and abbreviated to χ (k), while Vk is
the Coulomb potential. The response function uses a finite-T
local field correction whose k → 0 is chosen to satisfy the
compressibility sum rule.

D. Effect of self-interaction corrections on Z̄

Density functional theory calculations do not normally
include a self-interaction correction. So we include such a
correction, although we recognize that this may not resolve
the difference between the QMD prediction and the NPA
prediction. The inclusion of a SIC makes the xc functional
not only a functional of the density n(r) but also explicitly
dependent on the orbital wave function.

We use the model of Perdew and Zunger [9] rather than
the Dyson equation approach [19]. In this model, the average
value of the Coulomb potential U (nα ) for the electron density
in the orbitals α and σ under consideration and its xc potential
are added together and subtracted from the uncorrected Kohn-
Sham eigenvalue. The expression is most clearly written in the
language of spin-density functionals. Given a spin-density-
functional orbital φα,σ containing an electron density nα,σ and
the fully spin-polarized xc potential Vxc[nασ , 0], the SIC is
given as

�εSIC = −〈φασ |U (nα,σ (r) + Vxc[nασ (r), 0]|φα,σ (r)〉. (7)

Here φα,σ (r) is the eigenfunction obtained by self-consistently
solving the KS equation including the SIC in it. This equation
has an orbital dependence not found in the usual KS equation.
So instead we use the initial (non-SIC) NPA eigenfunction
as an approximate estimate of �εSIC. Furthermore, as we use
a spin-unpolarized representation nα,σ = nα/2. The zero-T
form of the electron xc functional or its finite-T form can
be used with little error since the T/EF in the range of
study is less than unity for all densities except the lowest.
In Fig. 3 we display the SIC-corrected Z̄ from the NPA,
together with the TF and QMD data (without SIC). The curve
marked “NPA+Friedel” is the estimate if the Friedel sum rule
is strictly imposed. It is this Z̄ that we use in the following
calculations. Since the SIC is itself an approximation, we may
regard the spread among the three NPA curves as a measure
of the uncertainty in our estimate of Z̄ . This uncertainty is
smaller than the offset between the NPA and QMD estimates.
The effect of the SIC (band-gap error) on the QMD Z̄ is likely
to be of about the same magnitude as the SIC in the NPA.
Hence we conclude that the offset is most likely to arise from
a deeper underlying physical difference.

We do not subscribe to the view of some investigators that
Z̄ is devoid of physical meaning and that it is a convenient
fit parameter taking various values depending on the physical
property investigated, be it the conductivity, the XRTS, the
diffusion coefficient, the opacity, etc. The Z̄ appears in the the-
ory as a valid DFT quantum statistical concept, as a Lagrange
multiplier for charge neutrality, while μ and T appear as La-
grange multipliers for the conservation of particle number and
the total energy. The Kohn-Sham eigenfunctions and energies
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FIG. 3. The NPA estimate of the mean number of free electrons
per ion, i.e., Z̄ , given in successive estimates. NPA-I is the naive
estimate, based on the 1s occupation number. This is then corrected
for the SI error. The calculation imposing the Friedel sum rule is also
given. The estimate is well contained and uncertainties in the NPA-Z̄
are definitely smaller than the offset from the QMD estimate. The
Thomas-Fermi Z̄ is shown for comparison. The SI error is evaluated
as in [9].

also have meaning in that they are the eigenfunctions and
eigenenergies of the noninteracting electrons used in the DFT
model. The NPA is also a noninteracting atom constructed
from the interacting ions and electrons of the system.

In all NPA calculations we use the one unique value of
Z̄ that satisfies the atomic physics, the Friedel sum rule, and
the f -sum rule, without fitting to any physical property. It is
given by an all-electron atomic physics calculation of the NPA
which incorporates a sophisticated free-energy calculation in-
clusive of many-body effects. This is essentially the Z̄ that
results from a sophisticated Saha calculation [14].

The atomic physics of the NPA defines a pseudopotential
based on Z̄ and a pair potential. They are sufficient to define
all the thermodynamic properties and linear transport prop-
erties of the system. The Z̄ is a unique value that applies
to all the calculated properties at a given ρ and T . Opti-
cal properties that involve instantaneous positions (e.g., line
broadening due to ion microfields) of particles, rather than
time-averaged thermodynamic properties, are outside DFT
unless time-dependent methods are used [31]. That pair po-
tentials are sufficient for the DFT-based NPA approach and
that no three-body and higher terms have to be additionally
included (contrary to the method followed in semiempirical
effective medium theories) have been discussed and clarified
in our recent work [15,25].

The Perdew-Zunger approach is not easily applied to en-
ergy bands. Even so, one may expect that if the band-gap
error in the DFT MD calculation were corrected using the GW
method, then a comparable downshifting of the QMD estimate
of Z̄ would occur. So the offset between the two methods
remains.

In our view, this difference in Z̄ arises from the fact that
the NPA (as well as other well known AA models) treats a
strictly uniform fluid, while the QMD treats highly anisotropic
crystals that are thermally averaged over many configura-
tions without any assumption of radial symmetry. The NPA,
together with the Ornstein-Zernike equation and HNC equa-
tions, can construct an ion-ion xc functional that can treat
nonuniform structures. The election-ion xc functional needs to
be included in such calculations. In practice, instead of using
integral equations like the MHNC, MD simulations using the
NPA pair potentials would be more practical in dealing with
inhomogeneous systems.

In QMD many ionic configurations are explicitly created
and sought. In our NPA calculations what is obtained is the
best possible uniform liquid structure even if it is metastable
with respect to some lower-energy solid-state structures (e.g.,
fullerene structures of carbon Coulomb crystals) that may be
possible under a given set of ρ and T . In contrast, simu-
lations using N = 2n, n = 16, atoms in the simulation cell
may favor icosahedral folded-graphite forms (e.g., fullerenes
and nanotubes in certain ranges of densities) [32]. They may
include Coulomb crystals [33,34] that minimize the energy via
shell filling. In the following we present physical properties
that support the view that the carbon system revealed by the
QMD study may well be a dispersed complex-solid phase very
different from a uniform liquid.

IV. CONDUCTIVITY

If the simulations used in Ref. [8] were to generate an
average over many anisotropic crystalline structures, with
some components of the conductivity tensor σ having high
values, while another principle tensor component is minimally
conducting, then the averaged conductivity obtained in the KG
calculation would show a very low conductivity. Alternatively,
if the QMD simulation leads to a granular fluid, then hopping
conductivity between grains would be small compared to that
of a uniform metallic fluid. The fluidlike states studied by the
NPA should lead to a spherically symmetric σ with a high
conductivity resulting from the estimated high Z̄ . The Ziman
formula evaluation [35] is implemented within a spherically
symmetric S(k) and a radial (s-wave) pseudopotential.

One may also evaluate the static conductivity σ via the KG
equation using the continuum solutions of the NPA model.
These too would be for a uniform fluid. However, they do not
contain the scattering from the field ions correctly since the
NPA (and other AA-like models) uses a spherical cavity rather
than the actual ρ(r) = ρ̄g(r) in modeling the ion distribution.
Hence we do not use the KG estimate of σ from the NPA and
instead calculate the conductivity using the pseudopotential
given in Eq. (5) as well as a structure factor generated directly
from the NPA calculations.

The conductivity calculated for the uniform fluid is an or-
der of magnitude higher than that from the QMD calculation,
even though QMD has a higher Z̄ and more free electrons.
Unfortunately, only one value of the static conductivity seems
to be reported in Ref. [8]. Interestingly, the KG estimate of the
static conductivity for liquid Li, which is also an ion with only
a small 1s core, shows a strong difference between the Ziman
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FIG. 4. (a) Electrical conductivity of carbon evaluated using the
NPA-Ziman formula and using the TF model of Lee and More [36].
A single QMD value is given. (b) Pressure and microscopic com-
pressibility κ in units of the ideal compressibility 1/T ρ̄. This is not
derived from the pressure but taken from the k → 0 limit of S(k).
The lack of discontinuities in the pressure or the compressibility
rules out any phase transitions in the regime of (T, ρ̄ ) studied. The
QMD pressure, extracted from Fig. 4 of Ref. [8], is displayed. Given
the higher free-electron content of QMD, the NPA pressure being
slightly smaller is consistent.

formula estimate and the QMD KG estimate (see Fig. 4).
In Ref. [37] we reported that the atomic physics obtained
from the NPA agreed accurately with the atomic physics of
the QMD calculation for Li at 0.6 g/cm3 and T = 4.5 eV,
predicting identical XRTS profiles; however, the static con-
ductivities from QMD and the NPA-Ziman formula differed
by a factor of 5 [38]. Lithium is also known to form com-
plex structures. The calculation of the conductivity of liquid
sodium near its melting point using the KG formula is also
subject to similar difficulties unless a very large number of
particles is used in the simulation [39]. In the following
we consider a particular model of a Coulomb crystal that
may help to explain the reported results from QMD and AA
models.

Coulomb crystals

The offset in Z̄ between the QMD result and the results
from homogeneous models (i.e., the TF, PURGATORIO, and
NPA models) is approximately �Z̄ = 0.5. Consider the car-
bon plasma at 50 g/cm3. It is very dense with rWS = 0.863,
rs = 0.4018 a.u., and Z̄ = 4.72, 4.19, 4.13, and 4.02 in the
QMD, TF, NPA, and PURGATORIO models, respectively. The
QMD simulation treats 32 carbon atoms as a solid-state clus-
ter. Since realistic first-principles potentials are being used,
the usual properties of metallic clusters should apply to this
simulation as well. More stable configurations are known as
magic numbers and this may arise from structural (packing)
arrangements and from electronic shell filling effects. The
conditions for these Coulomb crystals to form have been
discussed by various authors [33], although exact conditions
can be stated only in the context of various model systems.
Results for hydrogenic systems, e.g., the condition for the

Mott transition on rs ∼ 1.2, and similar thresholds can be
easily generalized to systems with Z̄ . Here we use results from
actual calculations and experiments. The cluster has a nominal
radius

Rcl = rWSN1/3 = rs{Z̄N}1/3. (8)

The equations to be solved are very similar to Eq. (3). The
single nucleus at the center is replaced by a cluster of N
ions. In the simplest jellium sphere approximation, this is
equivalent to a spherical positive charge distribution of the
form

Q(r) = −Z̄ρ(r), (9)

ρ(r) =
{

N
2Rcl

[
3 − (

r
Rcl

)2]
, r � Rcl

−N
r , r > Rcl.

(10)

A more sophisticated form is obtained by introducing a
self-consistently determined structure factor for the ions
instead of using a jellium sphere. The Z̄ included in Eqs. (8)
and (9) can be optimized is the usual manner and is subject to
the Friedel sum rule and the f -sum rule. We need not solve
this system as many results of solutions using DFT, as well
as quantum Monte Carlo results, have been published [40].
Given that we are dealing with carbon, structures with
N = 4, 13, 55, and 58 are favored structurally, with N
the number of ions. Electronic shell filling, determined by
jellium magic numbers for the given number of electrons
ne = Z̄N , is determined by the magic numbers 2, 8, 18,

20, 34, 36, 40, 54, 58, 68, 70, 86, 92, 106, 112, 138, 156, . . ..
Note that 156 electrons corresponds to about 31–32 carbons
atoms with Z̄ = 5 or 39 atoms with Z̄ = 4.

The simulation with N = 32 or 64 may produce one, two,
or several clusters together with individual atoms among them
as the MD simulation evolves. The mean density seen by
each atom inside the cluster is quite oscillatory and self-
compressed by the surface energy of the cluster. The total
energy is also an oscillatory function of N and the struc-
ture arises from the Kohn-Sham solutions. For such systems,
simulations with very large N are needed to achieve the
properties of the homogeneous system. A small four-atom
carbon cluster, with a mean ionization Z̄ = 4, has ne = 16
and hence achieves the magic number 18 if it acquires two
more electrons and achieves a mean ionization of 4.5, thus
registering the offset of �Z = 0.5 seen in the QMD cluster
calculation versus the uniform-density AA calculations. Such
electrons occupy orbitals weakly localized on the cluster and
such electrons can contribute weakly to the conductivity by
electron hopping from cluster to cluster. The simulations be-
ing done with periodic boundary conditions do not change this
physical picture where the hopping now involves motion in a
very narrow band with a low conductivity.

Many other clusters are possible as there is a choice of
magic electron numbers as well as structural numbers that
can combine to give specially stable structures, at any density
in the range explored, with the 32-atom or 64-atom QMD
simulation. A 13-atom cluster may have atoms charged Z̄ = 4,
having a total of 52 electrons, and acquire another 6 electrons
to achieve the electron magic number 58. Such a structure is
both structurally and electronically at a magic number and
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conforms to hcp, fcc, or icosohedral atomic arrangements.
The extra six electrons added to complete the magic shell
will produce an offset �Z̄ = 6

13 = 0.46. One may identify a
number of other such likely candidates stabilized by magic-
number effects. All these structures may occur in a DFT
MD simulation and they would have lower energies than the
uniform-fluid solution unless N were very large.

When very large numbers of particles, e.g., N = 1000,
are used in a simulation, the effect of such magic clusters
begins to average out and bulklike behavior is reached. The
physics described by Eq. (9) will approach that of the uniform
liquid-drop model as N → ∞ and the oscillatory behavior
will disappear. Hence we may conclude that large QMD so-
lutions will show a much smaller offset between the NPA
(AA) predictions and QMD predictions, both for Z̄ and for
the conductivity. On the other hand, the offset between the
QMD results and the average-atom results may persist, even
when the N in the QMD simulations is significantly increased,
indicating that carbon at 100 eV, at Gbar pressures, does not
exist as a uniform fluid of individual carbon ions.

V. CONCLUSION

A study of the properties of highly compressed hot carbon
using the single-atom DFT approach used in the neutral-
pseudoatom model was undertaken to estimate the extent of
self-interaction effects in this class of plasma models. It was
concluded that the offset in the estimated number of free
electrons, Z̄ , between the average-atom estimate and the DFT
MD estimate cannot be explained by self-interaction errors.
The extremely low conductivity predicted by the DFT MD KG
calculations, in comparison to results from the Ziman formula
and from the Lee-More formula, strongly suggests that the
DFT MD simulations using 32–64 atoms differed from the
estimate from average-atom models because the latter ad-
dressed only uniform-fluid solutions. The possible existence
of magic-number-stabilized carbon clusters is hypothesized
to be a likely explanation of the observed differences be-
tween the (32–64)-atom DFT MD simulations and effective
one-atom DFT simulations used in the NPA and PURGATORIO

codes.
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